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ABSTRACT 

Finite mixtures of multivariate t distributions (Peel and McLachlan (2000)) were introduced as an alternative to the 
finite mixtures of multivariate normal distributions to model data sets with heavy tails. In this study, we define the 

finite mixtures of matrix variate t distributions as an extension of finite mixtures of multivariate t distributions. 

Mixtures of matrix variate t distributions can provide an alternative robust model to the mixtures of matrix variate 
normal distributions (Viroli (2011)) for modeling matrix variate data sets with heavy tails. We give an Expectation 

Maximization (EM) algorithm to find the maximum likelihood (ML) estimators for the parameters of interest. We 

also provide a small simulation study to illustrate the performance of the proposed EM algorithm for finding 
estimates. 

Key Words: Finite mixtures, matrix variate t, matrix variate normal, ML estimator, EM algorithm. 

 

 

1. INTRODUCTION 

Finite mixture models are widely used in several areas 

such as classification, clustering, data mining, image 

analysis, pattern recognition, machine learning and etc. 

(see Titterington et al. (1985), McLachlan and Basford 

(1988), McLachlan and Peel (2000), Frühwirth-

Schnatter (2006) for more details). There are several 

studies about finite mixtures of multivariate 

distributions in literature. Some of these studies can be 

summarized as follows. The parameters estimation of 

multivariate normal mixture model was studied by 

McLachlan and Basford (1988), Peel and McLachlan 

(2000) proposed finite mixtures of multivariate t 

distributions, Lin (2009) studied multivariate skew 

normal mixture models, Pyne et al. (2009) and Lin 

(2010) introduced finite mixtures of multivariate skew t 

distributions, Cabral et al. (2012) proposed multivariate  

 

mixture modeling based on the skew-normal 

independent distributions and an EM-type algorithm for 

the mixture of multivariate normal inverse Gaussian 

distribution, which is a variance-mean mixture of 

multivariate Gaussians, was given by O’Hagan et al. 

(2015). 

Matrix variate distributions model random matrices and 

have an important role to explore the theory of the 

multivariate analysis (see Dawid (1981), De Wall 

(1988) and Rowe (2003)). Matrix variate normal 

distribution is a generalization of the multivariate 

normal distribution. Some classical works about 

parameter estimation of matrix normal distribution have 

been done (Srivastava and Khatri (1979), Dawid (1981), 

Dutilleul (1999), Srivastava et al. (2008)). Gupta et al. 

(2013) introduced matrix variate t distribution as a 
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special case of Pearson type VII distribution which is an 

alternative to matrix variate normal distribution. Bulut 

and Arslan (2016) studied some distributional 

properties and gave parameter estimation of matrix 

variate t distribution. They used the EM algorithm to 

obtain estimates of parameters.  

Concerning the finite mixtures of matrix variate 

distributions, Viroli (2011) introduced finite mixtures of 

matrix normal distributions for classifying three-way 

data and proposed an EM algorithm to estimate the 

parameters. However, when data sets have longer than 

normal tails or outliers, the estimators obtained using 

finite mixtures of matrix normal distributions will be 

influenced. To deal with the problem of heavy-

tailedness and outliers in the data, we propose finite 

mixtures of the matrix variate t distributions.  

The paper is organized as follows. In Section 2, we give 

some details about the matrix variate t distribution. In 

Section 3, we define the finite mixtures of matrix 

variate t distributions. In Subsection 3.1, the parameter 

estimation for the proposed model is carried out using 

the EM algorithm. Section 4 is devoted to the 

simulation study to demonstrate the performance of the 

proposed EM algorithm. The paper is finalized with a 

conclusion section. 

2. MATRIX VARIATE T DISTRIBUTION 

A 𝑛 × 𝑝 -variate random matrix 𝑋  is said to have a 

matrix variate t distribution with mean matrix 𝑀  and 

variance-covariance matrices Σ  and Ψ , denoted by 

𝑀𝑡𝑛,𝑝(𝑀, Σ, Ψ, 𝜈) , if it has the following probability 

density function (pdf)  

 

where 𝛿𝑋(𝑀, Σ, Ψ) = 𝑡𝑟{Σ−1(𝑋 − 𝑀)Ψ−1(𝑋 − 𝑀)′} 

which is the Mahalanobis distance from 𝑋 to the center 

𝑀  with respect to Σ  and Ψ  (Gupta et. al (2013) and 

Bulut and Arslan (2015)).  

