

Shape Preserving Properties of the Generalized Baskakov Operators

Mediha ÖRKCÜ ${ }^{1, \wedge}$, Prashantkumar PATEL ${ }^{2}$, Vishnu Narayan MISHRA ${ }^{3}$

${ }^{1}$ Department of Mathematics, Faculty of Science, Gazi University, Ankara, TURKEY
${ }^{2}$ Department of Mathematics, St. Xavier's Collage, Ahmedabad-380 009 (Gujarat) INDIA
${ }^{3}$ Department of Applied Mathematics \& Humanities, S.V. National Institute of Technology, Surat-395 007
(Gujarat) INDIA

[^0]Key words: Baskakov Operators; Shape Preserving Properties; Convexity; Star-shaped.

1. INTRODUCTION

In [1] discussed the following positive linear operators on the unbounded interval $[0, \infty)$,
$V_{n}(f ; x)=\sum_{k=0}^{\infty} v_{n, k}(x) f\left(\frac{k}{n}\right), n \in \mathbb{N}, x \in[0, \infty)$,
for appropriate functions f defined on $[0, \infty)$ for which the above series is convergent and

$$
v_{n, k}(x)=\binom{n+k-1}{k} \frac{x^{k}}{(1+x)^{n+k}} .
$$

[^1]In 2011, Cardenas-Morales et al. [2] introduced a generalized Bernstein operator fixing e_{0} and e_{2}, given by
$L_{n}(f ; x)=\sum_{k=0}^{n} x^{2 k}\left(1-x^{2}\right)^{n-k} f\left(\sqrt{\frac{k}{n}}\right), f \in C[0,1], x \in[0,1]$.

$$
B_{n}^{\tau} f=B_{n}\left(f \circ \tau^{-1}\right) \circ \tau
$$

for $\tau=e_{2}$, where B_{n} is the classical Bernstein operator.

Recently, in [3], the following generalization of SzaszMirakyan operators are constructed,

This is a special case of the operator

$$
\begin{align*}
S_{n}^{\rho}(f ; x) & =\exp (-n \rho(x)) \sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{k}{n}\right) \frac{(n \rho(x))^{k}}{k!}, n \in \mathbb{N}, x \in[0, \infty), \tag{1.2}\\
& =\left(S_{n}\left(f \circ \rho^{-1}\right) \circ \rho\right)(x),
\end{align*}
$$

where ρ is a real valued function on $[0, \infty)$ satisfied following two conditions:
(1) ρ is a continuously differentiable function on $[0, \infty)$,
(2) $\rho(0)=0$ and $\inf _{x \in[0, \infty)} \rho^{\prime}(x) \geq 1$.

Throughout the manuscript, we denote the above two conditions as c_{1} and c_{2}.

Notice that if $\rho=e_{1}$, then the operators (1.2) reduces to well known Szasz-Mirakyan operators. Aral et. al. [3] gave quantitative type theorems in order to obtain the degree of weighted convergence with the help of a weighted modulus of continuity constructed using the function ρ of the operators (1.2). Very recently, some researchers have discussed approximation properties of the generalized Bernstein [4,5], Szasz-Mirakyan operators [6,7,8] and Baskakov [9,10,11].

2. CONSTRUCTION OF THE OPERATORS V_{n}^{ρ}

The studies presented in introduction motivated us to generalize the Baskakov operators (1.1) as

$$
\begin{align*}
V_{n}^{\rho}(f ; x) & =\sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left(\begin{array}{c}
k \\
- \\
n
\end{array}\right)\binom{n+k-1}{k} \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k}} \\
& =\left(V_{n}\left(f \circ \rho^{-1}\right) \circ \rho\right)(x) \tag{2.1}\\
& =\sum_{k=0}^{\infty} f\left(\rho^{-1}\left(\begin{array}{c}
k \\
n \\
n
\end{array}\right)\right) v_{\rho, n, k}(x),
\end{align*}
$$

where $n \in \mathbb{N}, x \in[0, \infty), \rho$ is a function defined as in conditions c_{1} and c_{2}. Observe that,
$V_{n}^{\rho}(f ;)=.V_{n}(f ;$.$) if \rho=e_{1}$. In fact, direct calculation gives that

$$
\begin{aligned}
& V_{n}^{\rho}\left(e_{0} ; x\right)=1 \\
& V_{n}^{\rho}\left(e_{1} ; x\right)=\rho(x) \\
& V_{n}^{\rho}\left(e_{2} ; x\right)=\rho^{2}(x)+\frac{\rho^{2}(x)+\rho(x)}{n}
\end{aligned}
$$

In this manuscript, we are dealing with the shape preserving properties of the operators (2.1). In the next section, we discuss the properties of the generalized Baskakov operators $V_{n}^{\rho}(f ;$.$) . The generalizes$ existing results of the classical Baskakov operators (2.1).

