TACHIBANA AND VISHNEVSKII OPERATORS APPLIED TO X^{V} AND X^{C} IN ALMOST PARACONTACT STRUCTURE ON TANGENT BUNDLE T(M)

Haşim ÇAYIR

Department of Mathematics, Faculty of Arts and Sciences, Giresun University, Giresun, 28100

ÖZET

Bu çalışmanın temel amacı Tangent demette almost paracontact yapıya göre X^V ve X^C ve uygulanan Tachibana ve Vishnevskii operatörlerini araştırmaktır. Ayrıca, elde edilen bu bağıntılar almost paracontact yapı içerisindeki bazı özel vectör alanları için de incelenilecektir.

Anahtar Kelimeler: Tachibana Operatörü, Vishnevskii Operatörü, Almost Parakontakt Yapı, Komple Lift, Vertikal Lift, Tangent Demet

Mathematics Subject Classification (2000): 15A72, 47B47, 53A45, 53C15

ABSTRACT

The main aim of this paper is to investigate Tachibana and Vishnevskii Operators applied to X^{V} and X^{C} in almost paracontact structure on tangent bundle T(M). In addition, this results which obtained shall be studied for some special vector fields in almost paracontact structure.

Keywords: Tachibana Operators, Vishnevskii Operators, Almost Paracontact Structure, Complete Lift, Vertical Lift, Tangent Bundle

Mathematics Subject Classification (2000): 15A72, 47B47, 53A45, 53C15¹

^{1 *}hasim.cayir@giresun.edu.tr

1. INTRODUCTION

Let M be an n – dimensional differentiable manifold of class C^{∞} and let $T_p(M)$ be the tangent space of M at a point p of M. Then the set (Yano 1973)

(1.1)
$$T(M) = \bigcup_{p \in M} T_p(M)$$

is called the tangent bundle over the manifold M. For any point \tilde{p} of T(M), the correspondence $\tilde{p} \to p$ determines the bundle projection $\pi: T(M) \to M$, thus $\pi(\tilde{p}) = p$, where $\pi: T(M) \to M$ defines the bundle projection of T(M) over M. The set $\pi^{-1}(p)$ is called the fibre over $p \in M$ and M the base space.

Suppose that the base space M is covered by a system of cooordinate neighbourhoods $\{U:x^h\}$, where (x^h) is a system of local coordinates defined in neighbourhood U of M. The open set $\pi^{-1}(U) \subset T(M)$ is naturally differentiably homeomorphic to the direct product $U \times R^n$, R^n being the n-dimensional vektor space over the real field R, in such a way that a point $\tilde{p} \in T_p(M)$ ($p \in U$) is represented by an ordered pair (P, X) of the point $p \in U$, and a vector $X \in R^n$, whose components are given by the cartesian coordinates (y^h) of \tilde{p} in the tangent space $T_p(M)$ with respect to natural base $\{\partial_h\}$, where $\partial_h = \frac{\partial}{\partial x^h}$. Denoting by (x^h) the coordinates of $p = \pi(\tilde{p})$ in U and establishing the correspondence $(x^h, y^h) \to \tilde{p} \in \pi^{-1}(U)$, we can introduce a system of local coordinates (x^h, y^h) in the open set $\pi^{-1}(U) \subset T(M)$. Here we call (x^h, y^h) the coordinates in $\pi^{-1}(U)$ induced from (x^h) or simply, the induced coordinates in $\pi^{-1}(U)$.

We denote by $\mathfrak{I}_s^r(M)$ the set of all tensor fields of class C^{∞} and of type (r,s) in M. We now put $\mathfrak{I}(M) = \sum_{r,s=0}^{\infty} \mathfrak{I}_s^r(M)$, which is the set of all tensor fields in M. Similarly, we denote by $\mathfrak{I}_s^r(T(M))$ and $\mathfrak{I}(T(M))$ respectively the corresponding sets of tensor fields in the tangent bundle T(M).

1.1. Vertical lifts. If f is a funtion in M, we write f^{\vee} for the function in T(M) obtained by forming the composition of $\pi: T(M) \to M$ and $f: M \to R$, so that

$$(1.2) f^{v} = f \circ \pi$$

Thus, if a point $\tilde{p} \in \pi^{-1}(U)$ has induced coordinates (x^h, y^h) , then

(1.3)
$$f^{V}(\tilde{p}) = f^{V}(x, y) = f \circ \pi(\tilde{p}) = f(p) = f(x).$$

Thus the value of $f^V(\tilde{p})$ is constant along the each fibre $T_p(M)$ and equal to the value f(p). We call f^V the vertical lift of the function f (Yano et al 1973).

Let $\tilde{X} \in \mathfrak{I}_0^1(T(M))$ be such that $\tilde{X}f^V = 0$ for all $f \in \mathfrak{I}_0^0(M)$. Then we say that \tilde{X} is a vector field. Let $\begin{bmatrix} \tilde{X}^h \\ \tilde{X}^{\bar{h}} \end{bmatrix}$ be components of \tilde{X} with respect to the induced coordinates. The \tilde{X} is vertical if and only if its components in $\pi^{-1}(U)$ satisfy

Suppose that $X \in \mathfrak{I}_0^1(M)$, so that a vector field in M. We define a vector field X^V in T(M) by

$$(1.5) X^{V}(\iota\omega) = (\omega X)^{V}$$

 ω be an arbitrary 1-form in M. We call X^{V} the vertical lift of X (Yano et al 1973).