Matrix variate t distribution can be obtained as a scale 

mixture of matrix variate normal and gamma 

distributions. Let 𝑍 ∼ 𝑁𝑛,𝑝(0, 𝐼𝑛 , 𝐼𝑝) and 𝑈 ∼

𝐺𝑎𝑚𝑚𝑎 (
𝜈

2
,

𝜈

2
) be two independent random matrix and 

random variable, 𝑀 ∈ 𝑅𝑛×𝑝 , Σ  and Ψ  are positive 

definite symmetric matrices and Σ
1

2, Ψ
1

2 are the positive 

definite square roots of  Σ and Ψ, respectively. Then, 

the random matrix 𝑋 defined as  

will have matrix variate t distribution (Gupta et. al 

(2013) and Bulut and Arslan (2015)). The scale mixture 

representation given in (2) not only simplifies random 

number generating but also provides the 

implementation of EM algorithm to obtain ML 

estimates for the parameters of the matrix variate t 

distribution. A hierarchical representation of matrix 

variate t distribution can be given as follows  

                       

Using the hierarchical representation given in (3), the conditional distribution of 𝑈 given 𝑋 can be obtained as 

 

𝑈|𝑋 ∼ 𝐺𝑎𝑚𝑚𝑎 (
𝑛𝑝 + 𝜈

2
,
1

2
(𝜈 + 𝑡𝑟{Σ−1(𝑋 − 𝑀)Ψ−1(𝑋 − 𝑀)′})). (4) 

 

This conditional distribution will be necessary in EM algorithm to compute the conditional expectations of the complete 

data log-likelihood function, which will be given in Subsection 3.1. Further, using the conditional distribution given in (4) 

the following conditional expectations can be easily obtained 

  

𝐸(𝑈|𝑋) =
𝑛𝑝 + 𝜈

𝜈 + 𝑡𝑟{Σ−1(𝑋 − 𝑀)Ψ−1(𝑋 − 𝑀)′}
  , (5) 

𝐸(log 𝑈|𝑋) = 𝐷𝐺 (
𝑛𝑝 + 𝜈

2
) − log (

1

2
(𝜈 + 𝑡𝑟{Σ−1(𝑋 − 𝑀)Ψ−1(𝑋 − 𝑀)′})) , (6) 

 

where 𝐷𝐺(𝑥) =
𝑑

𝑑𝑥
log Γ(𝑥) is the digamma function. Again, these conditional expectations will be used in EM algorithm 

given in Subsection 3.1.  

𝑓(𝑋) =
|Σ|−

𝑝
2|Ψ|−

𝑛
2Γ (

𝑛𝑝 + 𝜈
2

)

(𝜋𝜈)
𝑛𝑝
2 Γ (

𝜈
2

)
[1 +

𝛿𝑋(𝑀, Σ, Ψ)

𝜈
]

−
𝑛𝑝+𝜈

2

 , 

   (1) 

𝑋 = 𝑀 + Σ
1
2𝑍Ψ

1
2𝑈−

1
2  (2) 

𝑋|𝑈 = 𝑢 ∼ 𝑁𝑛,𝑝(𝑀, 𝑢−1Σ, Ψ) ,  

𝑈 ∼ 𝐺𝑎𝑚𝑚𝑎 (
𝜈

2
,
𝜈

2
).  (3) 
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3. FINITE MIXTURES OF MATRIX VARIATE T 

DISTRIBUTIONS 

The pdf of finite mixtures of matrix variate t 

distributions can be defined as follows 

where 𝑤𝑖’s are mixing probabilities with ∑ 𝑤𝑖
𝑔
𝑖=1 = 1 ,

0 ≤ 𝑤𝑖 < 1 , 𝑓(𝑋𝑗; 𝑀𝑖 , Σ𝑖 , Ψ𝑖 , 𝜈𝑖) represents the density 

of ith component (the pdf of matrix variate t 

distribution) given in (1) and 

Λ =

(𝑤1, … , 𝑤𝑔, 𝑀1, … , 𝑀𝑔, Σ1, … , Σ𝑔, Ψ1, … , Ψ𝑔, 𝜈1, … , 𝑣𝑔).  

