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Abstract. In [14], Qi presents an open problem and many authors tried to solve this problem. They made efforts to show the 

validity of solutions on what conditions [1], [10]-[15]. 

In this work, we generalized the Qi type inequalties which are derived from [11], [12] and [14].  

Keywords: Integral inequalities 

Genelleştirilmiş Qi İntegral Eşitsizliği 

Özet. [14]’ deki makelede, Qi açık bir problem vermiş ve birçok yazar bu problemi çözmeye uğraşmıştır. Yazarlar çözümün 

varlığının hangi koşullar altında sağlandığını göstermeye çalışmıştır. Bu çalışmada, çeşitli çalışmalardan elde edilen Qi tipli 

eşitsizlikler genelleştirilmiştir. 

Anahtar Kelimeler: İntegral eşitsizlikleri 

 

1. INTRODUCTION 

Integral inequalities have been frequently employed in the theory of applied sciences, differential 

equations, and functional analysis. In the last two decades, they have been the focus of attention in [1]-

[15]. Recently, especially Qi inequality, one of the integral inequalities, has been studied by many 

authors. 

The following Qi inequality (1.1) has been obtained in [14]: Suppose that f  has continuous thn   

order derivative on  ba, , and 
   0af i

 and 
   !nxf n  ; 10  ni , then the following inequality 
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dxxfdxxf  (1.1) 

holds for  bax , . 

This inequality (1.1) posed the following open problem in [14]. 

What are the conditions of validity of the inequality 
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for 1>t ? 

On the basis of this integral inequality an open problem (1.2) has been established and the conditions 

for its validity has been investigated in [12], [11]: 

This open problem was studied by several authors and many valuable results have been established such 

as [12], [11]. 

It has been shown that the (1.2) inequality was valid when  baCf ,1 ,   0af , 

     3
2




t' axtxf  for  bax , , and 3t  in [12]. 

In [11], Ng o


 et al. gave the following inequality which is one of the open problem’s solution. 

Theorem 1 Let  0,1Cf   and   0xf  for every  0,1x . If 

    1,0,
2
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 (1.3) 

then, for every 𝑛 ∈ ℕ 

    dxxfxdxxf nn
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0
 (1.4) 

holds.  

In this paper, we will make a generalization benefiting from (1.1)-(1.4). 

Now we prove the following auxiliary result which plays a key role in proving our main results. 

Lemma 1  Let f and h  be a continuous function on [0,1] , and     0 xhxf . Also let  xh  be 

an increasing and positive monotone function on  0,1 , having a continuous derivative  xh'
 on 

 0,1 . The function h  on [0,1]  is defined by [6]. If 

    
   

 0,10,
2

1 22
1




 x
xhh

dtthtf
'

x
 (1.5) 

holds then we have following inequality for   0,=0h  
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   (1.6) 

Proof. By using hypothesis, we have 
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Let    dxxhdttfA
'

x
)(:=

11

0   . By using our assumption we have  
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Also from (1.5) and (1.8), we obtain 
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By using (1.7) and (1.9) we also get 
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which gives the conclusion.  

Lemma 2 Under the hypothesis of Lemma1, the following inequality holds 
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for all  𝑛 ∈ ℕ.  

Proof. We have 
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In (1.10) , with partial integration we have 
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By using (1.5), 
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and thus we get the result.  

Remark 1 Taking   xxh =  for 1Lemma  and 2Lemma , we get conclusions of [11].  
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2. MAIN RESULTS 

 

In this section, we will make a generelazition to [11] and [12] which is one of answer Qi’s open 

problem. 

Theorem 2 Let f and h  be a continuous function on [0,1] , and     0 xhxf . Also let  xh  be 

an increasing and positive monotone function on  0,1 , having a continuous derivative  xh'
 on  .0,1

Then the following inequality 

           ,
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 𝑛 ∈ ℕ (2.1) 

holds for   0.=0h   

Proof. From Cauchy inequality, we have 
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Multiplying both sides of inequality (2.2) by  xh
'

 and integrating with respect to x  from 0  to 1,  we 

have 
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Moreover, by using Lemma 2, we get 
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that is  
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which completes this proof.  

Theorem 3  Under the hypothesis of Lemma1. Then 
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holds for every 𝑛 ∈ ℕ. 
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Proof.  From Lemma1’s hypothesis, we can obtain     0 xhxf , thus 

          .0,10,))((  xxhxfxhxf nn
 

That is 

              .0,1,11   xxhxfxhxfxhxf nnnn
 (2.3) 

Multiplying both sides of inequality (2.3) by  xh
'

 and integrating with respect to x  from 0  to 1. With 

some simple calculation, we conclude that 
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Once again, by Lemma2, we obtain 
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which gives the conclusion.  

Remark 2 By taking   xxh =  for Theorem 2 and Theorem 3, we get conclusions of [11].  

Theorem 4  Let f  and h  satisfy the hypothesis in Lemma1 by taking  ba,  instead of interval  0,1 . 

If   baCf ,1  and   0af ,           xhahxhtxf
't' 3

2


  satisfy, then the following 

inequality holds 
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for  bax ,  and 3t . Only when ba =  or   axxf =  and 3=t the equality holds .   

Proof. Under conditions of Theorem4, f  is increasing because   0>xf
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Let us define a function 
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From (2.5) and hypothesis reduce to the following form: 
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, so with 0)(=)( 1  afaG t

 and clearly we can obtain   0xG . 

Since 0=)(aF  and         0= xGxhxfxF
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 it follows that   0xF  for all  bax , . 
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(2.4) equality holds only if   0=xF
'

 for all  bax ,  which is equivalent to 0=)(af  and 

  .0=xG
'

 From (2.7), if 3>t , this holds only for 0=)(af , where 
3tf  and f  constant on ],[ ba . 

For ab  , it is not certain for the last two conditions to hold. If 0=)(af  and 3,=t then the other 

possible condition of equility holds. In that case (2.7) implies that   1=xf
'

 on ],[ ba  so   .= axxf    

Remark 3 By taking   xxh =  for Theorem 4, we get conclusions of [12].  
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