Unique Common Fixed Points For Maps With (ψ, α, β)- Contractive Condition In W^*-Spaces

K. Pandu Ranga RAO¹*, K. Rama Koteswara RAO², K.V.Siva PARVATHI³

¹Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar -522 510, A.P., India.
²Department of Mathematics, GITAM University, Kukatpally, Hyderbad-500 037, T.S., India.
³Department of Mathematics, Krishna University-M.R.Appa Row P.G.Center, Nuzvid-521 201, A.P., India.

Received:09/01/2015 Accepted:18/04/2016

ABSTRACT

In this paper, we introduce W^*-spaces which generalizes W-spaces introduced by Piao and Jin [10] and prove three unique common fixed point theorems in it. Some illustrative examples to highlight the results are furnished.

Key Words: W^*-spaces, Converse commuting maps, Common fixed points.

1. INTRODUCTION

In recent years many researchers have done much work in metric spaces, symmetric spaces[9, 3, 4], D-metric spaces[1, 2], D^*-metric spaces[6, 7], G-metric spaces[12, 13], Partial metric spaces[5, 8] and so on. In this direction Piao and Jin [10] introduced the concept of W^*-spaces in 2012, which is weaker than the notions of metric and symmetric spaces and proved some fixed point theorems.

In this paper, we introduce W^*-spaces to generalize W-spaces and proved three unique common fixed point theorems in it. We also give examples to illustrate our theorems.

Now we give the following definition.

*Corresponding author, e-mail: kpr Rao2004@yahoo.com
Definition 1.3 Let \(f \) and \(g \) be two self mappings on a non-empty set \(X \). We say that the pair \((f, g)\) satisfy Property \((K) \) if there exists \(u \in X \) such that \(fg u = gf u \) and \(fu = gu \).

Remark 1.4 Definition 1.2 (i) and (ii) imply the Property \((K) \) but not the converse in view of the following example.

Example 1.5 Let \(X = \{0, 1, 2\} \). \(f0 = 0, f1 = 2, f 2 = 1 \) and \(g0 = g1 = g 2 = 0 \). Clearly the pair \((f, g)\) satisfy Property \((K) \). But \(fg 1 = gf 1 \) and \(f1 \neq g1 \).

Piao and Jin [10] proved the following theorems.

Theorem 1.6 (Theorem 1, [10]) Let \((X, d)\) be a \(W \)-space and \(f \) and \(g \) be two converse commuting self maps which have a commuting point. Suppose that \(x, y \in X \) with \(d (gx, gy) \neq 0 \) satisfy \(d (fx, gy) \leq \varphi (d (fx, g x), d (fy, g x), d (gx, gy)) \) where \(\varphi : R^3 \rightarrow R_+ \) is such that \(\varphi \) is monotone increasing for the first variable,

(i) if \(a > 0, b > 0 \) then \(a \leq \varphi (b, a, a) \) implies \(a < b \),

(ii) for any \(a > 0 \), there is \(\varphi (a, a, a) < a \) .

Then \(f \) and \(g \) have a unique common fixed point.

Theorem 1.7 (Theorem 2, [10]) Let \((X, d)\) be a \(W \)-space and \(f \) and \(g \) be two self maps which have a commuting point. Suppose that \(x, y \in X \) with \(d (fx, gy) \neq 0 \) satisfy \(d (fx, gy) \leq \psi (d (fx, gx), d (fy, gx), d (gx, gy)) \) where \(\psi : R^3 \rightarrow R_+ \) is such that

(i) \(\psi \) is monotone increasing for the first variable,

(ii) if \(a > 0, b > 0 \) then \(a \leq \psi (b, a, a) \) implies \(a < b \),

(iii) for any \(a > 0 \), there is \(\psi (a, a, a) < a \) .

Then \(f \) and \(g \) have a unique common fixed point.

Theorem 1.8 (Theorem 3, [10]) Let \((X, d)\) be a \(W \)-space and \(f_1, f_2 \) and \(g_1, g_2 \) be four self maps.

Also let \((f_1, f_2)\) and \((g_1, g_2)\) be pairs of converse commuting self mappings which have a commuting point respectively. Suppose that \(x, y \in X \) with \(d (f_2 x, g_2 y) \neq 0 \) satisfy

\[
d (f_2 x, g_2 y) \leq \varphi \left(\begin{array}{c}
d (g_1 y, f_2 x), d (g_2 y, f_2 x), d (g_1 y, g_2 y), \\
d (f_1 x, f_2 x), d (g_1 y, f_2 x)
\end{array} \right)
\]

and suppose that \(x, y \in X \) with \(d (g_1 x, f_1 y) \neq 0 \) satisfy \(d (g_1 x, f_1 y) \leq \varphi \left(\begin{array}{c}
d (f_2 y, g_2 x), d (f_2 y, g_1 x), d (g_1 x, g_2 x), \\
d (f_1 y, f_2 y), d (f_1 y, g_2 x)
\end{array} \right) \)

where \(\varphi, \varphi : R^3 \rightarrow R_+ \) satisfy \(\varphi (a, a, 0, 0) < a \) for any \(a > 0 \) and \(\varphi (a, a, 0, a) < a \) for any \(a > 0 \) . Then \(f_1, f_2, g_1 \) and \(g_2 \) have a unique common fixed point.