Let $\tilde{\omega} \in \mathfrak{I}_1^0(T(M))$ be such that $\tilde{\omega}(X)^V = 0$ for all $X \in \mathfrak{I}_0^1(M)$. Then we say that $\tilde{\omega}$ is a vertical 1-form in T(M). We define the vertical lift ω^V of the 1-form ω by

(1.6)
$$\omega^{V} = (\omega_{i})^{V} (dx^{i})^{V}$$

in each open set $\pi^{-1}(U)$, where $(U:x^h)$ is coordinate neighbourhood in M and ω is given by $\omega = \omega_i dx^i$ in U. The vertical lift ω^V of ω with local expression $\omega = \omega_i dx^i$ has components of the form

$$(1.7) \omega^{V}:(\omega^{i},0)$$

with respect to the induced coordinates in T(M).

Vertical lifts to a unique algebraic isomorphism of the tensor algebra $\Im(M)$ in to the tensor algebra $\Im(T(M))$ with respect to constant coefficients by the conditions (1.8)

$$(P \otimes O)^V = P^V \otimes O^V, (P+R)^V = P^V + R^V$$

P,Q and R being arbitrary elements of $\mathfrak{I}(M)$. The vertical lifts F^V of an element $F \in \mathfrak{I}_1^1(M)$ with local components F_i^h has components of the form (Yano et al 1973)

$$F^V: \begin{pmatrix} 0 & 0 \\ F_i^h & 0 \end{pmatrix}.$$

Vertical lifts has the following formulas (Omran et al 1984; Yano et al 1973):

(1.9)
$$(fX)^{V} = f^{V}X^{V}, I^{V}X^{V} = 0, \eta^{V}(X^{V}) = 0$$

$$(f\eta)^{V} = f^{V}\eta^{V}, [X^{V}, Y^{V}] = 0, \varphi^{V}X^{V} = 0$$

$$X^{V}f^{V} = 0,$$

hold good, where $f \in \mathfrak{T}^0_0(M), X, Y \in \mathfrak{T}^1_0(M), \eta \in \mathfrak{T}^1_1(M), \varphi \in \mathfrak{T}^1_1(M), I = id_{M}$.

1.2. Complete lifts. If f is a function in M, we write f^{C} fort the function in T(M) defined by

$$(1.10) f^{C} = \iota(df)$$

and call f^{C} the comple lift of the function f. The complete lift f^{C} of a function f has the local expression

$$(1.11) f^{C} = y^{i} \partial_{i} f = \partial f$$

with respect to the indicent coordinates in T(M), where ∂f denotes $y^i \partial_i f$.

Suppose that $X \in \mathfrak{I}_0^1(M)$. Then we define a vector field X^C in T(M) by

$$(1.12) XC fC = (Xf)C,$$

f being an arbitrary function in M and call X^{C} the complete lift of X in T(M) (Das 1993; Yano et al 1973). The complete lift X^{C} of X with components x^{h} in M has components

$$(1.13) X^{C} = \begin{pmatrix} X^{h} \\ \partial X^{h} \end{pmatrix}$$

with respect to the indicent coordinates in T(M).

Suppose that $\omega \in \mathfrak{I}^0_1(M)$. Then a 1-form ω^c in T(M) defined by

$$(1.14) \qquad \omega^{c}(X^{c}) = (\omega X)^{c}$$

X being an arbitrary vector field in M. We call ω^c the complete lift of ω . The complete lift ω^c of ω with components ω_i in M has component of the form

$$(1.15) \omega^{c}:(\partial \omega_{i}, \omega_{i})$$

with respect to the indicent coordinates in T(M) [2].

The complete lifts to a unique algebra isomorphism of the tensor algebra in $\mathfrak{I}(M)$ into the tensor algebra $\mathfrak{I}(T(M))$ with respect to constant coefficients, is given by the conditions

$$(1.16) (P \otimes Q)^C = P^C \otimes Q^V + P^V \otimes Q^C, (P+R)^C = P^C + R^C,$$

where P,Q and R being arbitrary elements of $\mathfrak{I}(M)$. The complete lifts F^{C} of an element $F \in \mathfrak{I}_{1}^{1}(M)$ with local components F_{i}^{h} has components of the form

$$F^{C}: egin{pmatrix} F_{i}^{h} & 0 \ \partial F_{i}^{h} & F_{i}^{h} \end{pmatrix}.$$

In addition, we know that complete lifts are defined by (Omran et al 1984; Yano et al 1973):

(1.17)
$$(fX)^{C} = f^{C}X^{V} + f^{V}X^{C} = (Xf)^{C},$$

$$X^{C}f^{V} = (Xf)^{V}, \eta^{V}(X^{C}) = (\eta(X))^{V},$$

$$X^{V}f^{C} = (Xf)^{V}, \varphi^{V}X^{C} = (\varphi X)^{V},$$

$$\varphi^{C} X^{V} = (\varphi X)^{V}, (\varphi X)^{C} = \varphi^{C} X^{C},$$

$$\eta^{V} (X^{C}) = (\eta(X))^{C}, \eta^{C} (X^{V}) = (\eta(X))^{V}$$

$$[X^{V}, Y^{C}] = [X, Y]^{V}, I^{C} = I, I^{V} X^{C} = X^{V}, [X^{C}, Y^{C}] = [X, Y]^{C}.$$

Definition 1. Let M be an n- dimensional differentiable manifold. Differential transformation $D=L_X$ is called Lie derivation with respect to vector field $X \in \mathfrak{T}^1_0(M)$ if

