

The Smallest Dimension Submanifolds of Para β Kenmotsu Manifold

Aysel TURGUT VANLI ${ }^{1, \wedge}$, Ramazan SARI ${ }^{2}$
${ }^{1}$ Gazi Universty, Faculty of Arts and Sciences, Department of Mathematics, 06100, Ankara-TURKEY
${ }^{2}$ Amasya University, Merzifon Vocational School, Amasya, TURKEY

Received:15/04/2016 Accepted: 30/05/2016

Abstract

In this paper, we have studied the smallest dimensional submanifold of para β-Kenmotsu manifold. Necessary and sufficient conditions are given on 3 -dimensional submanifolds of a 5 -dimensional para β-Kenmotsu manifold to be a slant submanifold. After that, we have studied the 3-dimensional minimal slant submanifolds of para β Kenmotsu manifold.

Key words: Para β-Kenmotsu manifold, smallest dimension, slant submanifold

1. INTRODUCTION

As a generalization of invariant submanifold and antiinvariant submanifolds, B.Y. Chen introduced slant submanifolds of almost Hermitian manifold in 1990 [5], [6]. On the other hand A. Lotta introduced the notion of slant immersion of a Riemannian manifold into an almost contact manifold [9]. He also studied 3-dimensional slant submanifolds K-contact manifold [10] . Recently, Cabrerizo et al. [2] studied slant submanifold of Sasakian manifold and general view about slant immersions can be founds in [3]. Khan et al. studied slant submanifold of Kenmotsu manifold [7], [8].

In 1976, Sato defined the notion of an almost para contact Riemannian manifold [11]. After [12], Olszak introduced para β-Kenmotsu manifold. Many authors studied smallest dimension submanifolds [4], [8].

The purpose of present paper is to study slant submanifolds of para β-Kenmotsu manifolds with the smallest dimension. The paper organized as follows. In section 2 , we give basic formula and defination of para β Kenmotsu manifold. We review, in section 3, formulas and definitions for para β-Kenmotsu manifolds and their submanifolds, which we use later. In section 4, we obtain the smallet dimension slant submanifold of para β -

[^0]Kenmotsu manifold. Necessary and sufficient conditions are given on a 3-dimensional submanifolds of 5dimensional para β-Kenmotsu manifold to be slant submanifold after studied 3-dimensional minimal submanifolds of para β-Kenmotsu manifold.

2. PRELIMINARIES

Let M be a $(2 n+1)$-dimensional differentiable manifold endowed with a quadruplet (φ, ξ, η, g), where φ is $(1,1)$ tensor field, ξ is a vector field, η is a 1 -form, and g is a pseudo-Riemannian such that

$$
\varphi^{2} X=\mu(X-\eta(X) \xi), \quad \eta(\xi)=1
$$

$$
\begin{equation*}
g(\varphi x, \varphi Y)=-\mu(g(X, Y)-\varepsilon \eta(X) \eta(Y)) \tag{1}
\end{equation*}
$$

for all $X, Y \epsilon \Gamma(T M)$, where $\mu, \epsilon= \pm 1$. In addition, we have

$$
\begin{equation*}
\varphi(\xi)=0, \quad \eta \circ \varphi=0, \eta(X)=\varepsilon g(X, \xi) \tag{3}
\end{equation*}
$$

The manifold M will be called almost para contact metric, and the quadruplet (φ, ξ, η, g) will be called the almost para contact metric structure on M.

When $\mu=1$, then the manifold M is an almost contact metric manifold. In this case the metric g is assumed to be pseudo-Riemannian in general, including Riemannian. Thus, if " $\varepsilon=1$, the signature of g is equal to $2 p$, where $0 \leq$ $p \leq n$ and if " $\varepsilon=1$, the signature of g is equal to $2 \mathrm{p}+1$, where $0 \leq p \leq n$.
When $\mu=1$, then the manifold M is an almost paracontact metric manifold. In this case, the metric g is pseudo-Riemannian, and its signature is equal to n when " $\varepsilon=1$, or $\mathrm{n}+1$ when " $\varepsilon=-1$. One notes that in this case, the eigenspaces of the linear operator φ corresponding to the eigenvalues 1 and -1 are both n dimensional at every point of the manifold [12].