We consider the notion of convexity with respect to ρ as used in [2]. A function f is convex with respect to ρ if and only if $f \circ \rho^{-1}$ is convex in the classical sense. Further, we need following notations to discuss shape preserving properties of the operators:

Let $x_{0}, x_{1}, \ldots, x_{n}$ be distinct points in the domain of f.

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\sum_{r=0}^{n} \frac{f\left(x_{r}\right)}{\prod_{j \neq r}^{n}\left(x_{r}-x_{j}\right)}
$$

where r remains fixed and j takes all values from 0 to n, excluding r, which is same as
$f\left[x_{0}\right]=f\left(x_{0}\right) ;$
$f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, x_{2}, \ldots, x_{n}\right]-f\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}}$, for $n \geq 1$.

$$
[0, \infty) \quad \text { with } \quad|f(x)| \leq M_{f}\left(1+\rho^{2}(x)\right)
$$

Furthermore, since $C_{\rho}[0, \infty) \supset C_{B}[0, \infty)$; the space of all bounded and continuous functions on $[0, \infty)$, the series (2.1) is convergent for $f \in C_{B}[0, \infty)$.

Theorem 3.1. For every $n \in \mathbb{N}, x \in[0, \infty)$ such that $\rho(x) \neq \frac{k}{n}, k=0,1,2, \ldots$, the following identity holds:

3. SHAPE PRESERVING PROPERTIES

Throughout the theorems we consider the appropriate functions f defined on $[0, \infty)$ for which the series (2.1) is convergent. Note that, the series on the right side of (2.1) is absolutely convergent because $f \in C_{\rho}[0, \infty)$; any continuous function f on

$$
V_{n}^{\rho}(f ; x)-f(x)=\frac{\rho(x)(1+\rho(x))}{n} \sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k}{n}, \frac{k+1}{n}\right] v_{\rho, n+1, k}(x) .
$$

Proof Since $V_{n}^{\rho}(1 ; x)=1$, we get

$$
\begin{array}{rl}
V_{n}^{\rho}(f ; x)-f & f(x)=\sum_{k=0}^{\infty}\left(\left(f \circ \rho^{-1}\right)\left(\frac{k}{n}\right)-f(x)\right)\binom{n+k-1}{k} \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k}} \\
=\sum_{k=0}^{\infty}\left(\frac{k}{n}-\rho(x)\right)\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k}{n}\right]\binom{n+k-1}{k} \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k}} . \tag{3.1}
\end{array}
$$

By simple computation following identity archived,
$(k-n \rho(x)) \rho^{\prime}(x) v_{\rho, n, k}(x)=\rho(x)(1+\rho(x)) v_{\rho, n, k}^{\prime}(x)$
$v_{\rho, n, k}^{\prime}(x)=n \rho^{\prime}(x)\left(v_{\rho, n+1, k-1}(x)-v_{\rho, n+1, k}(x)\right)$
where $v_{\rho, n+1,-1}(x)=0$. Using (3.2) and (3.3) in (3.1), we get
$V_{n}^{\rho}(f ; x)-f(x)=\frac{\rho(x)(1+\rho(x))}{\rho^{\prime}(x) n} \sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k}{n}\right] v_{\rho, n, k}^{\prime}(x)$

$$
=\rho(x)(1+\rho(x)) \sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k}{n}\right]\left(v_{\rho, n+1, k-1}(x)-v_{\rho, n+1, k}(x)\right) .
$$

Since $v_{\rho, n+1,-1}(x)=0$, we write

$$
\begin{aligned}
V_{n}^{\rho}(f ; x)- & f(x)=\rho(x)(1+\rho(x))\left(\sum_{k=1}^{\infty}\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k}{n}\right] v_{\rho, n+1, k-1}(x)\right. \\
& \left.-\sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k}{n}\right] v_{\rho, n+1, k}(x)\right) \\
& =\rho(x)(1+\rho(x))\left(\sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k+1}{n}\right]-\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k}{n}\right]\right) v_{\rho, n+1, k}(x) .
\end{aligned}
$$