 

3.1. ML estimation of the matrix variate t mixture 

model 

Let 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑙) be a random sample of matrices 

in ℛ𝑛×𝑝  and assume that this random sample has a 

distribution of 𝑔-component mixture of matrix variate t 

distributions with the pdf given in (7). The ML 

estimator of Λ  can be found by maximizing the 

following log-likelihood function for the mixtures of 

matrix variate t distributions  

 

ℓ(Λ; 𝑿) = ∑ log (∑ 𝑤𝑖

𝑔

𝑖=1

𝑓(𝑋𝑗; 𝑀𝑖 , Σ𝑖 , Ψ𝑖 , 𝜈𝑖))

𝑙

𝑗=1

. (8) 

However, because of the mixture structure of the pdf, 

the maximizer of the above log-likelihood function 

cannot be explicitly obtained. Therefore, an EM-type 

algorithm (Dempster et al. (1977)) should be used to 

obtain the estimate for Λ.  To do so let 𝑍𝑖𝑗  be the 

component label defined as  

𝑍𝑖𝑗 = {
1, 𝑖𝑓 𝑗𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where, 𝑗 = 1, … , 𝑙 and 𝑖, … , 𝑔.  

Further, 𝑼 = (𝑈1, … , 𝑈𝑙)  and 𝒁 = (𝑍1, … , 𝑍𝑙)  with 

𝑍𝑗 = (𝑍1𝑗 , … , 𝑍𝑔𝑗)  for 𝑗 = 1, … , 𝑙  will be regarded as 

missing data and (𝑿, 𝑼, 𝒁) be the complete data. Then, 

using the hierarchical formulation given in  (3) we get  

𝑋𝑗|𝑈𝑗 = 𝑢𝑗 , 𝑍𝑖𝑗 = 1 ∼ 𝑁𝑛,𝑝(𝑀𝑖 , 𝑢𝑗
−1Σi, Ψi) ,     

𝑈𝑗|𝑍𝑖𝑗 = 1 ∼ 𝐺𝑎𝑚𝑚𝑎 (
𝜈𝑖

2
,
𝜈𝑖

2
). (9) 

 

The complete data log-likelihood function for (𝑿, 𝑼, 𝒁) can be written as 

 

ℓ𝑐(Λ; 𝑿, 𝑼, 𝒁) = ∑ ∑ 𝑧𝑖𝑗

𝑔

𝑖=1

𝑙

𝑗=1

{log 𝑤𝑖 −
𝑛𝑝

2
log(2𝜋) +

𝑛𝑝

2
log(𝑢𝑗) −

𝑝

2
log|Σ𝑖| −

𝑛

2
log|Ψ𝑖| 

−𝑡𝑟 (
𝑢𝑗

2
Σ𝑖

−1(𝑋𝑗 − 𝑀𝑖)Ψ𝑖
−1(𝑋𝑗 − 𝑀𝑖)′) +

𝜈𝑖

2
log (

𝜈𝑖

2
) − log Γ (

𝜈𝑖

2
) + (

𝜈𝑖

2
− 1) log(𝑢𝑗) −

𝜈𝑖

2
𝑢𝑗}. (10) 

 

Maximizing this complete data log-likelihood function will give the estimates for the parameters of interest. However, 

since we have latent variables (𝑼, 𝒁), the ML estimators cannot be used to deal with this latency. We have to replace these 

latent variables by their conditional expectations given the observed data 𝑿. The conditional expectation of the complete 

data log-likelihood function given the observed data is  

 

𝐸(ℓ𝑐(Λ; 𝑿, 𝑼, 𝒁)|𝑋𝑗) = ∑ ∑ 𝐸(𝑍𝑖𝑗|𝑋𝑗)

