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Abstract 

MHD free convection in trapezoidal cavities has attracted the interest of many researchers due to its importance 
applications in several thermal engineering problems such as in the design of electronic devices, solar thermal receivers, 
and uncovered flat plate solar collectors having rows of vertical strips geothermal reservoirs, and so on. This analysis is 
largely concerned with the effects of circular cylindrical block on heat flow for MHD free convection in a non-uniformly 
heated trapezoidal enclosure. Free convection within a trapezoidal enclosure is considered as non-uniformly heated 
bottom wall and insulated top wall while side walls are isothermal with inclination angles ( ). Heat flows in the 
presence of free convection within trapezoidal enclosures have been analyzed with heatlines concept. A set of Similarity 
transformations are used to transform the momentum and energy equations under consideration into coupled non-
dimensional governing equations. The non-dimensional governing equations are discretized by using Galerkin weighted 
residual method of finite element formulation. The numerical results are presented in terms of streamlines, isotherms, 
local Nusselt number along the bottom wall for non-uniform heating for different combinations of the governing 
parameters namely Prandtl number Pr, Hartmann number Ha and Rayleigh number Ra. The validity of the numerical 
results is checked graphically by comparing the results obtained for some specific cases with those available in the 
literature, and a comparatively excellent agreement is reached. 
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1. Introduction 