Then a 2-form Φ is defined by $\Phi(X, Y)=g(X, \varphi Y)$, for any $X, Y \in \Gamma(T M)$, called the fundamental 2-form. Moreover, an almost para contact metric manifold is normal if

$$
[\varphi, \varphi]-2 d \eta \otimes \xi=0
$$

where $[\varphi, \varphi]$ is denoting the Nijenhuis tensor field associated to φ [12] . A normal almost para contact metric manifold is called para contact metric manifold. the almost para contact metric structure on M.
Proposition 1 Let $(M, \varphi, \xi, \eta, g)$ be an almost para contact manifold. Then, the Levi-Civita connection ∇ satisfies the following equality, for any $X, Y, Z \in \Gamma(T M)$,

$$
\begin{aligned}
2 g\left(\left(\nabla_{X} \varphi\right) Y, Z\right)= & 3 d \Phi(\mathrm{X}, \varphi \mathrm{Y}, \varphi \mathrm{Z})-3 d \Phi(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \\
& +\mathrm{g}(\mathrm{~N}(\mathrm{Y}, \mathrm{Z}), \varphi \mathrm{X})+\mu N^{2}(Y, Z) \eta(X) \\
& +2 \mu d \eta(\varphi Y, X) \eta(Z) \\
& -2 \mu d \eta(\varphi Z, X) \eta(Y)
\end{aligned}
$$

where $N^{2}(X, Y)=2 d \eta(\varphi X, Y)-2 d \eta(\varphi Y, X)$.
Definition 1 Let M be an almost para contact metric manifold of dimension $(2 n+1)$, with $(\varphi, \xi, \eta, g) . M$ is said to be an almost para β-Kenmotsu manifold if 1 -form η are closed and $d \Phi=2 \beta \eta \wedge \Phi$. A normal almost para β Kenmotsu manifold M is called a para β-Kenmotsu manifold.

Theorem 1 Let $(\bar{M}, \varphi, \xi, \eta, g)$ be an almost para contact metric manifold. \bar{M} is a para β-Kenmotsu manifold if and only if

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \varphi\right) Y=\beta\{g(\varphi X, Y) \xi-\eta(Y) \varphi X\} \tag{4}
\end{equation*}
$$

for all $X, Y \epsilon \Gamma(T \bar{M})$ where $\bar{\nabla}$ is Levi-Civita connection on \bar{M}.
Proof. Let \bar{M} be a para β-Kenmotsu manifold. From Proposition 1, $\forall X, Y \epsilon \Gamma(T \bar{M})$ we have

$$
\left.2 g\left(\left(\bar{\nabla}_{X} \varphi\right) Y, Z\right)=3 d \Phi(\mathrm{X}, \varphi \mathrm{Y}, \varphi \mathrm{Z})-3 d \Phi(\mathrm{X}, \mathrm{Y}, \mathrm{Z})\right)
$$

Then, we have

$$
\begin{aligned}
g\left(\left(\bar{\nabla}_{X} \varphi\right) Y, Z\right)= & -\beta \eta(X) g\left(\varphi Y, \varphi^{2} Z\right)+\beta \eta(X) g(Y, \varphi Z) \\
& -\beta \eta(Y) g(Z, \varphi X)-\beta \eta(Z) g(X, \varphi Y) \\
= & -\beta \eta(Y) g(Z, \varphi X)-\beta \eta(Z) g(X, \varphi Y) \\
= & g(\beta\{g(\varphi X, Y) \xi-\eta(Y) \varphi X\}, Z) .
\end{aligned}
$$

