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Abstract 
 
This note describes a novel approach to Routh-Padé approximation problem relating to the construction of  
reduced-order approximants for  continuous-time  unstable systems. In this method, stability and the first r time-
moments/Markov-parameters are preserved as well as the errors between a set of subsequent time-
moments/Markov-parameters of the system and those of the model are minimized. For the solution of this problem a 
method using the concept of Pareto-optimality is proposed. Pareto-optimal curve is the solution of Multi-objective 
Optimization problem. Evolutionary Algorithm such as real parameter Genetic Algorithm is used to get Pareto-
optimal curve. The search area for GA is very wide and it usually converges to a point near global optima. 

     
Keywords: Model reduction, Padé approximation, Routh criterion, Pareto-optimal solutions, VEGA. 
 
 
1. Introduction 
 
There are many situations, for example, those related with missile and aircraft control systems 
[7,26] and chemical process control [18]  where the system to be controlled is inherently unstable 
and of relatively high dynamic complexity.   A low degree reduced model is often searched for, 
so that an analog or digital simulation of the system is possible. Therefore, problem of model 
reduction for unstable systems has received considerable attention. Several authors Hutton and 
Friedland [19], Shamash [46],  Krishnamurthy and Sheshadri [26]  have proposed methods for 
deriving simplified models for high-order unstable systems. The reported methods deal with 
simplification of unstable systems in frequency domain.  
 
Here, an alternative approach of model reduction of a class of unstable systems is proposed.  In 
proposed method, systems dynamics is split into stable and unstable parts. The unstable part is 
retained unchanged in the reduced dimensional model while the simplification is carried out only 
on the stable part.  The simplification procedure of Hutton [19] converts the unstable system into 
a stable one by shift of the imaginary axis. In this procedurehe amount of shift is arbitrary and 
leads to nonunique lower dimensional models. A large number of time-domain and frequency-
domain system simplification techniques have been developed to suit different requirement. 
Amongst them, a frequency domain method is Padé approximation in which 2r terms of the 
power series expansion (time moments) of the high-order (nth-order) transfer function )(sGn  are 
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fully retained in low-order (rth-order) model )(sGr . The Padé approximation does not guarantee 
the stability of the reduced-order model. To overcome the problem of stability, several stable 
reduction methods such as Routh approximation [19,38,46], the Hurwitz polynomial 
approximation [1], the stability equation method [8]  and     the method using Michailov stability 
criterion [49] have been proposed. The Routh approximation [19,38,46] has the drawback of 
matching only the first r time moments ( rttt ,...,, 21 ) of )(sGn to the respective time moments 
( rttt ˆ,...,ˆ,ˆ

21 ) of )(sGr (in recent years the extension of Routh approximation techniques 
[19,38,46] to interval systems has attracted the attention of many researchers [4,5,16,18,24].  
Later Shamash [47] considered the effect of including some Markov parameters ( ,..., 21 MM ) 
along with time moments, which is generally essential to ensure both initial and steady state 
response approximation. However, the technique of [6,26,35,45] is again confined to matching 
of only r terms (α  time moments and β  Markov parameters, where r=+ βα ). Several variants 
of Routh approximation were subsequently reported [6,26,35,45]; however, they again remain 
confined to only r terms matching for the purpose of preserving stability, a task which can be 
achieved arbitrarily [43,44]. Note that infinite numbers of stable models can be constructed if the 
objective is to match only r terms [43]. Thus, the basic problem is to match or near match a few 
terms in excess of r terms while preserving stability [2,3]. Some attempt was made previously 
[41] to partially solve this problem. Singh [41] suggested a technique based on the successive 
variances of the model. The method [41] requires the determination of the stability region in 
terms of the free parameters.  Other closely related problems have also received attention [1,9-
15,17,20-25,27-37,44-46]. Recently, geometric programming based (computer-oriented) 
methods [39,40] for the solution of the Routh-Padé approximation problem are presented. In 
these methods  [39,40], Geometric programming based computer-aided methods have been 
reported recently first r time moments/Markov parameters are fully retained and the sum of the 
weighted squares of errors between a set of subsequent time moments/Markov parameters of the 
system and those of the model are minimized while preserving stability. These methods [39,40] 
have the drawback that the question of finding some means  (free of hit and trial) of deciding the 
values  of the number of time moments/Markov parameters (say m) to be matched or near-
matched and the  weights to  correspond  to  assured   substantial   improvement   in system  
approximation as well  as  the question of establishing  the  existence  of  such  values are left 
unresolved. 
 In this note, a nonlinear programming based (computer-oriented) method for the solution of 
Routh-Padé approximation problem is presented. The method is essentially a multi-objective 
optimization procedure in which not only stability is preserved and the first r terms of the power 
series expansion of )(sGn  are fully retained but also the errors between a set of subsequent time 
moments/Markov parameters of the system and those of the model are minimized. This alleviates 
the problem of finding m and weights.  The applicability of proposed method is shown by means 
of numerical example. The search area for GA is very wide and it usually converges to a point 
near global optima [16]. Though  Pareto-optimality, which is a key step in the present technique, 
is well known to the best of author’s knowledge, this is the first instance of explicitly showing its 
usefulness for obtaining reduced-order models for unstable systems.    
 