𝑔

𝑖=1

𝑙

𝑗=1

{log 𝑤𝑖 −
𝑛𝑝

2
log(2𝜋) −

𝑝

2
log|Σ𝑖| −

𝑛

2
log|Ψ𝑖| 

+
𝑛𝑝

2
𝐸(log(𝑈𝑗)|𝑋𝑗 , 𝑍𝑖𝑗 = 1) − 𝑡𝑟 (

𝐸(𝑈𝑗|𝑋𝑗 , 𝑍𝑖𝑗 = 1)

2
Σ𝑖

−1(𝑋𝑗 − 𝑀𝑖)Ψ𝑖
−1(𝑋𝑗 − 𝑀𝑖)′) 

+
𝜈𝑖

2
log (

𝜈𝑖

2
) − log Γ (

𝜈𝑖

2
) + (

𝜈𝑖

2
− 1) 𝐸(log(𝑈𝑗)|𝑋𝑗 , 𝑍𝑖𝑗 = 1) −

𝜈𝑖

2
𝐸(𝑈𝑗|𝑋𝑗 , 𝑍𝑖𝑗 = 1)}. (11) 

 

The conditional expectations 𝐸(𝑈𝑗|𝑋𝑗 , 𝑍𝑖𝑗 = 1)  and 

𝐸(log(𝑈𝑗)|𝑋𝑗 , 𝑍𝑖𝑗 = 1)  can be computed using the 

equations given in (5) and (6) and the conditional 

expectation 𝐸(𝑍𝑖𝑗|𝑋𝑗)  can be calculated using the 

classical theory of mixture modeling. Now, we will give 

the steps of the EM algorithm. 

 

EM algorithm:  

𝑓(𝑋𝑗; Λ) = ∑ 𝑤𝑖

𝑔

𝑖=1

𝑓(𝑋𝑗; 𝑀𝑖 , Σ𝑖 , Ψ𝑖 , 𝜈𝑖) , (7) 
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1. Take initial parameter estimate Λ(0)  and fix a 

stopping rule Δ. 

2. E-step: Given the current parameter values Λ̂(𝑘)and 

the observed data, compute the conditional expectations 

�̂�𝑖𝑗
(𝑘)

, �̂�1𝑖𝑗
(𝑘)

 and �̂�2𝑖𝑗
(𝑘)

 using the following equations for 

𝑘 = 0,1,2, … iteration 

 

�̂�𝑖𝑗
(𝑘)

= 𝐸(𝑍𝑖𝑗|𝑋𝑗 , Λ̂(𝑘))  

=
𝑤𝑖

(𝑘)
𝑓 (𝑋𝑗; �̂�𝑖

(𝑘)
, Σ̂𝑖

(𝑘)
, Ψ̂𝑖

(𝑘)
, �̂�𝑖

(𝑘)
)

𝑓(𝑋𝑗; Λ̂(𝑘))
  , (12) 

�̂�1𝑖𝑗
(𝑘)

= 𝐸(𝑈𝑗|𝑋𝑗 , 𝑍𝑖𝑗 = 1, Λ̂(𝑘)) (13) 

=
𝑛𝑝 + �̂�𝑖

(𝑘)

�̂�𝑖
(𝑘)

+ 𝑡𝑟 {Σ̂𝑖
−1(𝑘)

(𝑋𝑗 − �̂�𝑖
(𝑘)

) Ψ̂𝑖
−1(𝑘)

(𝑋𝑗 − �̂�𝑖
(𝑘)

) ′}
  , 

�̂�2𝑖𝑗
(𝑘)

= 𝐸(log(𝑈𝑗)|𝑋𝑗 , 𝑍𝑖𝑗 = 1, Λ̂(𝑘)) (14) 

= 𝐷𝐺 (
𝑛𝑝 + �̂�𝑖

(𝑘)

2
) − log (

1

2
(�̂�𝑖

(𝑘)
+ 

𝑡𝑟 {Σ̂𝑖
−1(𝑘)

(𝑋𝑗 − �̂�𝑖
(𝑘)

) Ψ̂𝑖
−1(𝑘)

(𝑋𝑗 − �̂�𝑖
(𝑘)

) ′})). 