From the definition of the divided difference
$\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k+1}{n}\right]-\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k}{n}\right]=\frac{1}{n}\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k}{n}, \frac{k+1}{n}\right]$
and we have that
$V_{n}^{\rho}(f ; x)-f(x)=\frac{\rho(x)(1+\rho(x))}{n} \sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left[\rho(x), \frac{k}{n}, \frac{k+1}{n}\right] v_{\rho, n+1, k}(x)$.
Corollary 3.1. If f is ρ-convex on $[0, \infty)$, then
$V_{n}^{\rho}(f ; x) \geq f(x)$
for $n \geq 0$ and $x \in[0, \infty)$ such that $\rho(x) \neq \frac{k}{n},(k=0,1,2, \ldots)$.
The above corollary is an immediate consequence of Theorem 3.1.
Theorem 3.2. If f is ρ-convex on $[0, \infty)$, then

$$
\begin{aligned}
& V_{n+1}^{\rho}(f ; x)-V_{n}^{\rho}(f ; x) \\
& =-\frac{1}{n(n+1)^{2}} \sum_{k=0}^{\infty} \frac{(n+k+1)(\rho(x))^{k+1}}{(1+\rho(x))^{n+k+1}}\binom{n+k}{k}\left(f \circ \rho^{-1}\right)\left[\frac{k}{n+1}, \frac{k+1}{n+1}, \frac{k+1}{n}\right]
\end{aligned}
$$

for $n \geq 0$ and $x \in[0, \infty)$.
Proof We can write

$$
\begin{aligned}
V_{n+1}^{\rho}(f ; x)= & \sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{k}{n+1}\right)\binom{n+k}{k} \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k}} \\
& -\sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{k}{n+1}\right)\binom{n+k}{k} \frac{(\rho(x))^{k+1}}{(1+\rho(x))^{n+k+1}} \\
= & \frac{\left(f \circ \rho^{-1}\right)(0)}{(1+\rho(x))^{n}}+\sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n+1}\right)\binom{n+k+1}{k+1} \frac{(\rho(x))^{k+1}}{(1+\rho(x))^{n+k+1}} \\
& -\sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{k}{n+1}\right)\binom{n+k}{k} \frac{(\rho(x))^{k+1}}{(1+\rho(x))^{n+k+1}} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
V_{n}^{\rho}(f ; x) & =\frac{\left(f \circ \rho^{-1}\right)(0)}{(1+\rho(x))^{n}}+\sum_{k=1}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{k}{n}\right)\binom{n+k-1}{k+1} \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k}} \\
& =\frac{\left(f \circ \rho^{-1}\right)(0)}{(1+\rho(x))^{n}}+\sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n}\right)\binom{n+k}{k+1} \frac{(\rho(x))^{k+1}}{(1+\rho(x))^{n+k+1}} .
\end{aligned}
$$

Now, we obtain

$$
\begin{aligned}
& V_{n+1}^{\rho}(f ; x)-V_{n}^{\rho}(f ; x) \\
& =\sum_{k=0}^{\infty} \frac{(\rho(x))^{k+1}}{(1+\rho(x))^{n+k+1}}\left[\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n+1}\right)\binom{n+k+1}{k+1}\right. \\
& \left.\quad-\left(f \circ \rho^{-1}\right)\left(\frac{k}{n+1}\right)\binom{n+k}{k}-\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n}\right)\binom{n+k}{k+1}\right]
\end{aligned}
$$

From the equalities $\binom{n+k+1}{k+1}=\frac{n+k+1}{k+1}\binom{n+k}{k}$ and $\binom{n+k}{k+1}=\frac{n}{k+1}\binom{n+k}{k}$, we get

$$
\begin{align*}
& V_{n+1}^{\rho}(f ; x)-V_{n}^{\rho}(f ; x) \\
& =-\sum_{k=0}^{\infty} \frac{(\rho(x))^{k+1}}{(1+\rho(x))^{n+k+1}}\binom{n+k}{k}\left[\left(f \circ \rho^{-1}\right)\left(\frac{k}{n+1}\right)\right. \tag{3.4}
\end{align*}
$$

$$
\left.-\frac{n+k+1}{k+1}\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n+1}\right)+\frac{n}{k+1}\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n}\right)\right] .
$$