This paper is organized as follows. In Sec. 2 we briefly review the results of [39,40]. The 
improvement is presented in Sec. 3 and numerical example is given in Sec. 4. Finally paper is 
concluded in Sec. 5. 
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2. Brief Review of Existing Results 
 
Consider a single-input-single-output system described by the transfer function 
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The problem is to determine its stable reduced-order (rth-order) approximant 
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 A. Formulation of the objective function 
The formulation of the multiobjective optimization problem will be explained for r being 
even. Formulation for r being odd can be done in a similar way. It is easy to verify that for 
r even, the following equations hold true:  
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We seek a stable model for which r equations given by 



 4 

              






=−

=−

0ˆ
0ˆ

ii

ii

MM

tt
   

2
,...,1 ri =                          (9) 

 
are satisfied ,which implies, from (7), 

   

                   
2

,...,1
ˆˆ

ˆˆ

1

1
1

ri
bMa

bta

i

j
jiji

i

j
jirjir

=











=

=

∑

∑

=
−

=
+−−+

.                                 (10) 

 
There exist an infinite number of stable models for which (10) is satisfied [18]. This 
arbitrariness in stability preservation is exploited in [33] by minimizing the sum of the 
weighted squares of errors. 
   To find the improved model, VEGA [16] is used to generate Pareto-optimal 
solutions by minimizing objective functions  M
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         Using (8) subject to (9), (11) can be expressed as 
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B. Formulation of the stability constraints                   

 
Now following [37], the denominator polynomial of (4) can be expressed as  
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which is constructed by taking the coefficients of the first two rows of the Routh array with 
the elements of its first column given [37] by 
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where q =1 for r even and q =0 for r odd. By setting  
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(15) is matched with the denominator polynomial of the model in (4), namely, with  
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and the necessary and the sufficient condition that all the roots of (16) be strictly in the left 
half plane is [37] 

  
                           $ , $ ,..., $d d d r1 20 0 0> > >                (17a) 

which, of course, implies  
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Note that, for a given r, $bi , i r= 1,..., , can easily be expressed in terms of $d i , i r= 1,..., , by 
constructing an inverse Routh array (i.e., with the element of its first column given by (14)) 
in a manner analogous to [37].Thus, pertaining to r=4, (15) becomes  

 
 $ $b d1 1= , $ $ $ $b d d d2 3 3 4= + + , $ $ ( $ $ )b d d d3 1 3 4= + , $ $ $b d d4 2 4= .              (18)                  

          
         3.  Application of VEGA   
       

         Now, the problem is to minimize (12), satisfying (17a). The vector evaluated genetic 
algorithm (VEGA) [16] is proposed herein for solving the above stated problem. VEGA is 
the simplest possible multi-objective GA [16] and is straightforward extension of a single-
objective extension of multi-objective optimization. Since a number of objectives (say Q) 
have to be handled, GA population is divided at every generation into Q equal 
subpopulations randomly. Each subpopulation is assigned a fitness value based on different 
objective function. 

     After each solution is assigned a fitness value, the selection operator restricted among 
solutions of each subpopulation, is applied until the complete subpopulation is filled [16]. 
The following VEGA procedure is used [16]. 
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       Step    1:      Set, for population size N, an objective function counter i = 1 and define  
QNx /=  

        Step 2: For all solution, xijxij ∗=∗−+=   to)1(1 , assign fitness as:   )ˆ()ˆ( )()( j
i

j zZ bb = . 