 

Then, after finding these conditional expectations we 

can form the following objective function 

 

𝑄(Λ; Λ̂(𝑘)) = 𝐸(ℓ𝑐(Λ; 𝑿, 𝑼, 𝒁)|𝑋𝑗 , Λ̂(𝑘)) 

= ∑ ∑ �̂�𝑖𝑗
(𝑘)

𝑔

𝑖=1

𝑙

𝑗=1

{log 𝑤𝑖 + −
𝑛𝑝

2
log(2𝜋) +

𝑛𝑝

2
�̂�2𝑖𝑗

(𝑘)
 

−
𝑛

2
log|Ψ𝑖| − 𝑡𝑟 (

�̂�1𝑖𝑗
(𝑘)

2
Σ𝑖

−1(𝑋𝑗 − 𝑀𝑖)Ψ𝑖
−1(𝑋𝑗 − 𝑀𝑖)′) 

−
𝑝

2
log|Σ𝑖| +

𝜈𝑖

2
log (

𝜈𝑖

2
) − log Γ (

𝜈𝑖

2
) 

+ (
𝜈𝑖

2
− 1) �̂�2𝑖𝑗

(𝑘)
−

𝜈𝑖

2
�̂�1𝑖𝑗

(𝑘)
}. (15) 

 

2. M-step 1:  To obtain the (𝑘 + 1) th parameter 

estimates maximize 𝑄(Λ; Λ̂(𝑘))  with respect to the 

unknown parameters (𝑤𝑖 , 𝑀𝑖 , Σ𝑖 , Ψ𝑖) , fixing 𝜈𝑖  at 𝜈𝑖
(𝑘)

. 

This maximization gives 

�̂�𝑖
(𝑘+1)

=
∑ �̂�𝑖𝑗

(𝑘)𝑙
𝑗=1

𝑙
  , 

(16) 

�̂�𝑖
(𝑘+1)

=
∑ �̂�𝑖𝑗

(𝑘)
�̂�1𝑖𝑗

(𝑘)
𝑋𝑗

𝑙
𝑗=1

∑ �̂�𝑖𝑗
(𝑘)𝑙

𝑗=1 �̂�1𝑖𝑗
(𝑘)

  , 
(17) 

Σ̂𝑖
(𝑘+1)

= 

∑ �̂�𝑖𝑗
(𝑘)

�̂�1𝑖𝑗
(𝑘)

(𝑋𝑗 − �̂�𝑖
(𝑘)

) Ψ̂𝑖
−1(𝑘)

(𝑋𝑗 − �̂�𝑖
(𝑘)

) ′𝑙
𝑗=1

𝑝 ∑ �̂�𝑖𝑗
(𝑘)𝑙

𝑗=1

  , 

(18) 

Ψ̂𝑖
(𝑘+1)

= 

∑ �̂�𝑖𝑗
(𝑘)

�̂�1𝑖𝑗
(𝑘)

(𝑋𝑗 − �̂�𝑖
(𝑘)

) Σ̂𝑖
−1(𝑘)

(𝑋𝑗 − �̂�𝑖
(𝑘)

) ′𝑙
𝑗=1

𝑛 ∑ �̂�𝑖𝑗
(𝑘)𝑙

𝑗=1

 . 

(19) 

 

3. M step 2: Using the new values of 

(�̂�𝑖
(𝑘+1)

, �̂�𝑖
(𝑘+1)

, Σ̂𝑖
(𝑘+1)

, Ψ̂𝑖
(𝑘+1)

)  given in M step 1, 

solve the following equation to obtain (𝑘 + 1) th 

estimate of 𝜈𝑖 

 

log (
𝜈𝑖

2
) + 1 − 𝐷𝐺 (

𝜈𝑖

2
) +

1

∑ �̂�𝑖𝑗
(𝑘)𝑙

𝑗=1

(�̂�2𝑖𝑗
(𝑘)

− �̂�1𝑖𝑗
(𝑘)

) = 0. 

(20) 

4. Repeat E and M steps until the convergence criterion 

‖Λ̂(𝑘+1) − Λ̂(𝑘)‖ < Δ is satisfied.  

