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Abstract 
 
In this paper, tenth order compact finite difference method have been presented for solving singularly perturbed 
two-point boundary value problems of 1D reaction-diffusion equations. The derivatives in the given differential 
equation have been replaced by finite difference approximations and transformed to tri-diagonal system which can 
easily be solved by Discrete Invariant Imbedding algorithm.  The theoretical error bounds have been established 
for the method. Three model examples have been considered to check the applicability of the proposed method. The 
numerical results presented in tables show that the present method approximates the exact solution very well. 
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1. Introduction 

Any differential equation in which the highest order derivative is multiplied by a small positive 
parameter  0 1  �  is called singular perturbation problem and the parameter is known as the 
perturbation parameter. These types of problems arise frequently in many fields of applied 
mathematics and engineering, like quantum mathematics, fluid dynamics, chemical reactions, 
electrical network, nuclear physics, elasticity, hydro-dynamics, modeling of semiconductor 
devices, diffraction theory and reaction-diffusion processes and many other allied areas. Classical 
computational approaches to singularly perturbed problems are known to be inadequate as they 
require extremely large numbers of mesh points to produce satisfactory computed solutions 
Farrell et al. [1] and Roos et al. [2]. Detailed discussions on the theory of asymptotical and 
numerical solutions of singular perturbation problems have been published (see [3 - 9]). So, the 
treatment of singularly perturbed problems presents severe difficulties that have to be addressed 
to ensure accurate numerical solutions (see [10 - 13]). 
It is well-known fact that the solution of singular perturbation problem exhibits a multi-scale 
character that is; there are thin layer(s) where the solution varies rapidly, while away from the 
layer(s) the solution behaves regularly and varies slowly. However, most of the existing classical 
finite difference methods which have been used in solving singular perturbation problems give 
good result only when the mesh size is much less than the perturbation parameter which is very 
costly and time consuming.  
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In this paper, tenth order compact finite difference method is presented for solving second-order 
self-adjoint singularly perturbed 1D reaction-diffusion problems. Compact finite difference 
method is a finite difference method which employs a linear combination of three consecutive 
points of derivatives to approximate a linear combination of the same three consecutive values of 
a function ( ), 1, , 1jy x j i i i   . To validate the efficiency of the method, three modal examples 
are solved for different values of the parameter , mesh length h  and compare the maximum 
absolute error with the more currently published papers. 

2. Description of the Method 

Consider the following singularly perturbed 1D reaction-diffusion equation of the form:  
      );()()()( xfxyxaxy   ,10  x          (1) 
with the Dirichlet boundary conditions 

         ,)0( y )1(y                                                               (2) 
where is a small positive parameter (diffusion coefficient) such that 10   and  , are 
given constants and );(xa )(xf  are assumed to be sufficiently continuously differentiable 
functions such that 0)(  xa  for every [0, 1]x , where   is some positive constant. 
To describe the scheme, we divide the interval [0, 1]  into N  equal subintervals of mesh length h
Let 1,...,,0 21  Nxxx  be the mesh points. Then, we have ihxxi  0 , ....,,1,0 Ni   

For convenience, let ,)( ii axa  ,)( ii fxf  ,)( ii yxy  ,)(,)( iiii yxyyxy  .)( )()( n
ii

n yxy   
Assume that )(xy  has continuous higher order derivatives on ]1,0[ . 
Using Taylor series expansion, we have: 
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Subtracting Eq. (4) from Eq. (3), we obtain the second order finite difference approximation 
)( 1

ic y  for the first derivative of iy  is: 
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Adding Eqs. (3) and (4), we obtain the second order finite difference approximation )( 2
ic y for 

the second derivative of iy is: 
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where )4(
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Substituting Eqs. (3) and (4) into Eqs. (5) and (6) yields 
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Writing Eq. (1) at discretized mesh, we obtain 

         
i i
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Differentiating Eq. (9) twice, four and six times respectively, we have 
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By applying 2
c  to )8(

iy  in Eq. (6), we obtain:  
 )8(
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Substituting Eq. (13) in Eq. (6) yields: 
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where )4(
2
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Substituting Eqs. (10), (11) and (12) into Eq. (14), gives:
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By substituting Eq. (15) for the value y  into Eq. (1) and rearranging, we obtain:
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Substituting Eq. (6) into Eq. (16) for )( 2
ic y  together with 
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and rearranging, we obtain the equivalent three-term recurrence relation given by: 
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Eq. (17) gives us the tri-diagonal system which can easily be solved by applying Thomas 
Algorithm. 