Now we define \(W^+ \)-spaces as follows.

Definition 1.9 Let \(X \) be a non-empty set. If a function \(d : X \times X \times X \rightarrow [0, \infty) \) satisfies the property that \(d (x, y, z) = 0 \) implies \(x = y = z \) , then \((X, d)\) is called a \(W^+ \)-space.

Example 1.10 Let \(X = [0, \infty) \) and \(d (x, y, z) = \max \{x, y, z\} \) for \(x + y + z \). Then \((X, d)\) is a \(W^+ \)-space.

Throughout this paper, let \(\psi, \alpha, \beta : [0, \infty) \rightarrow [0, \infty) \) be such that \(\psi (t) - \alpha (t) + \beta (t) > 0 \) for all \(t \geq 0 \).

Immediately it follows that \(\psi (t) - \alpha (t) + \beta (t) \leq 0 \) implies \(t = 0 \).

Now we prove our main results which are different from Theorems 1.6, 1.7 and 1.8.

2. MAIN RESULT

Theorem 2.1. Let \((X, d)\) be a \(W^+ \)-space and \(f, g : X \rightarrow X \) be satisfying

\[
\psi \left(\begin{array}{c}
d (fx, fy), d (fx, g z), \\
d (fx, fy), d (fx, g z)
\end{array} \right) \leq \alpha \max \left(\begin{array}{c}
d (fx, fy), d (fx, g z), \\
d (fx, fy), d (fx, g z)
\end{array} \right) \leq \beta \max \left(\begin{array}{c}
d (fx, fy), d (fx, g z), \\
d (fx, fy), d (fx, g z)
\end{array} \right)
\]

for all \(x, y, z \in X \) with \(d (gx, gy, g z) \neq 0 \) and \(d (gx, gy, g z) \neq 0 \).

(2.1.2) the pair \((f, g)\) satisfies Property \((K) \).

Then \(f \) and \(g \) have a unique common fixed point.

Proof. From (2.1.2), there exists \(u \in X \) such that \(fg u = gf u \) and \(fu = gu \).

Hence

\[
ff u = fg u = gf u = gu .
\]

Suppose \(d (gu, gu, gu) \neq 0 \).
Putting \(x = u, \ y = u \) and \(z = gu \) in (2.1.1) and using (1), we obtain
\[
\psi(d(gu, gu, ggu)) \leq \alpha(d(gu, gu, ggu)) - \beta(d(gu, gu, ggu))
\]
which in turn yields that \(d(gu, gu, ggu) = 0 \). It is a contradiction. Hence \(gu = gu \).

From (1), it follows that \(gu \) is a common fixed point of \(f \) and \(g \).

Suppose \(x \) and \(y \) are two common fixed points of \(f \) and \(g \). Then \(d(x, y, y) = d(gx, gy, gy) \neq 0 \).

Then using (2.1.1) with \(x = x, \ y = y \) and \(z = y \) we obtain
\[
\psi(d(x, y, y)) \leq \alpha(d(x, y, y)) - \beta(d(x, y, y))
\]
which in turn yields that \(d(x, y, y) = 0 \). It is a contradiction. Hence \(x = y \). Thus \(f \) and \(g \) have a unique common fixed point.

Example 2.2 Let \(X = \{0,1,2\} \) and \(d(x, y, z) = x + y + z \). Let \(g0 = g1 = 0, g2 = 1 \) and \(f0 = 0, f1 = 1, f2 = 2 \). Let \(\psi, \alpha, \beta : [0, \infty) \rightarrow [0, \infty) \)
be defined by \(\psi(t) = 1, \alpha(t) = \frac{3t}{4} \) and \(\beta(t) = \frac{t}{4} \).

Then clearly (2.1.1) and (2.1.2) are satisfied and \(0 \) is the unique common fixed point of \(f \) and \(g \).

Next we give the following theorem without using the converse commuting condition.