        Step    3:   Perform proportionate selection on all x  solutions to create a mating pool  iP . 

        Step     4:   If Qi = , go to Step 5. Otherwise, increment i by one and go to Step 2. 

           Step   5: Combine all mating pools together: i
Q
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P to create a new population [16]. 
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vicinity of parent solution with a uniform probability distribution is chosen: 
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 Here, an alternative approach of model reduction of a class of unstable systems is proposed.  In 
proposed method, systems dynamics is split into stable and unstable parts. The unstable part is 
retained unchanged in the reduced dimensional model while the simplification is carried out only 
on the stable part .   
Consider an unstable higher order system given by: 
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  where  )(sy  and )(sz  are unstable and stable poles, )(sD  is the quotient which obtained 
while making  )(sGn  to be strictly proper, )(sGn  is stable transfer function of the system    
when unstable poles are segregated. 
Assume that a reduced order model of the form 
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where  nr < ,  where )(ˆ sGr   is stable transfer function of the reduced-order mode )(ˆ sG   when 
stsble poles are segregated.  
 
The performance of the algorithm is verified by application to the following numerical example. 
       
 4. Example 
  Consider a system reported by Rao et. al. [38]   
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                 Consider a stable third-order system 
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Suppose a second-order approximant (r=2) is required. The approximant can systematically be 

arrived at by following the steps given below. 

   Step     1    From the requirement of the first r terms matching with p=1 (see (9)), one has 
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Step       3  Using (34), objective function (12) and (17a) take the following forms 

respectively (for m=1) 
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   Step      4 The problem is to minimize (35) subject to (36). Following VEGA [16] 
parameters has been used to obtain the optimal values of 21
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can be obtained by Pareto-Optimality and V.E.G.A. For the following population of initial 
conditions, the population after crossover and mutation operators are shown in following table: 
                                                 
 Table 1. Results for population 

                                                

 
Applying Pareto-Optimality and V.E.G.A., algorithm converges to the following optimal 
solution and reduced-order model is following: 
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Crossover & 
Mutation Operator 
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Assigned 
Fitness 
Value 

1. 4.8178        0.9203 4.8178              0.9203 4.805422    0.871356 457.001776 
2. 4.744668    0.9203 4.744668          0.9203 4.695724     0.871356             459.437195 
3. 5.743400    0.9013 5.743400          0.9013 4.656056     0.876006                455.456726 
4. 4.7426 00   0.9234 4.7426 00         0.9234 4.693656     0.874456 0.043756 
5. 4.887000    0.9023 4.887000          0.9023 4.676956     0.885506              0.041648 
6. 4.776 000   0.9013 4.776 000         0.9013 4.727056     0.852356             0.048127 

(38) 
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For comparison, the models as obtained by techniques reported by Krishnamurthy and Sheshadri 
[27] and Rao et. al. [38]: 
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Step and impulse responses of (26), (40), (41) and (42) are plotted in Fig. 1 and Fig. 2. It is 
clearly seen that the response of approximation (40) is almost identical to that of (26) while (41) 
and (42) show deviation.  

  (39) 
 

      (41) 
 

       (42) 
 



 11 

 

                        Fig. 1 Step responses of original system and its reduced order models                
 

 

        Fig. 2 Impulse responses of original system and its reduced order models 
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5. Conclusions 
 
In this note, problem of finding Routh-Padé approximants has been viewed as a multi-objective 
optimization problem for unstable systems. An evolutionary algorithm, Vector Evaluated 
Genetic Algorithm (VEGA) by name, is used to solve the multi-objective optimization problem. 
This algorithm gives Pareto-optimal solutions (non-dominated set of solutions) and the best 
possible solution is selected. It is shown that, using Pareto-Optimality and V.E.G.A., the 
denominator of the model  can  be  chosen  so  as  to minimize errors between the (r+1)th and the 
subsequent time-moments and Markov-parameters of  the model and the corresponding time-
moments  and  Markov-parameters of the system while  preserving  stability.  Having obtained 
the denominator in this manner, the numerator parameters can be determined in the usual 
manner, namely, by fully retaining the first r time-moments/Markov-parameters   of  the  system.  
The present approach, therefore, leads to an improved approximant for unstable systems.  
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