Conversely, firstly, using (4), we get

$$
\varphi \bar{\nabla}_{X} \xi=\beta\{g(\varphi X, \xi) \xi-\eta(\xi) \varphi X\}
$$

hence, we get

$$
\bar{\nabla}_{X} \xi=\beta \varphi^{2} X
$$

On the other hand, we have

$$
d \eta(X, Y)=\frac{1}{2}\left\{g\left(Y,-\varphi^{2} X\right)-g\left(X,-\varphi^{2} Y\right)\right\}=0
$$

for all $X, Y \epsilon \Gamma(T \bar{M})$. In addition, we know

$$
\begin{gathered}
3 d \Phi(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{g}\left(\mathrm{Y},\left(\nabla_{\mathrm{X}} \varphi\right) \mathrm{Z}\right)-\mathrm{g}\left(\mathrm{Z},\left(\nabla_{\mathrm{Y}} \varphi\right) \mathrm{X}\right) \\
-\mathrm{g}\left(\mathrm{X},\left(\nabla_{\mathrm{Z}} \varphi\right) \mathrm{Y}\right)
\end{gathered}
$$

From hypothesis, we have

$$
\begin{aligned}
3 d \Phi(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\beta\{ & (\varphi X, Z) \mathrm{g}(\mathrm{Y}, \xi)-\eta(Z) g(Y, \varphi X) \\
& -g(\varphi Y, Z) \mathrm{g}(\mathrm{X}, \xi)+\eta(Z) g(X, \varphi Y) \\
& +g(\varphi Z, Y) \mathrm{g}(\mathrm{X}, \xi)-\eta(Y) g(X, \varphi Z\}) \\
= & 2 \beta\{\Phi(Z, X) \eta(Y)+\Phi(X, Y) \eta(Z) \\
& +\Phi(Y, Z) \eta(X)
\end{aligned}
$$

Then, we obtain

$$
d \Phi=2 \beta \eta \wedge \Phi
$$

Moreover, the Nijenhuis torsion of φ is obtained

$$
\begin{aligned}
N_{\varphi}(X, Y)=\varphi(-\beta\{ & g(\varphi X, Y) \xi-\eta(Y) \varphi X\} \\
& +\beta\{g(\varphi Y, X) \xi-\eta(X) \varphi Y\}) \\
& +\beta\left\{g\left(\varphi^{2} X, Y\right) \xi-\eta(Y) \varphi^{2} X\right\} \\
& -\beta\left\{g\left(\varphi^{2} Y, X\right) \xi-\eta(X) \varphi^{2} Y\right\} \\
=0 . &
\end{aligned}
$$

Hence, we have

$$
[\varphi, \varphi]-2 d \eta \otimes \xi=0
$$

The proof is completed.
Corollary 1 Let \bar{M} be $(2 n+1)$-dimensional a para β -
Kenmotsu manifold with structure (φ, ξ, η, g). Then we have

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=\beta \varphi^{2} X \tag{5}
\end{equation*}
$$

for all $X, Y \in \Gamma(T \bar{M})$.

3 SUBMANIFOLDS OF PARA $\boldsymbol{\beta}$-KENMOTSU

MANIFOLD

Now, let M be a submanifold of the $(2 \mathrm{n}+1)$ dimensional a para β-Kenmotsu manifold \bar{M}. Let ∇ be the Levi-Civita connection of M with respect to the induced metric g. Then Gauss and Weingarten formulas are given by

$$
\begin{gather*}
\bar{\nabla}_{X} Y=\nabla_{\mathrm{X}} \mathrm{Y}-\mathrm{h}(\mathrm{X}, \mathrm{Y}) \tag{6}\\
\bar{\nabla}_{X} V=\nabla_{\mathrm{X}}^{\perp} \mathrm{Y}-\mathrm{A}_{\mathrm{V}} \mathrm{X} \tag{7}
\end{gather*}
$$

for any $X, Y \epsilon \Gamma(T M)$ and $V \epsilon \Gamma(T M)^{\perp} . \nabla^{\perp}$ is the connection in the normal bundle, h is the second fundamental from of M and A_{V} is the Weingarten endomorphism associated with V. The second fundamental form h and the shape operator A related by

$$
\begin{equation*}
g(h(X, Y), V)=g\left(\mathrm{~A}_{\mathrm{V}} X, Y\right) \tag{8}
\end{equation*}
$$

The mean curvature tensor H is defined by

$$
H=\frac{1}{m} \sum_{k=1}^{m} h\left(e_{k}, e_{k}\right)
$$

where $\left\{e_{1}, \ldots, e_{m}\right\}$ is a local orthonormal basis of TM. M said to be minimal if H vanishes identically.