The analysis of free convection usually induced in enclosed cavities containing heating elements on 
one of its wall or on both walls are important both of theoretical and practical points of view. Most of 
the cavities as triangular, rectangular, cylindrical, and trapezoidal etc. are commonly used in 
industries. Trapezoidal cavities have received a considerable attention for its application in various 
fields. A comprehensive understanding of energy flow and entropy generation is needed for an 
optimal process design via reducing irreversibilities in terms of ‘entropy generation’. This analysis 
on entropy generation during natural convection in a trapezoidal cavity with various inclination 
angles (φ = 45°, 60° and 90°) examined for an efficient thermal processing of various fluids of 
industrial importance (Pr = 0.015, 0.7 and 1000) in the range of Rayleigh number (103 − 105) by 
Basak [1]. Heat flow patterns within trapezoidal enclosures in the presence of natural convection 
with heatlines concept have been investigated by Basak [2]. In this investigation, natural convection 
within a trapezoidal enclosure for uniformly and non-uniformly heated bottom wall, insulated top 
wall but isothermal side walls with inclination angle are considered. The streamfunctions and 
heatfunctions have considered as momentum and energy transfer such that streamfunctions 
andheatfunctions satisfy the dimensionless forms of momentum and energy balance equations, 
respectively. The heatlines are found to be continuous lines connecting with the cold and hot walls, 
while the lines are perpendicular to the isothermal walls for the conduction dominant heat transfer. 
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The enhanced thermal mixing near the core for larger Rayleigh number is explained with dense 
heatlines and convective loop of heatlines. The boundary layer formation on the walls has a direct 
consequence based on heatlines. For side and bottom walls, the local Nusselt numbers have been 
shown. Moreover, variation of local Nusselt numbers with distance has been explained based on 
heatlines. The average heat transfer rate varies insignificantly with non-uniform heating of bottom 
wall. Boussaid [3], investigated the natural heat and mass transfer in a trapezoidal cavity heated from 
the bottom and cooled from the inclined upper wall. The obtained results show the flow 
configuration depends on the θ angle inclination of the upper wall. Baez [4], performed 2D natural 
convection flows in tilted cavities: Porous media and homogeneous fluids. Some numerical and 
experimental results of turbulent double-diffusive natural convection of a mixture of two gases in a 
trapezoidal enclosure with imposed unstable thermal stratification are reported by Eyden [5]. As in 
Nasir Uddin [6], the authors examine the effects of circular cylindrical block on flow field to explore 
the impact of the momentum and heat transfer characteristics with magnetic field with the absent of 
Hartmann number. They reported that he velocity boundary layer thickness increases with the 
increase of Rayleigh number in the middle of the trapezoidal but decreases both of the sides wall 
adjacent to the bottom walls with the absent of Hartmann number. As in Kuyper [7] examined 
laminar natural convection flow in trapezoidal enclosures to analysis the effects of the inclination 
angle on the flow and the dependence of the average Nusselt numbers on the Rayleigh number. A 
critical Rayleigh number Ra is presented depending on the tilting angle, where unicellular convection 
is observed. As in Kumar [8] investigated coupled non-linear partial differential equations, governing 
the natural convection from an isothermal wall of a trapezoidal porous enclosure have been solved 
numerically by finite element method (FEM). In view of the huge quantity of calculation, a similar 
numerical algorithm for unfinished LU-conjugate gradient (ILU-CG) solver on eight-noded 
ANUPAM cluster under MIMD paradigm based on ANULIB message passing library has been 
developed. Corresponding computations have been carried out for different values of flow and 
geometric parameters both under Darcian and non-Darcian assumptions on the porous model. 
Cumulative heat fluxes and Nusselt number (Nu) connected with convection process are accessible 
through computer generated plots. As in Kumar [9] the authors investigated straightforward thermal 
investigation to estimate the natural convective heat transfer coefficient, hc12 for a trapezoidal 
absorber plate-inner glass cover enclosure of a double-glazed box-type solar cooker. As in Natarajan 
[10] reported a numerical study of mutual natural convection and surface radiation heat transfer in a 
solar trapezoidal cavity absorber for Compact Linear Fresnel Reflector (CLFR). The numerical 
simulation results are reported in terms of Nusselt number correlation to show the outcome of these 
parameters on combined natural convection and surface radiation heat loss. The authors in Saleh [11] 
also investigated the effect of magnetic field in a trapezoidal enclosure filled with a fluid-saturated 
porous medium with steady convection by the finite difference method. The outcome point toward 
that the heat transfer performance decreases with the decreasing the angle of sloping wall. Optimum 
reducing of heat transfer rate was obtained for an acute trapezoidal enclosure, and large magnetic 
field in the parallel direction. However, overall heat defeat coefficients of trapezoidal cavity absorber 
with rectangular and round pipe were studied in the laboratory by Singh [12]. As there should be 
lowest heat defeat from the absorber to get better efficiency of the solar collector. Varol [13] studied 
the heat transfer and fluid flow inside two entrapped porous trapezoidal cavities involving cold 
inclined walls and hot horizontal walls. The numerical results are presented for different values of 
the governing parameters, such as Darcy-modified Rayleigh number, aspect ratio of two entrapped 
trapezoidal cavities and thermal conductivity ratio between the middle horizontal wall and fluid 
medium. The rates of heat transfer are estimated in terms of local and mean Nusselt numbers. The 
local Nusselt numbers with spatial distribution reveal monotonic tendency irrespective of all 
Rayleigh numbers for the upper trapezoidal while wavy distribution of local Nusselt number happen 
for the lower trapezoidal. Also a numerical work to determine the heat transfer and fluid flow due to 
buoyancy forces in divided trapezoidal enclosures filled with fluid saturated porous media is 
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investigated by Varol [14]. In this investigation, bottom wall was non-uniformly heated whereas two 
vertical walls were insulated and the top wall was maintained at constant cold temperature. 
Therefore, in the light of above literatures, it is more reasonable to examine the effect of Hartmann 
number on heat flow for MHD free convection in a non-uniformly heated trapezoidal enclosure. The 
numerical results in terms of streamlines, isotherms, local Nusselt number along the bottom wall for 
non-uniform heating are presented for different combinations of the relevant governing parameters 
namely Prandtl number Pr, Hartmann number Ha and Rayleigh number Ra. 

2. Physical Model and Mathematical Analysis 

Figure 01 shows a schematic diagram and the coordinates with the significant geometric parameters. 
Heat transfers with the fluid flow within a two-dimensional trapezoidal cavity are considered. A 
trapezoidal cavity of height L with the left wall inclined at an angle  = 250 with y axis is considered 
subject to conditions that left wall and right wall (i.e. side walls) are subjected to the cold 
temperature Tc, and bottom wall is subjected to the hot temperature Th whereas the top wall is kept 
insulated. The fluid which is considered as incompressible, Newtonian whereas the flow which is 
assumed to be laminar. The no-slip boundary conditions are considered for velocity on solid 
boundaries. The viscous dissipation effect in the energy equation is neglected. For the conduct of the 
buoyancy term in the momentum equation, Boussinesq approximation is employed to explanation for 
the variations of density as a function of temperature, and to couple in this way the temperature field 
to the flow field. Also for laminar incompressible thermal flow, the buoyancy force is included here 
as a body force in the momentum equation for y direction. Under the foregoing assumptions, the 
governing equations for steady free convection flow can be written as:  