3. Convergence Analysis 

Writing the tri-diagonal system Eq. (17) above in matrix vector form, we obtain 
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                  CAY            (18) 

where ),( ijmA ,1 i 1 Nj  is a tri-diagonal matrix of order N , with 
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We also have 
ChYA  )(          (20)  

where t
NyyyyY )...,,,,( 210  denotes the exact solution and 

t
NN hhhh ))(...,),(),(()( 1201   denotes the local truncation error. 

Making use of Eq. (19) and Eq. (20), we obtain an error equation: 
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Since 10   , we can choose h  sufficiently small so that the matrix A  is irreducible and 
monotone [7];  Then it follows that 1A   exists and its elements are non-negative. 
Hence, from Eq. (21), we get 

1. ( )E A T h           (22) 
and  

1 . ( )E A T h                 (23) 
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 which is a constant and independent of .h  

Therefore, ).( 10hoE    
This implies that the method gives a tenth order convergence.  

4. Numerical Examples  

To demonstrate the applicability of the methods, two model singularly perturbed problems have 
been considered. These examples have been chosen because they have been widely discussed in 
the literature and their exact solutions are available for comparison. 
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Example 1:  Consider the following singular perturbation problem with constant coefficients: 
,xyy   10  x  

with boundary conditions ,1)0( y 








1exp1)1(y . 

The exact (analytical) solution is given by:  

    








xxxy exp)(  

The numerical solutions in terms of maximum absolute errors and its comparison with other 
authors are tabulated in Table 1 for different values of   and .N   
  

      Table 1 Maximum Absolute Error for Example 1. 

 
 
Example 2: Consider the following singular perturbation problem with constant coefficients: 
           2 2cos ( ) 2 cos(2 ), 0 1y y x x x           
with boundary conditions (0) 0 (1)y y   
The exact (analytical) solution is given by: 

  2exp( (1 ) / ) exp( / )( ) cos ( )
1 exp( 1/ )

x xy x x 



   

 
 

 

The numerical solutions in terms of maximum absolute errors and its comparison with other 
authors are tabulated in Table 2 for different values of   and .N      

 
 
 

  N = 16 N = 32 N = 64 N = 128 N = 256  
Our method  

1/16 7.2164E-15 3.3307E-16 1.4433E-15 3.1086E-15 4.3299E-15  
1/32 2.2993E-13 3.3307E-16 5.5511E-16 1.3323E-15 8.6597E-15  
1/64 7.2617E-12 7.3275E-15 5.5511E-16 9.9920E-16 3.3307E-15  
1/128 2.1337E-10 2.3015E-13 2.7756E-16 8.8818E-16 1.6653E-15  
1/256 6.7755E-09 7.2617E-12 7.2720E-15 3.8858E-16 4.5075E-14  

Fasika et al. [4] 
1/16 8.0337E-09 1.2628E-10 1.9704E-12 2.6756E-14 3.1575E-13  
1/32 6.4174E-08 1.0146E-09 1.5920E-11 2.7744E-13 3.3595E-13  
1/64 5.0661E-07 8.1031E-09 1.2737E-10 1.9886E-12 4.4076E-14  
1/128 3.7264E-06 6.4204E-08 1.0151E-09 1.5928E-11 2.7062E-13  
1/256 2.9689E-05 5.0662E-07 8.1032E-09 1.2737e-10 1.9936e-12  

Arshad and Pooja  [10]  
1/16 2.153E-08 1.082E-10 1.536E-12 2.942E-14 2.522E-13  
1/32 2.629E-07 1.591E-09 1.130E-11 1.844E-13 1.331E-13  
1/64 2.832E-06 2.150E-08 1.081E-10 1.601E-12 4.596E-14  
1/128 2.591E-05 2.629E-07 1.591E-09 1.130E-11 1.907E-13  
1/256 1.922E-04 2.832E-06 2.150E-08 1.081E-10 1.599E-12  
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Table 2: Maximum Absolute Errors for Example 2 

  16N   32N   64N   128N   256N   
Our method 

1/16 1.6536E-12 1.7208E-15 4.7184E-16 5.4123E-16 1.7208E-15 
1/32 1.3279E-12 1.2906E-15 4.4409E-16 6.1062E-16 1.7764E-15 
1/64 7.1339E-12 7.1609E-15 2.2204E-16 8.3267E-16 2.1094E-15 
1/128 1.1333E-10 2.3015E-13 3.3307E-16 3.3307E-16 1.3323E-15 
1/256 6.7755E-09 7.2617E-12 7.1054E-15 5.5511E-16 3.1641E-14 