Using some simple calculations about divided difference, we have

$$
\begin{align*}
&\left(f \circ \rho^{-1}\right)\left[\frac{k}{n+1}, \frac{k}{n+1}, \frac{k+1}{n}\right] \\
&= \frac{\left(f \circ \rho^{-1}\right)\left[\frac{k}{n+1}, \frac{k+1}{n+1}\right]-\left(f \circ \rho^{-1}\right)\left[\frac{k}{n+1}, \frac{k+1}{n+1}\right]}{\frac{k+1}{n}-\frac{k}{n+1}} \\
&= \frac{n(n+1)}{n+k+1}\left\{\frac{\left(f \circ \rho^{-1}\right)\left[\frac{k+1}{n}\right]-\left(f \circ \rho^{-1}\right)\left[\frac{k+1}{n+1}\right]}{\frac{k+1}{n}-\frac{k+1}{n+1}}-\frac{\left(f \circ \rho^{-1}\right)\left[\frac{k+1}{n+1}\right]-\left(f \circ \rho^{-1}\right)\left[\frac{k}{n+1}\right]}{\frac{k+1}{n+1}-\frac{k}{n+1}}\right\} \\
&=\frac{n(n+1)}{n+k+1}\left\{\frac{n(n+1)\left(f \circ \rho^{-1}\right)\left[\frac{k+1}{n}\right]}{k+1}-\frac{(n+1)(n+k+1)\left(f \circ \rho^{-1}\right)\left[\frac{k+1}{n+1}\right]}{k+1}\right. \\
&\left.+(n+1)\left(f \circ \rho^{-1}\right)\left[\frac{k}{n+1}\right]\right\} \\
&= \frac{n(n+1)^{2}}{n+k+1}\left\{\frac{n}{k+1}\left(f \circ \rho^{-1}\right)\left[\frac{k+1}{n}\right]-\frac{(n+k+1)}{k+1}\left(f \circ \rho^{-1}\right)\left[\frac{k+1}{n+1}\right]\right. \\
&\left.+\left(f \circ \rho^{-1}\right)\left[\frac{k}{n+1}\right]\right\} \\
&\left(f \circ \rho^{-1}\right)\left[\frac{k}{n+1}, \frac{k}{n+1}, \frac{k+1}{n}\right]=\frac{n(n+1)^{2}}{n+k+1} \\
&\left(f\left(f \circ \rho^{-1}\right)\left(\frac{k}{n+1}\right)-\frac{(n+k+1)}{k+1}\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n+1}\right)\right) \tag{3.5}
\end{align*}
$$

Combining equations (3.4) and (3.5), we archived our results.
Corollary 3.2. If f is ρ-convex on $[0, \infty)$, then $V_{n}^{\rho}(f ; x) \geq V_{n+1}^{\rho}(f ; x)$, for all $n \geq 0$ and $x \in[0, \infty)$. If $\left(f \circ \rho^{-1}\right)$ is linear then $V_{n}^{\rho}(f ; x)=V_{n+1}^{\rho}(f ; x)$.

The following corollary is an immediate consequence of Theorem 3.2.
Now, we define the notion of star - shaped with respect to ρ. A function f is star - shaped with respect to ρ if and only if $\left(f \circ \rho^{-1}\right)$ is star - shaped in the classical sense.

Theorem 3.3. Let ρ be star-shaped. If f is $\rho-\operatorname{star}-\operatorname{shaped}$, then $V_{n}^{\rho}(f ;$.$) is star-shaped.$

Proof By taking derivative of $V_{n}^{\rho}(f ;$.$) , we get$

$$
\begin{aligned}
\frac{d V_{n}^{\rho}(f ; x)}{d x}= & \sum_{k=1}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{k}{n}\right)\binom{n+k-1}{k} k \frac{(\rho(x))^{k-1}}{(1+\rho(x))^{n+k}} \rho^{\prime}(x) \\
& -\sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{k}{n}\right)\binom{n+k-1}{k}(n+k) \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k+1}} \rho^{\prime}(x) \\
= & \sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n}\right)\binom{n+k}{k+1}(k+1) \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k+1}} \rho^{\prime}(x) \\
& -\sum_{k=0}^{\infty}\left(f \circ \rho^{-1}\right)\left(\frac{k}{n}\right)\binom{n+k-1}{k}(n+k) \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k+1}} \rho^{\prime}(x) .
\end{aligned}
$$