 

 

 

 

 

 

 

Fig. 1: Schematic diagram of the physical system for  ϕ = 250 

Under the foregoing assumptions, the governing equations for steady free convection flow can be 
written as:  
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where x and y are the horizontal and vertical directions respectively whereas u and v are the velocity 
components in the x and y directions respectively, T denote the fluid temperature whereas Tc denotes 
the reference temperature for which buoyant force vanishes, p is the pressure whereas ρ is the fluid 
density, g is the gravitational constant, β is the volumetric coefficient of thermal expansion, cp is the 
fluid specific heat and k is the thermal conductivity of fluid. The appropriate boundary conditions for 
the flow field and relevant to this investigation are as follows for at the bottom wall, at the left wall, 
at the right wall and at the top wall:  

( ,0) 0, ( ,0) 0, 0, 0hu x v x T T y x L        

(0, ) 0, (0, ) 0, , cos sin 0, 0cu y v y T T x y y L          

(0, ) 0, (0, ) 0, , cos sin cos ,0cu y v y T T x y L y L           

 ( , ) 0, ( , ) 0, 0, , tan 1 tanc

h c

T Tu x L v x L y L L x L
y T T

 
 

             
Where x and y are the horizontal and vertical directions, respectively whereas u and v are the velocity 
components in the x and y direction, respectively; L is the height of trapezoidal cavity with the left 
wall inclined at an angle    = 250 with y axis; T denotes the temperature; Th and Tc are heated non-
uniformly and colder uniformly temperatures respectively. The local Nusselt number which is 
defined by the following expression of the cavity at the heated surface: 
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Such local values have been further averaged over the entire heated surface to get the overall mean 
Nusselt number at the left, right, and bottom walls are: 
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where L is the length of the heated wall whereas h(x) is the local convective heat transfer coefficient 
of the heated wall. In order to reduce the number of independent variables and to make the governing 
differential equations (1- 4) dimensionless, the following dimensionless variables are applied: 
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where X and Y are the coordinates along horizontal and vertical directions, respectively while U and 
V are the velocity components in the X and Y directions,  is the dimensionless temperature, P is the 
dimensionless pressure, h cT T T   is  the temperature difference, and  is thermal diffusivity of 
the fluid. Also the dimensionless parameters are the Grashof number Gr, Prandtl number Pr, 



Md. Nasir Uddin , Md. Abdul Alim and Abdul Halim Bhuiyan 

44 
 

Hartmann number Ha and Rayleigh number Ra. Using dimensionless variables, the transformed 
continuity, momentum and energy equations together with the boundary conditions can be written as:  
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and the boundary conditions are as follows for at the bottom wall, at the left wall, at the right wall 
and at the top wall: 

 0, 0, sin 0, 0 1U V X Y X         
0, 0, 0, cos sin 0, 0 1U V X Y Y           
0, 0, 0, cos sin cos , 0 1U V X Y Y            

 0, 0, 0, 1, tan 1 tanU V Y X
Y
  

        
  

where X and Y are dimensionless coordinates along horizontal and vertical directions, respectively 
whereas U and V are dimensionless velocity components in X and Y directions and   is the 
dimensionless temperature. The local Nusselt number which is defined by the following expression 
at the heated surface of the cavity: 

l r b sNu Nu Nu Nu
n


    
  

where n stands the normal direction on a plane. According to Singh and Sharif [15], the average 
Nusselt number on the non-dimensional variables at the heated bottom wall, cooled left and right 
walls, and insulated top wall of the cavity based can be expressed as: 

1 1 1 1

0 0 0 0
l r s bNu Nu dX Nu dX Nu dX Nu dX        

3. Numerical Solution 

The Galerkin weighted residual method of finite-element formulation procedure is used to solve the 
governing equations of the present work. In this method, a triangular mesh arrangement which is 
non-uniform is implemented in the present investigation particularly near the walls to capture the 
rapid changes in the dependent variables. Equations (5) - (8), results in a set of non-linear coupled 
equations for which an iterative method is adopted. For the development of the finite element 
equations, the six node triangular element is used in this work. All six nodes are related with 
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velocities as well as temperature; only the corner nodes are associated with pressure. This means that 
a lower order polynomial is selected for pressure and which is satisfied through continuity equation.  