Now, let $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m}\right\}$ be local orthonormal basis of $T M$ such that the vector fields $\left\{e_{1}, \ldots, e_{n}\right\}$ are tanget to M and $\left\{e_{n+1}, \ldots, e_{m}\right\}$ are normal to m . Then for any $X \in \Gamma(T M)$

$$
\begin{gather*}
\nabla_{X} e_{i}=\sum_{j=1}^{n} w_{i}^{j} e_{i}+\sum_{k=n+1}^{m} w_{i}^{k} e_{k} \tag{9}\\
\nabla_{X} e_{r}=\sum_{j=1}^{n} w_{r}^{j} e_{j}+\sum_{k=n+1}^{m} w_{r}^{k} e_{k}
\end{gather*}
$$

where $i=1, \ldots, n$ and $r=n+1, \ldots, m$ and $w_{i}^{j}=g\left(\nabla_{e_{i}}, e_{j}\right)$. The 1-forms w_{i}^{j}, w_{i}^{k} and w_{r}^{j} can called connection forms of M.

On the other hand, the mix second fundamental form in the direction e_{r} is defined

$$
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right)
$$

For every tangent vector field X we write

$$
\begin{equation*}
\varphi X=T X+N X \tag{10}
\end{equation*}
$$

where $T X$ (resp. NX) denotes the tangential (resp. normal) component of φX and $N X$ is the normal one. Moreover for every normal vector field V ,

$$
\begin{equation*}
\varphi V=t V+n V \tag{11}
\end{equation*}
$$

where $t V$ in the tangential component and $n V$ is the normal one.
Now, for later use, we establish proposition for submanifolds of para β-Kenmotsu manifold.

Proposition 2 Let M be submanifold of para β -

Kenmotsu manifold \bar{M}. Then,
$\left(\nabla_{X} T\right) Y=\mathrm{A}_{N Y} \mathrm{X}+\mathrm{th}(\mathrm{X}, \mathrm{Y})$
$\eta(Y) T X\} \quad+\beta\{g(T X, Y) \xi-$
$\left(\nabla_{X} N\right) Y=n h(X, Y)-h(X, T Y)-\beta \eta(Y) N X \quad$ (13)
for all $X, Y \epsilon \Gamma(T M)$
Proof. For any $X, Y \in \Gamma(T M)$

$$
\left(\bar{\nabla}_{X} \varphi\right) Y=\bar{\nabla}_{X} \varphi Y-\varphi \bar{\nabla}_{X} Y
$$

Then, using (4), (6) and (7)

$$
\begin{aligned}
& \beta\{g(T X+N X, Y) \xi-\eta(Y)(T X+N X)\} \\
& =\bar{\nabla}_{X}(T Y+N Y)-\varphi\left(\nabla_{X} Y+h(X, Y)\right) \\
& =\nabla_{X} T Y+h(X, T Y)-\mathrm{A}_{N Y} \mathrm{X}+\nabla_{\mathrm{X}} \mathrm{NY}-\mathrm{T} \nabla_{X} Y- \\
& \quad \mathrm{N}_{X} Y-\operatorname{th}(X, Y)-
\end{aligned}
$$

$n h(X, Y)$

$$
\begin{gathered}
=\left(\nabla_{X} T\right) Y+\left(\nabla_{X} N\right) Y+h(X, T Y)-\mathrm{A}_{N Y} \mathrm{X} \\
-\operatorname{th}(\mathrm{X}, \mathrm{Y})-\operatorname{nh}(\mathrm{X}, \mathrm{Y})
\end{gathered}
$$

or

$$
\begin{aligned}
\left(\nabla_{X} T\right) Y+\left(\nabla_{X} N\right) Y & =\beta\{g(T X+N X, Y) \xi-\eta(Y) T X \\
& -\eta(Y) N X\}-h(X, T Y)+\mathrm{A}_{N Y} \mathrm{X} \\
& +\operatorname{th}(\mathrm{X}, \mathrm{Y})-\mathrm{nh}(\mathrm{X}, \mathrm{Y}) .
\end{aligned}
$$

Proposition 3 Let M be submanifold of para β -
Kenmotsu manifold \bar{M}, tanget to the structure vector
field. Then,

$$
\nabla_{X} \xi=\beta \varphi^{2} X
$$

and

$$
h(X, \xi)=0
$$

for any $X, Y \epsilon \Gamma(T M)$.
Now, we defined slant submanifold of para β-Kenmotsu manifold.