Theorem 2.3. Let \((X, d) \) be a \(W^* \)-space and \(f, g : X \rightarrow X \) be satisfying

\[
\psi\left(\max \left\{ \frac{d(fx, gy, gz)}{d(gx, fy, fz)} \right\} \right) \leq \alpha\left(\max \left\{ \frac{d(gx, fx, fy)}{d(gy, fz, fx)}, \frac{d(fx, gx, gy)}{d(fy, gz, gx)} \right\} \right) - \beta\left(\max \left\{ \frac{d(gx, fx, fy)}{d(gy, fz, fx)}, \frac{d(fx, gx, gy)}{d(fy, gz, gx)} \right\} \right)
\]
for all \(x, y, z \in X \) with \(\max\{d(fx, gy, gz), d(gx, fy, fz)\} \neq 0 \)

(2.3.2) the pair \(\langle f, g \rangle \) has a commuting point in \(X \).

In addition to these, assume that \(\alpha \) is monotonically increasing and \(\beta \) is monotonically decreasing.

Then \(f \) and \(g \) have a unique common fixed point in \(X \).

Proof. Let \(u \) be a commuting point of \(f \) and \(g \), i.e. \(fgu = gfu \) for some \(u \in X \).

Suppose that \(fu \neq gu \).

From (2.3.1), we have

\[
\psi\left(\max \left\{ \frac{d(fu, gu, fu)}{d(gu, fu, fu)} \right\} \right) \leq \alpha\left(\max \left\{ \frac{d(fu, fu, fu)}{d(gu, fu, fu)} \right\} \right) - \beta\left(\max \left\{ \frac{d(fu, gu, fu)}{d(gu, fu, fu)} \right\} \right)
\]
which in turn yields that \(\max\{d(fu, gu, fu), d(gu, fu, fu)\} = 0 \).

It is a contradiction. Hence \(fu = gu \). (2)

Hence from (2), we have \(ffu = fg = gfu = ggu \). (3)

Suppose that \(ffu \neq fu \).

Putting \(x = fu, \ y = u \), \(z = u \) in (2.3.1), we have

\[
\psi\left(\max \left\{ \frac{d(ffu, gu, fu)}{d(gu, fu, fu)} \right\} \right) \leq \alpha\left(\max \left\{ \frac{d(fu, fu, fu)}{d(gu, fu, fu)} \right\} \right) - \beta\left(\max \left\{ \frac{d(ffu, gu, fu)}{d(gu, fu, fu)} \right\} \right)
\]

Hence

\[
\psi\left(\max \left\{ \frac{d(fu, fu, fu)}{d(gu, fu, fu)} \right\} \right) \leq \alpha\left(\max \left\{ \frac{d(fu, fu, fu)}{d(gu, fu, fu)} \right\} \right) - \beta\left(\max \left\{ \frac{d(ffu, gu, fu)}{d(gu, fu, fu)} \right\} \right)
\]

(4)

Put \(x = u, \ y = fu, \ z = u \) and \(x = u, \ y = u, \)
\(z = fu \) in (2.3.1), we have

\[
\psi\left(\max \left\{ \frac{d(fu, fu, fu)}{d(fu, fu, fu)} \right\} \right) \leq \alpha\left(\max \left\{ \frac{d(ffu, fu, fu)}{d(ffu, fu, fu)} \right\} \right) - \beta\left(\max \left\{ \frac{d(fu, fu, fu)}{d(fu, fu, fu)} \right\} \right)
\]

(5)

\[
\psi\left(\max \left\{ \frac{d(fu, fu, fu)}{d(fu, fu, fu)} \right\} \right) \leq \alpha\left(\max \left\{ \frac{d(ffu, fu, fu)}{d(ffu, fu, fu)} \right\} \right) - \beta\left(\max \left\{ \frac{d(fu, fu, fu)}{d(fu, fu, fu)} \right\} \right)
\]

(6)

From (4), (5) and (6), using monotonically increasing and decreasing properties of \(\alpha \) and \(\beta \) respectively, we get
\[\psi \left(\max \left\{ \frac{d(fu, fu),}{d(fu, fu, fu)}, \right\} \right) = \max \left\{ \frac{d(gu, fu),}{d(gu, fu, fu)}, \right\} \]
\[\leq \alpha \max \left\{ \frac{d(gu, fu),}{d(gu, fu, fu)}, \right\} - \beta \max \left\{ \frac{d(gu, fu),}{d(gu, fu, fu)}, \right\} \]

which in turn yields that \(ffu = fu \).

Thus \(fu \) is a common fixed point of \(f \) and \(g \).

Suppose \(v \) and \(v' \) are common fixed points of \(f \) and \(g \).

Taking \(x = v \), \(y = v', \ z = v; \ x = v, \ y = v', \ z = v \) and \(x = v, \ y = v, \ z = v' \) in (2.3.1) and using monotonically increasing of \(\alpha \) and decreasing of \(\beta \) we can show that \(v = v' \).

Thus \(f \) and \(g \) have a unique common fixed point.

Finally we give a unique common fixed point theorem for two pairs of mappings satisfying Property (K).