    

 

 

 

 

4. SIMULATION STUDY 

In this section, we provide a small simulation study to 

show the performance of the proposed algorithm. Here, 

we consider the simulation design as follows. We 

generate data using the stochastic representation given 

in (2) from a two-component and a three-component 

matrix variate t distributions 

𝑓(𝑋𝑗; Λ) = 𝑤1𝑓(𝑋𝑗; 𝑀1, Σ1, Ψ1, 𝜈) 

+(1 − 𝑤1)𝑓(𝑋𝑗; 𝑀2, Σ2, Ψ2, 𝜈) 

and 

𝑓(𝑋𝑗; Λ) = 𝑤1𝑓(𝑋𝑗; 𝑀1, Σ1, Ψ1, 𝜈) 

+𝑤2𝑓(𝑋𝑗; 𝑀2, Σ2, Ψ2, 𝜈) 

+(1 − 𝑤1 − 𝑤2)𝑓(𝑋𝑗; 𝑀3, Σ3, Ψ3, 𝜈) 
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where 𝑗 = 1, … , 𝑙, respectively. 

The parameters of two-component mixture model are 

taken according to the following formulation 

𝑀1(𝑖, 𝑗) = 𝑖 + 𝑗 − 1 ,   𝑀2(𝑖, 𝑗) = 5𝑖 + 5𝑗 − 1 , 
  𝑖 = 1, … , 𝑛,   𝑗 = 1, … 𝑝, 
Σ1 = Σ2 = 2𝐼𝑛 ,   Ψ1 = Ψ2 = 𝐼𝑝. 

The mixing probability is 𝑤1 = 0.5 with 𝑛 = 2, 3, 𝑝 =
2 . The degrees of freedom of the component 

distributions are taken as 𝜈 = 3 and 5. Similarly, the 

parameters of three-component mixture model are 

𝑀1(𝑖, 𝑗) = 𝑖 + 𝑗 − 1 ,   𝑀2(𝑖, 𝑗) = 5𝑖 + 5𝑗 − 1 , 
𝑀3(𝑖, 𝑗) = 10𝑖 + 10𝑗 − 1 ,   𝑖 = 1, … , 𝑛,   𝑗 = 1, … , 𝑝 , 
Σ1 = Σ2 = Σ3 = 2𝐼𝑛 ,   Ψ1 = Ψ2 = Ψ3 = 𝐼𝑝 , 

with the mixing probabilities 𝑤1 = 0.3 and  𝑤2 = 0.3. 

The dimensions are taken as 𝑛 = 2, 3, 𝑝 = 2. Again the 

degrees of freedom are taken as 3 and 5. Note that, for 

the sake of simplicity, we have the same degrees of 

freedom for all the components in the mixture model. 

 

However, different degrees of freedom can be taken. 

We conduct the computations using MATLAB (2013). 

Also, the simulation scenarios are repeated 100 times. 

For the simulation study, the stopping rule Δ is taken as 

10−8. 

In our future work, we will use the mixture model in 

clustering. Thus, we are mainly interested in estimating 

the location parameters rather than the scatter matrices. 

Therefore, in our simulation study we mainly estimate 

the location parameters and the mixing probabilities and 

take the scatter parameters and the degrees of freedom 

as known.  

In Tables 1-4, we present the Euclidean distance 

defined as 

‖�̂� − 𝑀‖ = (∑ ∑(�̂�𝑖𝑗 − 𝑀𝑖𝑗)
2

𝑝

𝑗=1

𝑛

𝑖=1

)

1
2

 , (21) 

 

(Dutilleul (1999) and Bulut and Arslan (2015)) for the 

mean matrices. Also, the estimates for the mixing 

probabilities are given in the tables. The simulation 

results show that the proposed algorithm is working 

accurately to obtain the estimates for the location 

matrices. This can be observed from mean Euclidian 

distances that are getting smaller when the sample sizes 

increase. Further, the estimates for the mixing 

probabilities are very close to the true parameter values. 

For example, for the case 𝑣 = 3  and 𝑙 = 100  true 

mixing probability is 0.5 and the mean estimates over 

the 100 runs is 0.5037, which is very close to the true 

parameter value. We can observe the similar behavior 

for the other cases. 

 

 

 

Table 1. Mean Euclidean distance for the mean matrices and �̂�1 of the two-component mixture model for 2x2 matrix. 

 

 

 

 

 

Table 2. Mean Euclidean distance for the mean matrices and �̂�1 of the two-component mixture model for 3x2 matrix. 

 𝜈 = 3 𝜈 = 5 

𝑙 �̂�1 ‖�̂�1 − 𝑀1‖ ‖�̂�2 − 𝑀2‖ �̂�1 ‖�̂�1 − 𝑀1‖ ‖�̂�2−𝑀2‖ 

100 0.5037 0.3633 0.3780 0.4942 0.1781 0.1775 

200 0.5007 0.2801 0.2902 0.5044 0.1228 0.1230 

300 0.5023 0.2488 0.2647 0.4982 0.0999 0.1003 

400 0.5082 0.2253 0.2311 0.5003 0.0863 0.0867 

 𝜈 = 3 𝜈 = 5 

𝑙 �̂�1 ‖�̂�1−𝑀1‖ ‖�̂�2−𝑀2‖ �̂�1 ‖�̂�1−𝑀1‖ ‖�̂�2 − 𝑀2‖ 

100 0.5043 0.4540 0.4726 0.5045 0.2016 0.2032 

200 0.5007 0.3684 0.3738 0.5055 0.1427 0.1439 
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Table 3. Mean Euclidean distance for the mean matrices and �̂�1, �̂�2 of the three-component mixture model for 2x2 matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Mean Euclidean distance for the mean matrices and �̂�1, �̂�2 of the three-component mixture model for 3x2 matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSIONS 

In this paper, we have proposed the finite mixtures of 

matrix variate t distributions as a robust alternative to 

the finite mixtures of matrix variate normal 

distributions. We have given the EM algorithm to 

compute the estimates for the proposed mixture model. 

Also, we have provided a simulation study to show the 

estimation performance of the proposed mixture model. 

In the simulation study, we have observed that the 

mixture component 

and the location parameters are estimated accurately 

and mean Euclidean distance is getting smaller when 

the sample size is increasing. 
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300 0.4947 0.3246 0.3362 0.5020 0.1185 0.1149 

400 0.4986 0.3120 0.3081 0.5018 0.1067 0.1057 

 𝜈 = 3 

𝑙 �̂�1 �̂�2 ‖�̂�1−𝑀1‖ ‖�̂�2−𝑀2‖ ‖�̂�3 − 𝑀3‖ 

100 0.2872 0.2949 0.5149 0.4362 0.4034 

200 0.2858 0.2888 0.3924 0.3336 0.2933 

300 0.2889 0.2919 0.3240 0.2425 0.2707 

400 0.2871 0.2929 0.2962 0.2289 0.2466 

 𝜈 = 5 

𝑙 �̂�1 �̂�2 ‖�̂�1−𝑀1‖ ‖�̂�2−𝑀2‖ ‖�̂�3 − 𝑀3‖ 

100 0.2959 0.3017 0.2246 0.2273 0.1899 

200 0.3030 0.2998 0.1562 0.1668 0.1385 

300 0.3054 0.2979 0.1301 0.1317 0.1144 

400 0.2960 0.3029 0.1104 0.1076 0.0945 

 𝜈 = 3 

𝑙 �̂�1 �̂�2 ‖�̂�1−𝑀1‖ ‖�̂�2−𝑀2‖ ‖�̂�3−𝑀3‖ 

100 0.2841 0.2953 0.6939 0.5781 0.5140 

200 0.2823 0.2895 0.5018 0.4258 0.3853 

300 0.2702 0.2937 0.4587 0.3217 0.3535 

400 0.2870 0.2884 0.4078 0.2869 0.3210 

   𝜈 = 5   

𝑙 �̂�1 �̂�2 ‖�̂�1−𝑀1‖ ‖�̂�2−𝑀2‖ ‖�̂�3 − 𝑀3‖ 

100 0.2999 0.2952 0.2713 0.2792 0.2307 

200 0.2968 0.2928 0.1954 0.1938 0.1584 

300 0.2936 0.3008 0.1603 0.1597 0.1321 

400 0.2963 0.2997 0.1354 0.1335 0.1158 
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