Definition 2 Let M be a submanifold of a para β -
Kenmotsu manifold $\bar{M} . M$ is a slant submanifold iffor any $x \epsilon M$ and $X \epsilon T_{x} M$ linearly independent of $\{\xi\}$, the angle between φX and $T_{x} M$ is a constant $\theta \in\left[0, \frac{\pi}{2}\right]$. Then θ called the slant angle of M in \bar{M}.

Theorem 2 Let M be a submanifold of para β -

Kenmotsu manifold \bar{M}, tanget to the structure vector fields. Then, M is a slant submanifold if and only if there exists a constant $\lambda \in\left[0, \frac{\pi}{2}\right]$. such that

$$
\begin{equation*}
T^{2}=\lambda(I-\eta \otimes \xi) \tag{14}
\end{equation*}
$$

Furthermore in such case, if θ is the slant angle of M it satisfies that $\lambda=\cos ^{2} \theta$.
Corollary 2 Let M be a slant submanifold of para β -
Kenmotsu manifold \bar{M}, with slant angle θ. Then, for any $X, Y \in \Gamma(T M)$ we have

$$
\begin{aligned}
& g(T X, T Y)=-\cos ^{2} \theta(g(X, Y)-\varepsilon \eta(X) \eta(Y)) \\
& g(T X, T Y)=-\sin ^{2} \theta(g(X, Y)-\varepsilon \eta(X) \eta(Y))
\end{aligned}
$$

4 SUBMANIFOLDS OF SMALLEST DIMENSION IN PARA $\boldsymbol{\beta}$-KENMOTSU MANIFOLD

Let M be 3-dimensional slant submanifold of 5dimensional para contact manifold \bar{M} and $\left\{e_{1}, e_{2}, e_{3}, e_{4}, \xi\right\}$ be local orthonormal basis of $T \bar{M}$. Let e_{1} be unit vector field. $\tilde{\varphi}$ is para contact structure,

$$
g\left(e_{1}, \tilde{\varphi} e_{1}\right)=0
$$

Then, we can choice

$$
e_{2}=\sec \theta T e_{1}
$$

Then

$$
\left\{-\sec \theta T e_{2},-\sec \theta T e_{1}, \xi\right\}
$$

is a local orthonormal basis of TM.
On the other hand,

$$
\left\{\csc \theta N e_{1}, \csc \theta N e_{2}\right\}
$$

is a local orthonormal basis of $T M^{\perp}$.
Proposition 4 Let M be a 3-dimensional non-invariant slant submanifold of a 5-dimensional para contact manifold \bar{M}. Let e_{1} be an unit vector field and tanget to M. If

$$
\begin{gathered}
e_{1}=-\sec \theta T e_{2}, \quad e_{2}=-\sec \theta T e_{1} \\
e_{3}=\csc \theta N e_{1}, \quad e_{4}=\csc \theta N e_{2} .
\end{gathered}
$$

Then $\left\{e_{1}, e_{2}, e_{3}, e_{4}, \xi\right\}$ be a local orthonormal basis of $T \bar{M}$, where $\left\{e_{1}, e_{2}, \xi\right\}$ are tanget to M and $\left\{e_{3}, e_{4}\right\}$ are normal to M. Moreover, we have

$$
t e_{3}=-\sin \theta e_{1}, \quad n e_{3}=-\cos \theta e_{4}
$$

$$
t e_{4}=-\sin \theta e_{2}, \quad n e_{4}=-\cos \theta e_{3} .
$$

$$
=-\cos ^{2} \theta \sum_{i=1}^{3} \beta g\left(X, e_{1}\right) \xi_{i}
$$

Proof. It is easy that $\left\{e_{1}, e_{2}, e_{3}, e_{4}, \xi\right\}$ is local orthonormal basis off $T \bar{M}$. We only show that last section $\varphi e_{3}=\varphi\left\{\csc \theta N e_{1}\right\}$
$t e_{3}+n e_{3}=\csc \theta\left\{\varphi\left(\varphi e_{1}-T e_{1}\right)\right\}$