4. Comparison 

In order to verify the accuracy of the numerical results which are obtained throughout the present 
study are compared with the previously published results. The present results of streamlines and 
isotherms are compared with that of Hussein [16] while Pr = 0.07 and Ra = 103 and obtained good 
agreement which is shown in Fig. 2. 

  

Fig. 2(a): Obtained results of streamlines and isotherms by Hussein [16] 

  

Fig. 2(b): Obtained results of streamlines and isotherms by present work 

5. Results and Discussion 

The effect of Hartmann number on the flow field are examined and discussed in this section. The 
numerical results have been carried out using different values of various physical parameters which 
are appeared transformed governing equations. Figure 3 and Fig. 4 illustrate the streamlines and 
isotherms for Hartmann number Ha (Ha = 100) while Ra = 103 - 106 and Pr = 0.71. From Fig. 3, it is 
seen that two small cell are formed adjacent the circular cylindrical block inside the square cavity in 
presence of magnetic field. On the other hand, increasing of the Rayleigh number, the cells which are 
formed in the cavity, changes its shapes which are observed in Fig. 3(b) - Fig. 3(d). The isotherms, in 
Fig. 6 are like as linear adjacent side walls as well as circular cylindrical block but bending at the 
near of circular cylindrical block increases with the increases of Rayleigh number Ra. Figure 5 
represents the effects of Rayleigh number in presences of Hartmann number Ha on the flow field as 
velocity profiles and temperature profiles for varying Rayleigh number Ra = 103 - 106 along the 
bottom wall. As seen from the Fig. 5(a), the velocity increases with the increase of Rayleigh number 
in the middle of the cavity, but the velocity decreases with the increase of Rayleigh number above 
and below of the middle in the cavity because the magnetic field has slight effects on velocity field. 
The temperature fields versus the coordinate of X directions are plotted in Fig. 5(b) for different 
Rayleigh number. As seen from the Fig. 5(b), in presence of increasing Rayleigh number, the 
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temperature field decreases middle of the trapezoidal but increasing near the top and bottom walls in 
presence of magnetic field. The local Nusselt number at the bottom wall for different Rayleigh 
number Ra = 103 - 106 is presented in Fig. 6 with Pr = 0.71.  From the Fig. 6, it is seen that the local 
Nusselt number decreases with the increase of Rayleigh number in 0.10 ≤ X ≤ 0.2 but the local 
Nusselt number increases with the increase of Rayleigh number in 0 ≤ X ≤ 0.1. 

(a) (b) 

(c) (d) 
Fig. 3: Streamlines for (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; and (d) Ra = 106 while Pr = 0.71 and Ha = 100 

  
(a) (b) 

  
(c) (d) 

Fig. 4: Isotherms for (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; and (d) Ra = 106 while Pr = 0.71 and Ha = 100 
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(a) (b) 

Fig. 5: (a) Velocity profiles and (b) Temperature profiles for Hartmann number Ha = 100 and Pr = 0.71 with varying 
Rayleigh number Ra = 103 - 106 along the bottom wall 

 

Fig. 6: Local Nusselt number for different Rayleigh number Ra = 103 - 106 with Pr = 0.71 and Ha = 100 

6. Conclusions 

MHD free convective flow in trapezoidal cavity for non-uniformly heated bottom wall with uniform 
magnetic field which is applied normal to the direction of the flow field has been analyzed with 
heatlines concept to find the behavior of the flow field. The conservation of mass, momentum, and 
energy equations were solved using Galerking weighted residual method of finite element 
formulation. The governing parameters were Prandtl number, Hartman number, and Rayleigh 
number. The numerical results which were presented in graphically show that if the Rayleigh number 
increases in the middle of the trapezoidal then the velocity boundary layer thickness increases but 
decreases both of the sides wall adjacent to the bottom walls due to the magnetic field has slight 
effects on velocity field. Because of upsurge of convective heat transfer rate the thermal boundary 
layer thickness is thinner for increasing of Rayleigh number. Local Nusselt number for non-uniform 
bottom heating is dominant at the bottom edge of the side wall, and thereafter that decreases sharply 
up to a point which is very adjacent to the bottom edge. 
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