$$(1.18) L_{X} f = Xf, \forall f \in \mathfrak{T}_{0}^{0}(M),$$

$$L_XY = [X,Y], \forall X,Y \in \mathfrak{I}_0^1(M).$$

[X,Y] is called by Lie bracked. The derivative L_XF of a tensor field F of type (1,1) with respect to a vector field X is defined by ([8])

$$(1.19) (L_X F)Y = [X, FY] - F[X, Y].$$

Proposition 1. For any $X \in \mathfrak{I}_0^1(M)$, $f \in \mathfrak{I}_0^0(M)$ and L_X is the Lie derivation with respect to vector field X Yano et al (1973)

i)
$$L_{v^{V}} f^{V} = 0$$
,

ii)
$$L_{x^{V}} f^{C} = (L_{X} f)^{V}$$
,

iii)
$$L_{X^C} f^V = (L_X f)^V$$
,

iv)
$$L_{X^{C}} f^{C} = (L_{X} f)^{C}$$
.

Proposition 2. For any $X,Y \in \mathfrak{I}_0^1(M)$ and L_X is the Lie derivation with respect to vector field X Yano et al (1973)

i)
$$L_{v^{V}}Y^{V}=0$$
,

ii)
$$L_{X^V}Y^C = (L_XY)^V$$
,

iii)
$$L_{X^C}Y^V = (L_XY)^V$$
,

iv)
$$L_{X^{C}}Y^{C} = (L_{X}Y)^{C}$$
,

Definition 2. Let M be an n-dimensional differentiable manifold. Differential transformation of algebra $\mathfrak{I}(M)$, defined by

$$D = \nabla_X : \mathfrak{I}(M) \to \mathfrak{I}(M), X \in \mathfrak{I}_0^1(M),$$

is called a covariant derivation with respect to vector field X if

(1.20)
$$\nabla_{fX+gY}t = f\nabla_X t + g\nabla_Y t,$$

$$\nabla_{x} f = Xf,$$

where $\forall f, g \in \mathfrak{T}_0^0(M), \forall X, Y \in \mathfrak{T}_0^1(M), \forall t \in \mathfrak{T}(M).$

On the other hand, a transformation, defined by

$$\nabla : \mathfrak{I}_0^1(M) \times \mathfrak{I}_0^1(M) \to \mathfrak{I}_0^1(M),$$

is called an afin connection ([5],[8]). In addition, the complete lift of an afine connection ∇ in M to T(M) is denoted by ∇^c and defined by the conditions of

(1.21)
$$\nabla_{\mathbf{y}^{V}}^{C} f^{V} = 0, \nabla_{\mathbf{y}^{V}}^{C} f^{C} = (\nabla_{X} f)^{V},$$

$$\nabla_{X^{c}}^{c} f^{V} = (\nabla_{X} f)^{V}, \nabla_{X^{c}}^{c} f^{C} = (\nabla_{X} f)^{C},$$

$$\nabla_{X^{V}}^{C}Y^{V} = 0, \nabla_{X^{V}}^{C}Y^{C} = (\nabla_{X}Y)^{V},$$

$$\nabla^{\scriptscriptstyle C}_{\scriptscriptstyle X^{\scriptscriptstyle C}} Y^{\scriptscriptstyle V} = (\nabla_{\scriptscriptstyle X} Y)^{\scriptscriptstyle V}, \nabla^{\scriptscriptstyle C}_{\scriptscriptstyle X^{\scriptscriptstyle C}} Y^{\scriptscriptstyle C} = (\nabla_{\scriptscriptstyle X} Y)^{\scriptscriptstyle C}$$

for any $X, Y \in \mathfrak{T}_0^1(M), f \in \mathfrak{T}_0^0(M)$ (Yano et al 1973).

2. MAIN RESULTS

2.1. Tachibana Operators Applied to X^V and X^C in Almost Paracontact Structure.

Definition 3. Let an n – dimensional differentiable manifold M be endowed with a tensor field φ of type (1,1), a vector field ξ , a 1-form η , I the idendity and let them satisfy

(2.1)
$$\varphi^2 = I - \eta \otimes \xi, \qquad \varphi(\xi) = 0, \qquad \eta \circ \varphi = 0, \qquad \eta(\xi) = 1.$$

Then (φ, ξ, η) define almost paracontact structure on M (Omran et al 1984; Salimov & cayır 2013). From (2.1), we get on taking complete and vertical lifts

$$(\varphi^{C})^{2} = I - \eta^{V} \otimes \xi^{C} - \eta^{C} \times \xi^{V},$$

$$\varphi^{C} \xi^{V} = 0, \varphi^{C} \xi^{C} = 0, \eta^{V} \circ \varphi^{C} = 0,$$

$$\eta^{C} \circ \varphi^{C} = 0, \eta^{V} (\xi^{V}) = 0, \eta^{V} (\xi^{C}) = 1,$$

$$\eta^{C} (\xi^{V}) = 1, \eta^{C} (\xi^{C}) = 0.$$

We now define a (1,1) tensor field \tilde{J} on $\Im(M)$ by

(2.3)
$$\tilde{J} = \varphi^{C} - \xi^{V} \otimes \eta^{V} - \xi^{C} \otimes \eta^{C}.$$

Then it is easy to show that $\tilde{J}^2 X^V = X^V$ and $\tilde{J}^2 X^C = X^C$, which give that \tilde{J} is an almost product structure on $\mathfrak{I}(M)$. We get from (2.3)

$$\tilde{J}X^V = (\varphi X)^V - (\eta(X))^V \xi^C$$

$$\tilde{J}X^{C} = (\varphi X)^{V} - (\eta(X))^{V} \xi^{V} - (\eta(X))^{C} \xi^{C}$$

for any $X \in \mathfrak{T}_0^1(M)$.

Definition 4. Let $\varphi \in \mathfrak{T}_1^1(M)$, and $\mathfrak{T}(M) = \sum_{r,s=0}^{\infty} \mathfrak{T}_s^r(M)$ be an tensor alebra over R. A map

 $\phi_{\varphi}|_{r+s\to 0}$: $\mathfrak{F}(M)\to \mathfrak{F}(M)$ is called a Tachibana operator or ϕ_{φ} operator on M if

a) $\phi_{\scriptscriptstyle \mathcal{O}}$ is linear with respect to constant coefficient,

b)
$$\phi_{\varphi} : {}^*\mathfrak{I}(M) \to \mathfrak{I}^r_{s+1}(M)$$
 for all r and s,

c)
$$\phi_{\sigma}(K \overset{c}{\otimes} L) = (\phi_{\sigma} K) \otimes L + K \otimes \phi_{\sigma} L \text{ for all } K, L \in \overset{*}{\mathfrak{I}}(M),$$

d) $\phi_{\varphi X}Y = -(L_Y\varphi)X$ for all $X,Y \in \mathfrak{I}_0^1(M)$, where L_Y is the Lie derivation with respect to Y

e)
$$(\phi_{\sigma X}\eta)Y = (d(\iota_{Y}\eta(\phi X) - (d(\iota_{Y}(\eta \circ \phi)X + \eta((L_{Y}\varphi)X))))$$

$$= (\phi X(\iota Y \eta))(\phi X) - X(\iota_{\sigma Y} \eta) + \eta((L_{Y} \varphi)X)$$

for all $\eta \in \mathfrak{I}_1^0(M)$ and $X, Y \in \mathfrak{I}_1^0(M)$, where $\iota_Y \eta = \eta(Y) = \eta \overset{c}{\otimes} Y, \overset{*}{\mathfrak{I}_s^r}(M)$ the module of all pure tensor fields of type (r,s) on M with respect to the affinor field φ (Salimov 2013).

Theorem 1. For ϕ_{φ} Tachibana operator on M, L_{X} the operator Lie derivation with respect to

 $X, \tilde{J} \in \mathfrak{T}_1^1(\mathfrak{T}(M))$ defined by (2.3) and $\eta(Y) = 0$, we have

i)
$$\phi_{\tilde{I}Y^{V}}X^{V} = -(L_{X^{V}}\tilde{J})Y^{V} = 0$$
,

ii)
$$\phi_{\tilde{I}Y^{C}}X^{V} = -(L_{X^{V}}\tilde{J})Y^{C} = -((L_{X}\varphi)Y)^{V} + ((L_{X}\eta)Y)^{V}\xi^{C},$$

iii)
$$\phi_{\tilde{j}Y^{V}}X^{C} = -(L_{X^{C}}\tilde{J})Y^{V} = -((L_{X}\varphi)Y)^{V} + ((L_{X}\eta)Y)^{V}\xi^{C},$$

iv)
$$\phi_{\tilde{j}_{Y}^{C}}X^{C} = -(L_{X}^{C}\tilde{J})Y^{C} = -((L_{X}\varphi)Y)^{C} + ((L_{X}\eta)Y)^{V}\xi^{V} + ((L_{X}\eta)Y)^{C}\xi^{C},$$

where $X, Y \in \mathfrak{I}_0^1(M)$, a tensor field $\varphi \in \mathfrak{I}_1^1(M)$, a vector field ξ and a 1-form $\eta \in \mathfrak{I}_1^0(M)$.

Proof. For \widetilde{J} is defined by (2,3) and $\eta(Y) = 0$, we get

i)
$$\phi_{\tilde{\jmath}Y^{V}}X^{V} = -(L_{X^{V}}\tilde{J})Y^{V}$$

$$= L_{X^{V}}(\varphi^{C} - \xi^{V} \otimes \eta^{V} - \xi^{C} \otimes \eta^{C})Y^{V} + (\varphi^{C} - \xi^{V} \otimes \eta^{V} - \xi^{C} \otimes \eta^{C})L_{X^{V}}Y^{V}$$

$$= -L_{X^{V}}(\varphi Y)^{V} + L_{X^{V}}(\eta^{V}(Y)^{V})\xi^{V} + L_{X^{V}}(\eta(Y))^{V}\xi^{C}$$

$$= L_{X^{V}}(\varphi Y)^{V}$$

$$= 0$$

ii)
$$\phi_{j_{Y^{C}}}X^{V} = -(L_{X^{V}}\tilde{J})Y^{C}$$

$$= L_{X^{V}}(\varphi^{C} - \xi^{V} \otimes \eta^{V} - \xi^{C} \otimes \eta^{C})Y^{C} + (\varphi^{C} - \xi^{V} \otimes \eta^{V} - \xi^{C} \otimes \eta^{C})L_{X^{V}}Y^{C}$$

$$= -L_{X^{V}}\varphi^{C}Y^{C} + L_{X^{V}}(\eta Y)^{V}\xi^{V} + L_{X^{V}}(\eta Y)^{C}\xi^{C} + \varphi^{C}(L_{X}Y)^{V}$$

$$-\eta^{V}(L_{X}Y)^{V}\xi^{V} - (\eta(L_{X}Y))^{V}\xi^{C}$$

$$= -(L_{X^{V}}\varphi^{C})Y^{C} - \varphi^{C}(L_{X^{V}}Y^{C}) + \varphi^{C}(L_{X}Y)^{V} - (L_{X}(\eta(Y)))^{V}\xi^{C} + (L_{X}(\eta(Y)))^{V}\xi^{C}$$

$$= -((L_{X}\varphi)Y)^{V} + ((L_{Y}\eta)Y)^{V}\xi^{C},$$

iii)
$$\begin{split} \phi_{j_{Y^{V}}}X^{C} &= -(L_{\chi^{C}}\tilde{J})Y^{V} \\ &= L_{\chi^{C}}(\varphi^{C} - \xi^{V} \otimes \eta^{V} - \xi^{C} \otimes \eta^{C})Y^{V} + (\varphi^{C} - \xi^{V} \otimes \eta^{V} - \xi^{C} \otimes \eta^{C})L_{\chi^{C}}Y^{V} \\ &= -L_{\chi^{C}}\varphi^{C}Y^{V} + L_{\chi^{C}}(\eta^{V}(Y)^{V})\xi^{V} + L_{\chi^{C}}(\eta(Y))^{V}\xi^{C} + \varphi^{C}L_{\chi^{C}}Y^{V} \end{split}$$

$$\begin{split} &-\eta^{V}(L_{X}Y)^{V}\xi^{V}-(\eta(L_{X}Y))^{V}\xi^{C}\\ &=-(L_{X^{C}}\varphi^{C})Y^{V}-\varphi^{C}(L_{X^{C}}Y^{V})+\varphi^{C}L_{X^{C}}Y^{V}-(L_{X}(\eta(Y)))^{V}\xi^{C}+((L_{X}\eta)Y)^{V}\xi^{C}\\ &=-((L_{X}\varphi)Y)^{V}+((L_{X}\eta)Y)^{V}\xi^{C}, \end{split}$$

$$\begin{split} \text{iv)} \quad \phi_{\tilde{\jmath}\gamma^{C}}X^{C} &= -(L_{\chi^{C}}\tilde{J})Y^{C} \\ &= -L_{\chi^{C}}(\phi^{C} - \xi^{V} \otimes \eta^{V} - \xi^{C} \otimes \eta^{C})Y^{C} + (\phi^{C} - \xi^{V} \otimes \eta^{V} - \xi^{C} \otimes \eta^{C})L_{\chi^{C}}Y^{C} \\ &= -L_{\chi^{C}}\phi^{C}Y^{C} + L_{\chi^{C}}((\eta Y)^{V})\xi^{V} + L_{\chi^{C}}(\eta(Y))^{C}\xi^{C} + \phi^{C}L_{\chi^{C}}Y^{C} \\ &- (\eta(L_{\chi}Y))^{V}\xi^{V} - (\eta(L_{\chi}Y))^{C}\xi^{C} \\ &= -(L_{\chi^{C}}\phi^{C})Y^{C} - \phi^{C}(L_{\chi^{C}}Y^{C}) + \phi^{C}L_{\chi^{C}}Y^{C} - (L_{\chi}(\eta(Y)))^{V}\xi^{V} + ((L_{\chi}\eta)Y)^{V}\xi^{V} \\ &- (L_{\chi}(\eta(Y)))^{C}\xi^{C} + ((L_{\chi}\eta)Y)^{C}\xi^{C} \\ &= -((L_{V}\phi)Y)^{C} + ((L_{\chi}\eta)Y)^{V}\xi^{V} + ((L_{\chi}\eta)Y)^{C}\xi^{C}, \end{split}$$

where $\eta L_X Y = L_X \eta(Y) - (L_X \eta) Y$ and $\varphi Y \in \mathfrak{I}_0^1(M_n)$.

Corallary 1. If we put $Y = \xi$, i.e. $\eta(\xi) = 1$ and ξ has the condition (2.1), then we have

i)
$$\phi_{\tilde{I}\varepsilon^{V}}X^{V} = -(L_{X}\xi)^{V}$$
,

ii)
$$\phi_{\tilde{j}\xi^C}X^V = -((L_X\varphi)\xi)^V + ((L_X\eta)\xi)^V\xi^C$$
,

iii)
$$\phi_{\tilde{\jmath}\varepsilon^{V}}X^{C}=-((L_{X}\varphi)\xi)^{V}+(L_{X}\xi)^{C}+((L_{X}\eta)\xi)^{V}\xi^{C},$$

iv)
$$\phi_{\tilde{j}\xi^{C}}X^{C} = -((L_{X}\phi)\xi)^{C} + (L_{X}\xi)^{V} + ((L_{X}\eta)\xi)^{V}\xi^{V} + ((L_{X}\eta)\xi)^{C}\xi^{C}.$$

2.2 Vishnevskii Operators Appliedto X^{V} and X^{C} in Almost Paracontract Structure.

Definition 5. Suppose now that ∇ is a linear connection on M, and let $\varphi \in \mathfrak{I}^1_1(M)$. We can replace the condition d) of defination 4 by

(2.4)
$$d') \quad \psi_{\omega X} Y = \nabla_{\omega X} Y - \varphi \nabla_{X} Y$$

for any $X,Y \in \mathfrak{I}_0^1(M)$. Then we can consider a new operator by a Vishnevskii operator or ψ_{φ} – operator on M, we shall mean a map $\psi_{\varphi} : \mathfrak{I}(M) \to \mathfrak{I}(M)$, which satisfies conditions a), b), c), e) of definition 4 and the condition (d') (Salimov 2013).

Theorem 2. Let ψ_{φ} Vishnevskii operator on M, $\nabla^{\mathcal{C}}$ the complete lift of an affine connection

 ∇ in M to T(M) and $\tilde{J} \in \mathfrak{I}_1^1(\mathfrak{I}(M))$ defined by (2.3), then we get

i)
$$\psi_{\tilde{x}_{\nu}^{V}}Y^{V} = -(\eta(X)\nabla_{\xi}Y)^{V}$$
,

ii)
$$\psi_{\tilde{j}X^{V}}Y^{C} = ((\hat{\nabla}_{Y}\varphi)X)^{V} - ((L_{Y}\varphi)X)^{V} - (\eta(X))^{V}(\hat{\nabla}_{Y}\xi)^{C} + (\eta(X))^{V}(L_{Y}\xi)^{C}$$

$$+(\eta(\hat{\nabla}_{Y}X))^{V}\xi^{C}-(\eta L_{Y}X)^{V}\xi^{C},$$

iii)
$$\psi_{\tilde{\jmath}_X{}^c}Y^V = \left((\hat{\nabla}_{\scriptscriptstyle Y}\varphi)X\right)^V - \left((L_{\scriptscriptstyle Y}\varphi)X\right)^V - \left(\eta(X)\right)^C(\hat{\nabla}_{\scriptscriptstyle Y}\xi)^V + \left(\eta(X)\right)^C(L_{\scriptscriptstyle Y}\xi)^V$$

$$+(\eta(\hat{\nabla}_{Y}X))^{V}-(\eta L_{Y}X)^{V}\xi^{C},$$

iv)
$$\psi_{\tilde{\jmath}_X{}^C}Y^C = ((\hat{\nabla}_{\scriptscriptstyle Y}\varphi)X)^C - ((L_{\scriptscriptstyle Y}\varphi)X)^C - (\eta(X)(\hat{\nabla}_{\scriptscriptstyle Y}\xi)^V + (\eta(X)(L_{\scriptscriptstyle Y}\xi)^V)^C)$$

$$-(\eta(X))^{c}(\hat{\nabla}_{Y}\xi)^{c}+(\eta(X))^{c}(L_{Y}\xi)^{c}+(\eta(\hat{\nabla}_{Y}X))^{V}\xi^{V}-(\eta L_{Y}X)^{V}\xi^{V}$$

$$+(\eta(\hat{\nabla}_{Y}X))^{C}\xi^{C}-(\eta L_{Y}X)^{C}\xi^{C},$$

where $X, Y \in \mathfrak{I}_0^1(M)$, a tensor field $\varphi \in \mathfrak{I}_1^1(M)$, a vector field ξ and a 1-form $\eta \in \mathfrak{I}_1^0(M)$.

Proof. Let $\tilde{J} \in \mathfrak{I}_1^1(\mathfrak{I}(M))$ defined by (2.3), then we have

i)
$$\psi_{j\chi^{\nu}}Y^{\nu} = \nabla_{j\chi^{\nu}}^{C}Y^{\nu} - \tilde{J}\nabla_{\chi^{\nu}}^{C}Y^{\nu}$$

$$= \nabla_{(\phi X)^{\nu} - (\eta(X))^{\nu} \xi^{c}}^{C}Y^{\nu} (\phi^{c} - \xi^{\nu} \otimes \eta^{\nu} - \xi^{c} \otimes \eta^{c}) \nabla_{\chi^{\nu}}^{C}Y^{\nu}$$

$$= \nabla_{(\phi X)^{\nu}}^{C}Y^{\nu} - (\eta(X))^{\nu} \nabla_{\xi^{c}}^{C}Y^{\nu}$$

$$= -(\eta(X))^{\nu} (\nabla_{\xi}Y)^{\nu}$$

$$= -(\eta(X))^{\nu} (\nabla_{\xi}Y)^{\nu}$$

$$= -(\eta(X)\nabla_{\xi}Y)^{\nu},$$
ii) $\psi_{j\chi^{\nu}}Y^{c} = \nabla_{j\chi^{\nu}}^{C}Y^{c} - \tilde{J}\nabla_{\chi^{\nu}}^{C}Y^{c}$

$$= \nabla_{(\phi X)^{\nu} - (\eta(X))^{\nu} \xi^{c}}^{C}Y^{c} - (\phi^{c} - \xi^{\nu} \otimes \eta^{\nu} - \xi^{c} \otimes \eta^{c}) \nabla_{\chi^{\nu}}^{C}Y^{c}$$

$$= \nabla_{(\phi X)^{\nu}}^{C}Y^{c} - (\eta(X))^{\nu} \nabla^{c} \xi^{c}Y^{c} - \phi^{c} (\nabla_{\chi}Y)^{\nu} + (\eta^{\nu} (\nabla_{\chi}Y)^{\nu}) \xi^{\nu}$$

$$+ (\eta^{c} (\nabla_{\chi}Y)^{\nu}) \xi^{c}$$

$$= (\nabla_{\phi X}Y)^{\nu} - (\eta(X))^{\nu} (\nabla_{\xi}Y)^{c} - (\phi\nabla_{\chi}Y)^{\nu} + (\eta(\nabla_{\chi}Y))^{\nu}) \xi^{c}$$

$$= (\hat{\nabla}_{\gamma}\phi X + [\phi X, Y])^{\nu} - (\eta(X))^{\nu} (\hat{\nabla}_{\gamma}\xi + [\xi, Y])^{c} - \phi^{c} (\hat{\nabla}_{\gamma}X + X, Y])^{\nu}$$

$$+ (\eta(\hat{\nabla}_{\gamma}X + X, Y])^{\nu} \xi^{c}$$

$$= (\hat{\nabla}_{\gamma}\phi)X)^{\nu} + (\phi\hat{\nabla}_{\gamma}X)^{\nu} - (L_{\gamma}\phi)X)^{\nu} - (\phi L_{\gamma}X)^{\nu} - (\eta(X))^{\nu} (\hat{\nabla}_{\gamma}\xi)^{c}$$

$$+ (\eta(X))^{\nu} (L_{\gamma}\xi)^{c} - (\phi(\hat{\nabla}_{\gamma}X))^{\nu} + (\phi L_{\gamma}X)^{\nu} + (\eta(\hat{\nabla}_{\gamma}X))^{\nu} \xi^{c} - (\eta L_{\gamma}X)^{\nu} \xi^{c},$$

$$= ((\hat{\nabla}_{\gamma}\phi)X)^{\nu} - ((L_{\gamma}\phi)X)^{\nu} - (\eta(X))^{\nu} (\hat{\nabla}_{\gamma}\xi)^{c} + (\eta(X))^{\nu} (L_{\gamma}\xi)^{c}$$

$$\begin{split} &+(\eta(\hat{\nabla}_{Y}X))^{V}\xi^{C}-(\eta L_{Y}X)^{V}\xi^{C},\\ &\text{iii)}\ \psi_{j\chi^{c}}Y^{V} = \nabla_{j\chi^{c}}^{C}Y^{V} - \tilde{J}\nabla_{\chi^{c}}^{C}Y^{V}\\ &= \nabla_{(\varphi X)^{C}-(\eta(X))^{V}}^{C}\xi^{c}-(\eta(X))^{V}\nabla_{\xi^{c}}^{C}Y^{V} - (\varphi^{C}-\xi^{V}\otimes\eta^{V}-\xi^{C}\otimes\eta^{C})\nabla_{\chi^{c}}^{C}Y^{V}\\ &= \nabla_{(\varphi X)^{C}}^{C}Y^{V}-(\eta(X))^{V}\nabla_{\xi^{c}}^{C}Y^{V}-(\eta(X))^{C}\nabla_{\xi^{c}}^{C}Y^{V}-\varphi^{C}(\nabla_{\chi}Y)^{V}\\ &+\eta^{V}(\nabla_{\chi}Y)^{V}\xi^{V}+\eta^{C}(\nabla_{\chi}Y)^{V}\xi^{C}\\ &= (\nabla_{\varphi X}Y)^{V}-(\eta(X))^{C}(\nabla_{\xi}Y)^{V}-(\varphi\nabla_{\chi}Y)^{V}+(\eta\nabla_{\chi}Y)^{V}\xi^{C}\\ &= (\hat{\nabla}_{\gamma}\varphi)X)^{V}+[\varphi X,Y]^{V}-(\eta(X))^{C}(\hat{\nabla}_{\gamma}\xi+[\xi,Y])^{V}-(\varphi(\hat{\nabla}_{\gamma}X+[X,Y]))^{V}\\ &+(\eta(\hat{\nabla}_{\gamma}X+X,Y])^{V}\xi^{C}\\ &= (\hat{\nabla}_{\gamma}\varphi)X)^{V}+(\varphi(\hat{\nabla}_{\gamma}X))^{V}-(L_{Y}\varphi)X)^{V}-(\varphi(L_{Y}X))^{V}-(\eta(X))^{C}(\hat{\nabla}_{\gamma}\xi)^{V}\\ &+(\eta(X))^{C}(L_{\gamma}\xi)^{V}-(\varphi(\hat{\nabla}_{\gamma}X))^{V}+(\varphi(L_{\gamma}X))^{V}+(\eta(\hat{\nabla}_{\gamma}X))^{V}-(\eta L_{\gamma}X)^{V}\xi^{C}\\ &= ((\hat{\nabla}_{\gamma}\varphi)X)^{V}-(\eta L_{\gamma}X)^{V}\xi^{C},\\ \text{iv)}\ \psi_{j\chi^{c}}Y^{C}&=\nabla_{j\chi^{c}}^{C}Y^{C}-\tilde{J}\nabla_{\chi^{c}}^{C}Y^{C}\\ &=\nabla_{(\varphi X)^{C}-(\eta(X))^{C}}^{C}\xi^{c}Y^{C}-(\varphi(X))^{C}\nabla_{\xi^{c}}^{C}Y^{C}-\varphi^{C}(\nabla_{\chi}Y)^{C}\\ &=(\nabla_{\varphi X}^{C}Y)^{C}-(\eta(X))^{V}\nabla_{\xi^{c}}^{C}Y^{C}-(\eta(X))^{C}\nabla_{\xi^{c}}^{C}Y^{C}-\varphi^{C}(\nabla_{\chi}Y)^{C}\\ &+(\eta^{V}(\nabla_{\chi}Y)^{C})\xi^{V}+(\eta^{C}(\nabla_{\chi}Y)^{C})\xi^{C} \end{split}$$