$$
=\csc \theta\left\{e_{1}-\varphi\left(\cos \theta e_{2}\right)\right\}
$$

$$
=\csc \theta\left\{e_{1}-\cos \theta\left(T e_{2}+N e_{2}\right)\right\}
$$

$=\csc \theta\left\{e_{1}-\cos \theta\left(\cos \theta e_{1}+\sin \theta e_{4}\right)\right.$
$=\frac{1}{\sin \theta} e_{1}-\frac{\cos ^{2} \theta}{\sin \theta} e_{1}-\cos \theta e_{4}$.
Then

$$
t e_{3}=\sin \theta e_{1}
$$

and

$$
n e_{3}=-\cos \theta e_{4}
$$

Similarly

$$
t e_{4}=-\sin \theta e_{2}, \quad n e_{4}=-\cos \theta e_{3} .
$$

Theorem 3 Let M be 3-dimensional submanifold of para β-Kenmotsu manifold \bar{M} Then M is slant submanifold if and only if

$$
\begin{equation*}
\left.\left(\nabla_{X} T\right) Y=\beta\{g(T X, Y)\}-\eta(Y) T X\right\} \tag{15}
\end{equation*}
$$

for all $X, Y \epsilon \Gamma(T M)$.
Proof. Let M be slant submanifold. We can choose local orthonormal basis $\left\{e_{1}, e_{2}, \xi\right\}$ of TM, where $e_{1}=\sec \theta T e_{2}$ and $e_{2}=\sec \theta T e_{1}$. Then $\forall X, Y \epsilon \Gamma(T M)$ $\left(\nabla_{X} T\right) e_{1}=\nabla_{X} T e_{1}-T \nabla_{X} e_{1}$

$$
\begin{aligned}
& =\nabla_{X} T\left(\sec \theta T e_{2}\right)-T \nabla_{X} e_{1} \\
& =\sec \theta \nabla_{X} T^{2} e_{2}-T \nabla_{X} e_{1}
\end{aligned}
$$

from (14)

$$
\left(\nabla_{X} T\right) e_{1}=\cos \theta \nabla_{X} e_{2}-T \nabla_{X} e_{1} .
$$

Then using (9)

$$
\begin{aligned}
&\left(\nabla_{X} T\right) e_{1}=\cos \theta \sum_{i=1}^{3} \beta g\left(T X, e_{2}\right) \xi_{i} \\
&=\sum_{i=1}^{3} \beta g\left(X, T^{2} e_{1}\right) \xi_{i}
\end{aligned}
$$

(16)

Similarly,

$$
\begin{align*}
\left(\nabla_{X} T\right) e_{2}= & \nabla_{X} T e_{2}-T \nabla_{X} e_{2} \\
& =-\cos \theta \sum_{i=1}^{3} w_{1}^{i}(X) \xi_{i} \\
= & -\cos ^{2} \theta \sum_{i=1}^{s} g\left(X, e_{2}\right) \xi_{i} \tag{17}
\end{align*}
$$

and

$$
\begin{align*}
\left(\nabla_{X} T\right) \xi & =-T\left(\cos ^{2} \theta \beta\left(T^{2} X\right)\right) \\
& =-\cos ^{2} \theta \beta(T X) . \tag{18}
\end{align*}
$$

On the other hand, for any $Y \epsilon \Gamma(T M)$ writing

$$
Y=c_{1} e_{1}+c_{2} e_{2}+\eta(Y) \xi
$$

Then
$\nabla_{X} T Y=c_{1} \nabla_{X} T e_{1}+c_{2} \nabla_{X} T e_{2}+g(Y, \xi) \nabla_{X} T \xi$
and
$T \nabla_{X} Y=c_{1} T \nabla_{X} e_{1}+c_{2} T \nabla_{X} e_{2}+g(Y, \xi) T \nabla_{X} \xi$.