Fasika et al [4] 
1/16 3.1216E-07 4.8731E-09 7.6124E-11 1.1864E-12 6.5059E-14 
1/32 2.6300E-07 4.1289E-09 6.4591E-11 1.0078E-12 8.6264E-14 
1/64 4.7141E-07 7.5487E-09 1.1898E-10 1.8661E-12 4.8017E-14 
1/128 3.6957E-06 6.3668E-08 1.0067E-09 1.5801E-11 2.3137E-13 
1/256 2.9667E-05 5.0624E-07 8.0973E-09 1.2727E-10 1.9914E-12 

Arshad  and Pooja [10] 
1/16 4.707E-07 5.254E-09 7.265E-11 1.089E-12 5.001E-14 
1/32 2.681E-07 3.897E-09 5.920E-11 9.230E-13 2.559E-14 
1/64 2.603E-06 1.908E-08 9.803E-11 1.502E-12 4.968E-14 
1/128 2.560E-05 2.607E-07 1.581E-09 1.119E-11 2.405E-13 
1/256 1.920E-04 2.830E-06 2.149E-08 1.080E-10 1.579E-12 

 
Example 3: Consider the following singular perturbation problem with constant coefficients: 

              1( ) ( ) 1 2 {exp exp }x xy x y x 
 
           

   
 

with boundary conditions (0) 0 (1)y y   
The exact (analytical) solution of the above problem is: 

  1( ) 1 (1 )exp expx xy x x x
 
          

   
 

The numerical solutions in terms of maximum absolute errors and its comparison with other 
method are tabulated in Table 3 for different values of   and .N  
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Table 3: Maximum Absolute Errors for Example 3 
  16N   32N   64N   128N   256N   

Our method      
1/16 3.7415E-14 5.5511E-16 1.8874E-15 3.8858E-15 7.4385E-15 
1/32 7.1430E-13 8.8818E-16 4.4409E-16 1.7764E-15 4.4409E-15 
1/64 1.7440E-11 1.7319E-14 8.8818E-16 1.9984E-15 4.4409E-15 
1/128 4.2294E-10 4.5353E-13 4.4409E-16 8.8818E-16 2.3315E-15 
1/256 1.1398E-08 1.2244E-11 1.2212E-14 9.9920E-16 5.6954E-14 

Fasika et al [4] 
1/16 3.0275 E -08 4.7605 E -10 7.4485 E -12 1.1768 E -13 3.5527 E -15 
1/32 1.5650 E -07 2.4759 E -09 3.8809 E -11 6.0718 E -13 1.1990 E -14 
1/64 9.5977 E -07 1.5367 E -08 2.4161 E -10 3.7805 E -12 5.9619 E -14 
1/128 6.0692 E -06 1.0376 E -07 1.6413 E -09 2.5820 E -11 4.0390 E -13 
1/256 4.2534 E -05 7.2759 E -07 1.1646 E -08 1.8308 E -10 2.8649 E -12 

Arshad and Pooja [10] 
1/16 6.409E-08 3.191E-10 6.235E-12 1.529E-13 2.813E-13 
1/32 6.085E-07 3.754E-09 2.810E-11 5.647E-13 1.972E-13 
1/64 5.331E-06 4.174E-08 2.139E-10 2.972E-12 1.043E-13 
1/128 4.120E-05 4.329E-07 2.673E-09 1.794E-11 3.867E-13 
1/256 2.669E-04 4.077E-06 3.162E-08 1.610E-10 2.255E-12 

5. Discussion and Conclusion 

The tenth order compact finite difference method has been presented for solving singularly 
perturbed reaction-diffusion equations with dirichlet boundary conditions. Derivatives appearing 
in the given differential equation are replaced by finite difference approximations obtained by 
Taylor series expansions at the grid points. This gives a large algebraic tri-diagonal system of 
equations to be solved by Thomas algorithm, and to obtain the solutions at the mesh points using 
MATLAB software. Three model examples are given to demonstrate the efficiency of the 
proposed method. The maximum absolute errors tabulated in (Tables 1 – 3) for different values of 
the perturbation parameter  and mesh size h  are compared with some previous findings of other 
methods reported in the literature. As it can be observed from the tables, the proposed method 
improved the findings reported by authors’ given in [4] and [10].   
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