From the facts that $\binom{n+k}{k+1}(k+1)=\frac{(n+k)!}{(n-1)!k!}$ and $\binom{n+k-1}{k}(n+k)=\frac{(n+k)!}{(n-1)!k!}=n\binom{n+k}{k}$, we can write

$$
\begin{aligned}
& \frac{d V_{n}^{\rho}(f ; x)}{d x}-\frac{V_{n}^{\rho}(f ; x)}{d x} \\
& =n \sum_{k=0}^{\infty}\binom{n+k}{k} \rho^{\prime}(x) \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k+1}}\left(\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n}\right)-\left(f \circ \rho^{-1}\right)\left(\frac{k}{n}\right)\right) \\
& \quad-\sum_{k=1}^{\infty} \frac{\rho(x)}{x}\left(f \circ \rho^{-1}\right)\left(\frac{k}{n}\right)\binom{n+k-1}{k} \frac{(\rho(x))^{k-1}}{(1+\rho(x))^{n+k}} .
\end{aligned}
$$

Using the equality $\binom{n+k}{k+1}(k+1)=n\binom{n+k}{k}$ and since ρ is star - shaped, we obtain

$$
\begin{align*}
& \frac{d V_{n}^{\rho}(f ; x)}{d x}-\frac{V_{n}^{\rho}(f ; x)}{d x} \\
& =n \sum_{k=0}^{\infty}\binom{n+k}{k} \rho^{\prime}(x) \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k+1}}\left(\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n}\right)-\left(f \circ \rho^{-1}\right)\left(\frac{k}{n}\right)\right) \\
& -n \sum_{k=0}^{\infty} \frac{\rho(x)}{x} \frac{1}{k+1}\binom{n+k}{k} \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k+1}}\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n}\right) \tag{3.6}\\
& \geq n \sum_{k=0}^{\infty} \frac{\rho(x)}{x}\binom{n+k}{k} \frac{(\rho(x))^{k}}{(1+\rho(x))^{n+k+1}}\left(\frac{k}{k+1}\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n}\right)-\left(f \circ \rho^{-1}\right)\left(\frac{k}{n}\right)\right) .
\end{align*}
$$

Since f is $\rho-$ star - shaped, we have
$\frac{k}{k+1}\left(f \circ \rho^{-1}\right)\left(\frac{k+1}{n}\right) \geq\left(f \circ \rho^{-1}\right)\left(\frac{k}{n}\right)$,
also since $\inf _{x \in[0, \infty)} \rho^{\prime}(x) \geq 1$, we get
$\frac{\rho(x)}{x} \geq 1$.
Using inequalities (3.6) and (3.7),
the assertion of the theorem follows.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] Baskakov V. An instance of a sequence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk. SSSR (N.S.) 1957; 113 (2): 249--251.
[2] Cardenas-Morales D, Garrancho P, Raşa I. Bernstein-type operators which preserve polynomials. Computers and Mathematics with Applications. 2011; 62: 158-163.
[3] Aral A, Inoan D, Raşa I. On the generalized SzaszMirakyan operators. Results in Mathematics. 2014; 65 (3-4): 441-452.
[4] Mishra V-N, Khatri K, Mishra L-N. Statistical approximation by Kantorovich-type discrete qBeta operators. Advances in Difference Equations. 2013; 2013 (1): 345.
[5] Wang Y, Zhou Y. Shape Preserving Properties for Bernstein-Stancu operators. Journal of Mathematics. 2014; 2014: Article ID 603694, 5 pages.
[6] Örkcü M, Doğru O. q-Szász- MirakyanKantorovich type operators preserving some test functions. Applied Mathematics Letters. 2011; 24 (9): 1588-1593.
[7] Örkcü M,Approximation properties of bivariate extension of q-Szasz- Mirakjan-Kantorovich operators. Journal of Inequalities and Applications. 2013; 324.
[8] Wang H, Pu F, Wang K.Shape-Preserving and Convergence Properties for the q-Szász-Mirakjan Operators for Fixed $q \in(0,1)$.Abstract and Applied Analysis, 2014; 2014: Article ID 563613, 8 pages.
[9] Zhang C, Zhu Z. Preservation properties of the Baskakov Kantorovich operators. Computers and Mathematics with Applications. 2009; 57: 1450-1455.
[10] Aral A, Gupta V, Agarwal R-P. Applications of qCalculus in Operator Theory. Springer. New-york. 2013.
[11]Agrawal : Agrawal P-N, Karsli H, Goyal M. Szász-Baskakov type operators based on qintegers. Journal of Inequalities and Applications. 2014; 2014: 441.

[^0]: ABSTRACT
 The present paper deals with the shape preserving properties of a new Baskakov type operators. Our results are based on a ρ function such as the ρ-convexity, ρ-star-shaped, and the ρ-monotonicty. These results include the preservation properties of the classical Baskakov operators.

[^1]: ^Corresponding author, e-mail: medihaakcay@gazi.edu.tr