Finally, using (19) and (20)
$\left(\nabla_{X} T\right) Y=c_{1}\left(\nabla_{X} T\right) e_{1}+c_{2}\left(\nabla_{X} T\right) e_{2}+\eta(Y)\left(\nabla_{X} T\right) \xi$.

Then, using (16), (17) and (18) into (21) it follows that

$$
\left.\left(\nabla_{X} T\right) Y=\beta\{g(T X, Y)\}-\eta(Y) T X\right\}
$$

Corollary 3 Let M be 3-dimensional submanifold of para
β-Kenmotsu manifold \bar{M} Then M is slant submanifold if and only if

$$
A_{N Y} X=A_{N X} Y
$$

for all $X, Y \epsilon \Gamma(T M)$.
Proposition 5 Let M be 3-dimensional proper slant submanifold of 5-dimensional para β-Kenmotsu manifold \bar{M} and let $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}=\xi\right\}$ be basis of $T \bar{M}$. Then

$$
\begin{equation*}
h_{12}^{3}=h_{11}^{4}, h_{22}^{3}=h_{12}^{4} \tag{22}
\end{equation*}
$$

and the other mixed second fundamental forms are zero.
Proof. Firstly,

$$
\begin{aligned}
& h_{12}^{3}=g\left(h\left(e_{1}, e_{2}\right), e_{3}\right) \\
= & g\left(h\left(e_{1}, e_{2}\right), \csc \theta N e_{1}\right) \\
= & \csc \theta g\left(h\left(e_{1}, e_{2}\right), N e_{1}\right)
\end{aligned}
$$

using (8),

$$
h_{12}^{3}=\csc \theta g\left(A_{N e_{1}} e_{2}, e_{1}\right)
$$

from Corollary 3 ,

$$
\begin{gathered}
h_{12}^{3}=\csc \theta g\left(A_{N e_{2}} e_{1}, e_{1}\right) \\
=\csc \theta g\left(h\left(e_{1}, e_{1}\right), N e_{2}\right) \\
=g\left(h\left(e_{1}, e_{1}\right), e_{4}\right) \\
=h_{11}^{4} .
\end{gathered}
$$

Similary

$$
h_{22}^{3}=h_{12}^{4} .
$$

Theorem 4 Let M be 3-dimensional submanifold of 5dimensional para β-Kenmotsu manifold \bar{M} Then M proper slant submanifold of para β-Kenmotsu manifold \bar{M} if and only if

$$
\left(\nabla_{X} N\right) Y=-\beta \eta(Y) N X
$$

Proof. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}=\xi\right\}$ be basis of $T \bar{M}$. Using (13)

$$
\left(\nabla_{X} N\right) Y=n h(X, Y)-h(X, T Y)-\beta \eta(Y) N X
$$

and from (22),

$$
\left(\nabla_{X} N\right) Y=-\beta \eta(Y) N X
$$

Conversely, let (23) hold. Then, $\forall X, Y \in \Gamma(T M)$

$$
n h(X, Y)=h(X, T Y)
$$

On the other hand, from (8)

$$
g\left(A_{N e_{1}} e_{2}, X\right)=g\left(h\left(e_{2}, X\right), N e_{1}\right)
$$

Then

$$
\begin{aligned}
g\left(A_{N e_{1}} e_{2}, X\right) & =g\left(h\left(\sec \theta T e_{1}, X\right), \sin \theta e_{3}\right) \\
& =\sin \theta g\left(h\left(e_{1}, X\right), e_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =g\left(h\left(e_{1}, X\right), \sin \theta e_{4}\right) \\
& =g\left(h\left(e_{1}, X\right), N e_{2}\right) \\
& =g\left(A_{N e_{2}} e_{1}, X\right)
\end{aligned}
$$

On the other hand,

$$
g\left(A_{N e_{1}} e_{5}, X\right)=g\left(h\left(e_{5}, X\right), N e_{1}\right)=0
$$