Theorem 2.4 Let \((X, d) \) be a \(W^* \)-space and \(f, g, S, T : X \rightarrow X \) be satisfying

\[(2.4.1) \quad \psi (d(fx, gy, Sz)) \leq \alpha \max \left\{ \frac{d(gx, fy, Sz),}{d(gx, fy, Ty)}, \right\} \]

\[- \beta \max \left\{ \frac{d(gx, fy, Sz),}{d(gx, fy, Ty)}, \right\} \]

for all \(x, y, z \in X \) with \(d(fx, gy, Sz) \neq 0 \) and (2.4.2) the pairs \((f, g)\) and \((S, T)\) satisfy the Property (K).

Then \(f, g, S \) and \(T \) have a unique common fixed point in \(X \).

Proof. From (2.4.2), there exist \(u \) and \(v \) in \(X \) such that \(fu = gu \), \((7) \)

\[fgu = gu \]
(8)

and \(Sv = Tv \), \((9) \)

\[STv = TSv. \]
(10)

Hence \(ffu = fgu = gfu = ggu \) \((11) \)

and \(SSv = STv = TSv = TTv. \)
(12)

Now suppose that \(fu \neq Sv \). Then \(d(fu, fu, Sv) \neq 0 \).

From (2.4.1), we have

\[\psi (d(fu, fu, Sv)) = \psi (d(fu, gu, Sv)) \]

\[\leq \alpha \max \left\{ \frac{d(gu, fu, Sv),}{d(gu, fu, Tv)}, \right\} - \beta \max \left\{ \frac{d(gu, fu, Sv),}{d(gu, fu, Tv)}, \right\} \]

which in turn yields that \(d(fu, fu, Sv) = 0 \). Hence \(fu = Sv \).

Thus

\[gu = fu = Sv = Tv. \]
(13)

Suppose that \(ffu \neq fu \). Then \(d(fffu, fu, fu) \neq 0 \).

From (2.4.1) and (13), we have

\[\psi (d(fffu, fu, fu)) = \psi (d(fgu, gu, Sv)) \]

\[\leq \alpha \max \left\{ \frac{d(gu, fu, Sv),}{d(gu, fu, Tv)}, \right\} - \beta \max \left\{ \frac{d(gu, fu, Sv),}{d(gu, fu, Tv)}, \right\} \]

which in turn yields that \(d(fffu, fu, fu) = 0 \). Hence \(ffu = fu \). \((14) \)

Now from (11) and (14) we have

\[gfu = fu. \]
(15)

Also from (13) and (10), we get

\[Tfu = TSv = STv = Sfu. \]
(16)

Suppose that \(fuv \neq Sfu \).

Again from (2.4.1), we have

\[\psi (d(fu, fu, Sfu)) = \psi (d(fu, gu, Sfu)) \]

\[\leq \alpha \max \left\{ \frac{d(gu, fu, Sfu),}{d(gu, fu, Tfuu)}, \right\} - \beta \max \left\{ \frac{d(gu, fu, Sfu),}{d(gu, fu, Tfuu)}, \right\} \]

which gives that \(d(fu, fu, Sfu) = 0 \). Hence \(Sfu = fu \). \((17) \)

Hence from (16) and (17)

\[Tfu = fu. \]
(18)

Thus from (14), (15), (17) and (18) \(fu \) is a common fixed point of \(f, g, S \) and \(T \).

If \(p \) and \(q \) are common fixed points of \(f, g, S \) and \(T \), by (2.4.1) one can easily prove that \(p = q \).

Thus \(f, g, S \) and \(T \) have a unique common fixed point in \(X \).

Example 2.5 Let \(X = [0, 1] \) and \(d(x, y, z) = x + y + z \).

Define \(fx = gx = 0, \ Sx = \frac{x}{8} \) and \(Tx = \frac{x}{4}, \forall x \in X \).
Let \(\psi(t) = t \), \(\alpha(t) = \frac{3t}{4} \) and \(\beta(t) = \frac{t}{4} \). Then clearly

the pairs \((f, g)\) and \((S, T)\) satisfy the Property (K) respectively.

Now consider for \(d(fx, gy, Sz) \neq 0 \),

\[
\psi(d(fx, gy, Sz)) = \frac{z}{8} = \frac{1}{2} d(fx, gy, Tz) \\
\leq \frac{1}{2} \max \left\{ \frac{d(gx, fy, Sz)}{d(gx, fy, Tz)}, \frac{d(gx, fy, Tz)}{d(fx, gy, Tz)} \right\} \\
= \alpha \left(\frac{d(gx, fy, Sz)}{d(fx, gy, Tz)} \right) \\
- \beta \left(\frac{d(gx, fy, Tz)}{d(fx, gy, Tz)} \right)
\]

Hence the condition (2.4.1) is satisfied and 0 is the unique common fixed point of \(f, g, S \) and \(T \).

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES