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Abstract 

 

The objective of this paper is to compare different methods of estimating variance components, such 

as analysis of variance (ANOVA), maximum likelihood (ML), restricted maximum likelihood (REML) and 

Bayesian. The ANOVA method for estimating variance components is based on equating the mean squares 

to their expectations. However, the problem with this method is that it gives negative estimates of variance 

components. This can be overcame by the use of likelihood based methods and Bayesian. In this study, four 

different methods of estimating variance components were compared and also demonstrated how these 

methods overcome the problem of negative estimates of variance components in balanced two-way random 

nested designs. 
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DENGELİ İKİ SEVİYELİ ŞANSA BAĞLI İÇ İÇE DÜZENLENMİŞ DENEMELERDE 
VARYANS UNSURLARI TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI 

 
Özet 

 

Bu çalışmanın amacı, varyansı analizi (ANOVA), en çok olabilirlik (ML), kısıtlanmış en çok 

olabilirlik (REML) ve Bayesyen gibi farklı varyans unsurları tahmin yöntemlerini karşılaştırmaktır. 

ANOVA yöntemi kareler ortalamalarının beklenen değerlerine eşitlenmesine dayanır. Ancak bu 

yöntemin varyans unsurlarının negatif tahminlerini vermesi bir problem teşkil eder. Olabilirlik 

yöntemlerine dayanan metotlar ve Bayesyen yöntemle bu problemin üstesinden gelinebilir. Bu 

çalışmada varyans unsurlarının dört farklı yöntemle tahminleri karşılaştırılmıştır. Ayrıca dengeli iki 

seviyeli şansa bağlı iç içe düzenlenmiş deneme planlarının varyans unsurlarının negatif tahmin 

probleminin üstesinden nasıl gelineceği gösterilmiştir. 
  
Anahtar Kelimeler:  Varyans unsurları, Bayesyen analiz, REML, ML. 
 

 
 

1. INTRODUCTION 
 

An understanding of variability and the nature of measurement error is a fundamental issue for 

the researchers. Estimating variance components in experimental design is a way to assess the amount 

of variation in a dependent variable which is associated with one or more random effects variables. 

Variance components are used extensively in developing many of the basic concepts of many fields 

such as animal breeding. Sources of variation in the analysis of variance context were partitioned into 

their expected components, which were particularly useful to the researchers [1]. 

A wide array of methods has been developed for estimating variance components, for example, 

Analysis of Variance (ANOVA) and likelihood based methods, such as, Maximum Likelihood (ML) 
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and Restricted Maximum Likelihood (REML), and Bayesian methods. The ANOVA method for 

estimating variance components is based on equating the mean squares to their expectations. However, 

the problem with this method is that ANOVA estimates may lie outside the parameter space so it gives 

negative estimates of variance components. In light of this weakness, alternative methods were required 

and methods based on likelihood have become common [1,2]. The ML estimation of variance 

components does not take into account the loss of degrees of freedom caused by estimation of the fixed 

effects. This can be worrying when the model includes fixed effects with many levels. These problems 

can be overcome by the use of REML method which was first proposed by Thompson [3] and 

generalized by Patterson and Thompson [4]. REML metahod is more useful than ML method in some 

aspects. This approach allows for several random factors in the model and is based on maximizing with 

respect to the variances only the part of the likelihood function that does not depend on fixed effects. In 

contrast to ANOVA estimations, estimators which are based on likelihood functions are functions of 

every sufficient statistic and are consistent, asymptotically normal and efficient. 
 

An alternative to the methods mentioned above is the Bayesian method for estimating the variance 

components. The Bayesian framework was introduced by Thomas Bayes and Bayesian estimation was 

first used by Laplace in 1786. Estimation of variance components using Bayesian framework is found 

in Hill [5] and have been applied to animal breeding by many researchers [2,6,7,8]. The likelihood 

corresponding to the data and the prior distribution of the parameters are the components of posterior 

distribution which is required in order to carry out a Bayesian analysis. Inferences about each parameter 

are based on the corresponding marginal posterior distributions. For many models, the joint distribution 

of the dispersion parameters can be derived, but numerical integration techniques are required to obtain 

the marginal posterior distribution of functions of interest. Gibbs sampling is a numerical integration 

method introduced by Geman and Geman [9] which operates by generating samples from a sequence of 

full conditional distributions. Bayesian method allows for the formal incorporation of prior knowledge 

into the process of inference. Within the Bayesian framework, it is possible to obtain the marginal 

posterior distributions of parameters of interest using Gibbs sampling. This, in general, is not possible 

in the classical approaches. 
 

The objective of this study is to compare four different methods of estimating variance 

components ANOVA, ML, REML and Bayesian and also to demonstrate how these methods overcome 

the problem of negative estimates of variance components in balanced two-way random nested designs. 
 

2. MODEL 

In some experiments samples must be chosen in two or more steps. If we consider an experiment 

with two factors, let factor A has a levels and factor B b levels within each level of factor A. The levels 

of B are nested within levels of A and within each level of B some number n random samples are chosen. 

The model for this two-way random nested design is given as follows 

  ijkijiijk ey     nkbjai ,,2,1 ;,,2,1 ;,,2,1       (1) 

 

where ijky  is the observation k in level i of factor A and level j of factor B;   is the overall mean, i  

is the effect of level i of factor A;  ij is the effect of level j of factor B within level i of factor A and 

ijke  is the random error with  2,0~ eijk Ne  . Also, i  and  ij  are both random effects in the model 

and these parameters assumed to be normally distributed  2,0~  Ni ,  2,0~  Nj , respectively.  
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3. METHODS OF ESTIMATING VARIANCE COMPONENTS  

3.1. Analysis of Variance (ANOVA) 
 

The analysis of variance (ANOVA) estimation of the variance components consists of equating 

mean squares to their respective expected value. The resulting equations are solved for the variance 

components and the solutions are the estimators of 
2

 ,  
2

  and 
2

e . These ANOVA estimators are 

given as 

EANOVAe MS2
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 
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MSMS EAB
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
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,
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However, it is known that variance estimates may lie outside their parameter space. Negative 

variance estimation problem is the most important issue for ANOVA method [10]. 

3.2. Maximum Likelihood (ML) 
 

The conditional distribution of  ijky  given  ,  i ,   ij  and 
2

e  is  

 

          22 ,~,,, eijieijiijk Ny    

 

Similarly, the conditional distributions of  i  and   ij  are respectively, 

 

    22 ,0~   Ni  and         22 ,0~   Nij  

 

Under these assumptions of normality, the likelihood function is as follows: 
 

             
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   (3) 

 

The log-likelihood function can be obtained from the equation (3) and then is solved for its ML 

estimators by equating to zero and taking the partial derivate of  Lln  with respect to  , 

  222

enbn    ,   22

en     and 
2

e . We can demonstrate these ML solutions as follows: 
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a
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


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Table 1. ML estimators of the variance components 
 

 Conditions 
2~
e   

2~
  

2~
  

02  ,   02   EMS   

n

MSMS EAB 
 

 
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
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




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1
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
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02  ,   02   EMS  
 





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





E

ABA
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n

1
 0 
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 

abn

SSSSSS EAAB 
 0 0 

 

However, these are only the equations of ML solutions, not the ML estimators, which can be 

shown as ~ , 
2~
 ,  

2~
  and 

2~
e  because, especially, 

2

  and  
2

  can be negative which is contrast 

to the definition of variance. So, generally if 
2

  and  
2

  are non-negative, 
2~
  and  

2~
  will be 

ML estimators. The ML estimators of 
2

 ,  
2

  and 
2

e  under various conditions on 
2

  and  
2

  

are given in Table 1 (See [2,10,11] for details of derivations).  

 

3.3. Restricted Maximum Likelihood (REML) 
 

REML estimators of 
2

 ,  
2

  and 
2

e  can be obtained by maximizing that part of the 

likelihood function which is invariant to the location parameters of the model [2,11]. That is, in contrast 

to ML method, REML method is not interested in the fixed effects of the model. However, it uses fixed 

effects' degrees of freedoms. This is one of the features of REML method. In order to derive REML 

estimations, the likelihood function in (3) is separated into fixed and random effects of the model which 

is given as follows: 

           EABAeijke MSMSMSLyLyL ,,,,,,, 222222        (4) 

As REML method takes only random part of the model, likelihood function, corresponding to 

REML, is given as follows: 
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Then we can obtain REML estimators by taking the log of the likelihood function in (5) and 

equating to zero and taking the partial derivatives of  REMLLln  with respect to   222
enbn    , 

  22
en     and 

2

e , respectively. After editing of these equations, finally we obtain the REML 

estimators as follows: 
 

 

bn

MSMS ABA

REML


2

, ,  
 

bn

MSMS AAB
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
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,  and EREMLe MS2

,  

However, as in the ML estimators, these solutions are not the REML estimators due to 

requirements of non-negativity. The REML estimators of 
2ˆ
 ,  

2ˆ
  and 

2ˆ
e  under various conditions 

on 
2

  and  
2

  are given in Table 2 (See [2,10,11] for details of derivations). 

 

Table 2. REML estimators of the variance components 
 

Conditions 
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3.4. Bayesian Method 

In order to carry out Bayesian analysis, in addition to the likelihood function we need prior 

distributions for each parameter of the model. For the fixed effect, a flat prior was used, so that  f

constant, indicating no prior knowledge about this parameter. The normal distribution (N) was used as 

the prior distribution of the random effects,     22 ,0~   Nf i  and      22 ,0~   Nf ij . The 

inverse gamma (IG) distribution is assigned for the variance components,    22 ,~ iii sIGf   The forms 

of the prior distributions are 
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By multiplying likelihood function in (3) with the prior distributions of all the parameters in (6), 

the joint posterior density of parameters is obtained as: 
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To implement the Gibbs sampling algorithm, we require the full conditional posterior 

distributions of  ,  ,  , 
2
 ,  

2

  and 
2

e . The full conditional posterior distribution of any 

parameter of interest can be obtained by integrating over the remaining parameters from joint posterior 
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The Gibbs sampling algorithm generates random samples from the full conditional distributions 

of the parameters, without having to calculate the density. Gibbs sampling algorithm requires an initial 

starting point for the parameters. Then, one at a time, a value for each parameter of interest is sampled 

given the values for the other parameters and data. Once all of the parameters of interest have been 

sampled, the nuisance parameters are sampled given the parameters of interest and the observed data. 

At this point, the process is started over. The power of Gibbs sampling is that the joint distribution of 

the parameters will converge to the joint probability of the parameters given the observed data. 
 

4. NUMERICAL EXAMPLE 
 

Let's consider an experiment from animal breeding in which the levels of factor A are sires of a 

particular breed, and the levels of factor B are dams mated to those sires. The dams are a random sample 

within the sires. Milk yield was measured on offspring of those sires and dams. The offspring present 

random samples within the dams. If any relationship among the dams is ignored, then the dams bred by 

different sires are independent. Also, the offspring of different dams and sires are independent of each 

other. Therefore, in this example the first step is to choose sires, and the second step is to choose dams 

within sires. Such an experiment is typically a two-way nested design which is commonly used in 

variance estimation problems. 

Table 3. Records for milk yields (kg) 

 
  Offspring's yield 

Sire Dam Data set 1 Data set 2 Data set 3 Data set 4 
 1 4379 6560 6379 6560 6379 6560 6679 6560 
 2 5560 7733 6560 6733 6560 6733 6560 6333 

1 3 4637 5639 6637 6639 6637 6639 6637 6639 
 4 5726 5576 6726 6576 6726 6576 6826 6576 
 5 4968 4574 6968 6574 6968 6574 6968 6574 
 6 5355 7057 4355 4057 6355 7057 6355 7057 
 7 4605 4180 4605 4180 6605 6180 6605 6180 

2 8 4393 4530 4393 4530 6393 6530 6393 6530 
 9 5195 7024 4195 4024 6195 7024 6195 7024 
 10 6137 4748 4137 4748 6137 6748 6137 6748 
 11 6253 6666 6253 6666 6253 6666 6553 6666 
 12 5553 6026 6553 6026 5553 6026 6453 6726 

3 13 6268 7575 6268 6575 6268 6575 6268 6575 
 14 7112 6382 6112 6382 7112 6382 6612 6782 
 15 5840 7316 6840 6316 6840 7316 6840 6316 
 16 6246 5595 5246 5595 6246 6595 6946 6795 
 17 5400 6440 5400 5440 6400 6440 6400 6440 

4 18 7301 6615 5301 5615 7301 6615 6801 6515 
 19 5453 6592 5453 5592 6453 6592 6453 6592 
 20 7374 6693 5374 5693 7374 6693 6374 6693 

 

We consider 4 different data sets to determine variance components from such an experiment. 

For this reason, 4 sires were randomly chosen with 5 dams per sire and 2 offspring per dam. Then, the 

milk yield of offspring was recorded (305 days). This data set is shown in the first column of Table 3. 

Other data sets (data set 2, data set 3 and data set 4) were obtained by modifying the data set 1. 
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In the analysis of data sets 1 to 4, a normal distribution with means obtained from REML method 

(5932, 5707, 6582 and 6584, respectively) were used with a variance of 1000. An inverse gamma 

distribution with shape and scale parameters set to 0.001, IG(0.001,0.001), was chosen as the prior 

distribution for each of the variance components in models   222 ,, e  to reflect prior ignorance 

about the parameters. 
 

Statistical analyses for ANOVA, ML and REML estimations were obtained using PROC MIXED 

procedure, and Bayesian analysis was conducted using the PROC MCMC procedure of SAS software 

[12]. A single chain of size 500000 iterations was run. The initial 10000 iterations were discarded as a 

burn-in, and every 50th sample was recorded to reduce the auto-correlation. In total, 9800 samples were 

stored for each parameter, and means of the sample values were used as an estimate of the parameters. 
 

5. RESULTS 
 

The results from four different methods are shown in Table 4. As can be seen from this table, the 

ANOVA estimates of the parameters outside the parameter space are treated as they are and data sets 

yield ANOVA estimates of 
2

  and  
2

  ranging from -16480 to 1101634. Although the data set 1 

has positive ANOVA estimates for 
2

  and  
2

 , the data sets 2, 3 and 4 are the most difficult ones 

and badly behaved, in that the estimates of 
2

  and  
2

  are negative, rendering inferences about these 

parameters very difficult. The ANOVA estimators of 
2

  and  
2

  are unbiased yet they can be 

negative. The ML and REML estimators are obtained by deleting those negative values and substituting 

zero. Therefore, these estimators are biased upwards. 
 

The posterior means for 
2

e , 
2

  and  
2

  from the analysis of data sets 1-4 in Table 4 are 

based on 9800 Gibbs sampler. These point estimates of variance components from Bayesian analysis 

are within the permissible parameter space in contrast to the estimates obtained from ANOVA. The 

Bayesian method is feasible computationally and appears to give much more sensible answer to the 

inferential problems than ANOVA and likelihood-based estimation methods.  

 

Table 4. ANOVA, ML, REML and Bayesian estimations of variance components 

Methods 2

   
2

  
2

e  

 Data Set 1 

ANOVA 259296 97566 689557 
ML 172355 97567 689557 

REML 259297 97567 689557 

Bayesian 251784 105408 785807 

 Data Set 2 

ANOVA 1101634 -12864 54107 
ML 823985 0 42673 

REML 1100051 0 42673 

Bayesian 1672998 994 45069 

 Data Set 3 

ANOVA -10245 32510 107957 
ML 0 20501 107958 

REML 0 24392 107981 

Bayesian 3453 23362 116676 

 Data Set 4 

ANOVA -1332 -16480 68712 
ML 0 0 50339 

REML 0 0 51629 
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Bayesian 623 1050 53412 

It can be noted that the Bayesian method overestimates the variance components compared with 

the estimates of ANOVA, ML and REML. Variance components obtained by REML are only marginal 

with respect to fixed effects but conditionals to other nuisance parameters of the model. The Bayesian 

analysis allows further marginalization via Markov chain Monte Carlo methods. This approach is 

particularly interesting for models, as the present, with high number of variance components. In 

consequence, point estimates of variance components obtained in the Bayesian analysis under that priors 

presented some differences with the ML and REML estimates. 

 

6. DISCUSSIONS 

In this paper we have presented four different methods of estimating the variance components. 

Bayesian estimators depend not only on the information about the parameters contained in the data, but 

also on prior knowledge. This is one of the potential advantages of the Bayesian methods. Therefore, it 

is expected that the Bayesian method will do better than the classical procedures when the data contain 

little information about the parameters of interest. Moreover, the Bayesian method implicitly account 

for the uncertainty about the values at the parameters of interest. 

 

The computations required to implement the Bayesian method are of the same order of magnitude 

as those required for the classical methods, and therefore the Bayesian method are likely to be 

computationally feasible whenever the classical procedures are computationally feasible. 

 

One of the main differences between the Bayesian and maximum likelihood approaches is the 

way in which they deal with nuisance parameters. This is apparent from our results. The likelihood 

function is obtained by maximizing with respect to the nuisance parameters, whereas the conditional 

posterior density is obtained by a Monte Carlo numerical integration method, which is known as a Gibbs 

Sampler. In certain cases, the two operations may produce sharply contrasting results. 

 

While variance components estimations of all parameters for each method are non-negative in the 

first data set, there are negative ANOVA estimations for the other data sets. So that, when ANOVA 

estimations are negative, ML and REML estimations are zero. REML estimators are quite different from 

ML estimators because REML method eliminates deviations which are originated from ML method. 

Moreover, REML estimations of first data set are almost similar with ANOVA estimations [13]. 

 

Based on the results from our four data sets, we can conclude that the estimates of ANOVA, ML 

and REML are accurate but the posterior point estimates from the Gibbs sampling can be overestimated 

depending on the nature of the data set. The differences in the results of different estimation methods 

occurred the most in the estimation of sire and dam variances. Data sets 2, 3 and 4 give highly negative 

estimates of sire and dam variance components from ANOVA. ML and REML methods truncate these 

estimates to zero, and the posterior point estimates from the Gibbs sampler tend to be biased. This is 

due to the fact that each data set provides relatively small amount of information for sire and dam 

variances than for the error variance. 

 

Finally, we can conclude that the Bayesian method of estimation using the Gibbs sampling 

approach is suitable for estimating the variance components under balanced two-way nested design as 

compared to traditional methods, particularly for small sample data sets. 
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