In that case, M is slant submanifold of corollary 2 .
Moreover,

$$
\begin{aligned}
h_{12}^{3} & =g\left(h\left(e_{1}, e_{1}\right), e_{3}\right) \\
& =-g\left(h\left(e_{1}, e_{2}\right), e_{4}\right) \\
& =\sec \theta g\left(h\left(T e_{2}, e_{2}\right), e_{4}\right) \\
& =-g\left(h\left(e_{2}, e_{2}\right), e_{3}\right) \\
& =-h_{22}^{3} .
\end{aligned}
$$

Similarly

$$
h_{11}^{4}=-h_{22}^{4} .
$$

Then M is minimal slant submanifold.
Example 1 In what follows, $\left(\mathbb{R}^{2 n+1}, \varphi, \xi, \eta, g\right)$ will denote the manifold $\mathbb{R}^{2 n+1}$ with its usual β - Kenmotsu structure given by

$$
\begin{gathered}
\varphi\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, \xi\right)=\left(Y_{1}, \ldots, Y_{n},-X_{1}, \ldots,-X_{n}\right) \\
\xi=\frac{\partial}{\partial z}, \quad \eta=d z \\
g=e^{-2 z} \sum_{i=1}^{n}\left[d x_{i} \otimes d x_{i}+d y_{i} \otimes d y_{i}\right]-\varepsilon d z \otimes d z
\end{gathered}
$$

where $\beta=e^{-2 z}$. The consider a submanifold of \mathbb{R}^{5} defined by

$$
M=X(u, v, t)=(u \cos \theta, u \sin \theta, v, 0, t)
$$

Then the local frame of $T M$
$e_{1}=\cos \theta \frac{\partial}{\partial x_{1}}+\sin \theta \frac{\partial}{\partial x_{2}}, \quad e_{2}=\frac{\partial}{\partial y_{1}}, \quad e_{3}=\xi=\frac{\partial}{\partial t}$.
On the other hand

$$
\left(\nabla_{X} N\right) e_{1}=0, \quad\left(\nabla_{X} N\right) e_{2}=0, \quad\left(\nabla_{X} N\right) e_{3}=-\beta N X
$$

For any $Y \epsilon \Gamma(T M)$ writing

$$
Y=c_{1} e_{1}+c_{2} e_{2}+\eta(Y) e_{3}
$$

In that case,

$$
\left(\nabla_{X} N\right) Y=c_{1}\left(\nabla_{X} N\right) e_{1}+c_{2}\left(\nabla_{X} N\right) e_{2}+\eta(Y)\left(\nabla_{X} N\right) e_{3} .
$$

Then M is a minimal slant submanifold.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in MathematicsVol. 203, Birkhauser, Boston, 2002.
[2] J. L.Cabrerizo, A. Carriazo and L. M. Fernandez, Slant submanifolds in Sasakian manifolds. Glasgow Math. J. 42 (2000), 125-138.
[3] A. Carriazo, New developments in slant submanifolds theory, In Applicable Mathematics in the Golden Age (2002), 339-356.
[4] A. Carriazo, L. M. Fernandez and M. B. Hans-Uber, Minimal slant submanifolds of the smallest dimension in S-manifold, Rev.Mat. Iberoamericana 21 (2005), 47-66.
[5] B.Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, 1990.
[6] B.Y. Chen, Slant Immersions, Bull, Australian Math.

Soc. 41 (1990), 135-147.
[7] R. S. Gupta, and P. K. Pandey, Structure on a slant submanifold of a Kenmotsu manifold. Differential Geometry-Dynamical Systems 10 (2008), 139-147.
[8] R. S. Gupta, S. M. K. Haider and M. H. Shaid, Slant submanifolds of Kenmotsu manifolds, Radovi Math., 12 (2004), 205-214.
[9] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie. 39 (1996), 183-198.
[10] A.Lotta, Three dimensional slant submanifolds of K-contact manifolds, Balkan J. Geom. Appl., 3 (1) (1998), 37-51.
[11] I. Sato, On a structure similar to the almost contact structure, Tensor (N.S.), 30 (1976), 219-224.
[12] Z. Olszak, The Schouten-Van Kampen Affine Connection Adapted to an Almost Para Contact Metric Structure, Pub. de Linst. Math., 94(108), (2013), 31-42.

[^0]: ${ }^{\wedge}$ Corresponding author, e-mail: avanli@gazi.edu.tr