$$\begin{split} &= (\nabla_{\varphi X}Y)^C - (\eta(X))^V (\nabla_{\xi}Y)^V - (\eta(X))^C (\nabla_{\xi}Y)^C - (\varphi \nabla_X Y)^C \\ &+ ((\eta(\nabla_X Y))^V) \xi^V + ((\eta(\nabla_X Y))^C) \xi^C \\ &= (\hat{\nabla}_Y \varphi X)^C + [\varphi X, Y]^C - (\eta(X))^V (\hat{\nabla}_Y \xi + [\xi, Y])^V - (\eta(X))^C (\hat{\nabla}_Y \xi + [\xi, Y])^C \\ &- (\varphi(\hat{\nabla}_Y X + [X, Y]))^C + (\eta(\hat{\nabla}_Y X + [X, Y]))^V \xi^V + (\eta(\hat{\nabla}_Y X + [X, Y]))^C \xi^C \\ &= (\hat{\nabla}_Y \varphi) X)^C + (\varphi(\hat{\nabla}_Y X))^C - (L_Y \varphi) X)^C - (\varphi(L_Y X))^C - (\eta(X)(\hat{\nabla}_Y \xi))^V \\ &+ (\eta(X)(L_Y \xi))^V - (\eta(X))^C (\hat{\nabla}_Y \xi))^C + (\eta(X))^C (L_Y \xi)^C - (\varphi(\hat{\nabla}_Y X))^C \\ &+ (\varphi(L_Y X))^C + (\eta(\hat{\nabla}_Y X))^V \xi^V - (\eta L_Y X)^V \xi^V + (\eta(\hat{\nabla}_Y X))^C \xi^C - (\eta L_Y X)^C \xi^C \\ &= ((\hat{\nabla}_Y \varphi) X)^C - ((L_Y \varphi) X)^C - (\eta(X)(\hat{\nabla}_Y \xi)^V + (\eta(X)(L_Y \xi)^V - (\eta(X))^C (\hat{\nabla}_Y \xi)^C + (\eta(X))^C (L_Y \xi)^C + (\eta(X)(L_Y \xi)^V + (\eta(X)(L_Y \xi)^C + (\eta(X))^C (L_Y \xi)^C + (\eta(X)(\hat{\nabla}_Y X))^C \xi^C - (\eta(L_Y X)^C \xi^C + (\eta(X))^C (L_Y \xi)^C + (\eta(X)(\hat{\nabla}_Y X))^C \xi^C - (\eta(L_Y X)^C \xi^C + (\eta(X))^C (L_Y \xi)^C + (\eta(X)(\hat{\nabla}_Y X))^C \xi^C - (\eta(L_Y X)^C \xi^C + (\eta(X)(\hat{\nabla}_Y X)^C + (\eta(X)(\hat{\nabla}_Y X))^C \xi^C - (\eta(L_Y X)^C \xi^C + (\eta(X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)^C \xi^C - (\eta(L_Y X)^C \xi^C + (\eta(X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)^C + (\eta(X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)^C + (\eta(X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)^C + (\eta(X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)^C + (\eta(X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)^C + (\eta(X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X)^C + (\eta(X)(\hat{\nabla}_Y X)(\hat{\nabla}_Y X$$

Corollary 2. If we put $X = \xi$, i.e. $\eta(\xi) = 1$ and ξ has the condition (2.1), then we get

i)
$$\psi_{\tilde{j}\xi^{V}}Y^{V} = -(\nabla_{\xi}Y)^{V}$$
,

ii)
$$\psi_{\tilde{\jmath}\xi^{V}}Y^{C} = ((\hat{\nabla}_{Y}\varphi)\xi)^{V} - ((L_{Y}\varphi)\xi)^{V} - (\hat{\nabla}_{Y}\xi)^{C} + (L_{Y}\xi)^{C} - ((\hat{\nabla}_{Y}\eta)\xi)^{V}\xi^{C} + ((L_{Y}\eta)\xi)^{V}\xi^{C}$$

iii)
$$\psi_{\tilde{\jmath}\xi^{C}}Y^{V} = ((\hat{\nabla}_{Y}\varphi)\xi)^{V} - ((L_{Y}\varphi)\xi)^{V} - ((\hat{\nabla}_{Y}\eta)\xi)^{V} + ((L_{Y}\eta)\xi)^{V} \xi^{C}$$
iv)
$$\psi_{\tilde{\jmath}\xi^{C}}Y^{C} = ((\hat{\nabla}_{Y}\varphi)\xi)^{C} - ((L_{Y}\varphi)\xi)^{C} - ((\hat{\nabla}_{Y}\eta)\xi)^{V} + (L_{Y}\xi)^{V} - ((\hat{\nabla}_{Y}\eta)\xi)^{V} \xi^{V}$$

$$+ ((L_{Y}\eta)\xi)^{V} \xi^{V} - ((\hat{\nabla}_{Y}\eta)\xi)^{C} \xi^{C} + ((L_{Y}\eta)\xi)^{C} \xi^{C}$$

3. REFERENCES

Blair. D.E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math, 509, Springer Verlag, New York, 1976.

Das, Lovejoy S., Fiberings on almost r-contac t manifolds, Publicationes Mathematicae, Debrecen, Hungary, 43, 161-167, 1993.

Oproui, V., Some remarkable structures and connexions, defined on the tangent bundle, Rendiconti di Matematica 3, 6 VI. 1973.

Omran, T., Sharffuddin, A. and Husain, S.I., Lift of Structures on Manifolds, Publications De 1'Institut Mathematiqe, Nouvelle serie, 360 (50), pp.93-97, 1984.

Salimov, A.A., Tensor Operators and Their applications, Nova Science Publ., New York, 2013.

Sasaki, S., On The Differantial Geometry of Tangent Boundles of Riemannian Mani- folds, Tohoku Math. J., 10, pp. 338-358, 1958.

Salimov, A.A. and Çayır, H., Some Notes On Almost Paracontact Structures, Comptes Rendus de 1' Acedemie Bulgare Des Sciences, 66(3), 331-338, 2013.

Yano, K. and Ishihara, S., Targent and Cotangent Bundles, Marcel Dekker Inc, New York, 1973.