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ABSTRACT 

The present paper deals with the shape preserving properties of a new Baskakov type operators. Our results are based 

on a ρ function such as the ρ-convexity, ρ-star-shaped, and the ρ-monotonicty. These results include the preservation 

properties of the classical Baskakov operators. 
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1. INTRODUCTION 

In [1] discussed the following positive linear operators 

on the unbounded interval  0, , 
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for appropriate functions f  defined on  0, for 

which the above series is convergent and 
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In 2011, Cardenas-Morales et al. [2] introduced a 

generalized Bernstein operator fixing 0e  and 2e , given 

by 
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This is a special case of the operator 

 1

n nB f B f    

for 2e  , where nB  is the classical Bernstein 

operator. 

Recently, in [3], the following generalization of Szasz-

Mirakyan operators are constructed, 

 

 

      
  

 

   

1

0

1

; exp , , 0, ,
!

,

k

n

k

n

n xk
S f x n x f n x

n k

S f x




 

 








 
     

 





             

                              (1.2) 

where   is a real valued function on  0,  satisfied following two conditions: 
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(1)  is a continuously differentiable function on 0, ,

(2) 0 0 and inf 1.
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Throughout the manuscript, we denote the above two 

conditions as 1c  and 2c . 

Notice that if 1e  , then the operators (1.2) reduces 

to well known Szasz-Mirakyan operators. Aral et. al. [3] 

gave quantitative type theorems in order to obtain the 

degree of weighted convergence with the help of a 

weighted modulus of continuity constructed using the 

function ρ of the operators (1.2). Very recently, some 

researchers have discussed approximation properties of 

the generalized Bernstein [4,5], Szasz-Mirakyan 

operators [6,7,8] and Baskakov [9,10,11]. 

2. CONSTRUCTION OF THE OPERATORS  
nV 

 

The studies presented in introduction motivated us to 

generalize the Baskakov operators (1.1) as  
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 (2.1) 

where ,n   0,x  ,   is a function defined 

as in conditions 1c  and 2c . Observe that,  

 

 

   ;. ;.n nV f V f   if 1e  . In fact, direct 

calculation gives that 
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    In this manuscript, we are dealing with the shape 

preserving properties of the operators (2.1). In the next 

section, we discuss the properties of the generalized 

Baskakov operators  ;.nV f
. The generalizes 

existing results of the classical Baskakov operators 

(2.1). 

    We consider the notion of convexity with respect to ρ 

as used in [2]. A function f is convex with respect to   

if and only if 
1f  

 is convex in the classical sense. 

Further, we need following notations to discuss shape 

preserving properties of the operators: 
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    Let 0 1, ,..., nx x x  be distinct points in the domain 

of f . 
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where r  remains fixed and j  takes all values from 0  

to n , excluding ,r  which is same as 
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3. SHAPE PRESERVING PROPERTIES 

Throughout the theorems we consider the appropriate 

functions f  defined on  0,  for which the series 

(2.1) is convergent. Note that, the series on the right 

side of (2.1) is absolutely convergent because 

 0,f C  ; any continuous function f  on 

 0,  with     21 .ff x M x   

Furthermore, since    0, 0, ;BC C     the 

space of all bounded and continuous functions on 

 0, , the series (2.1) is convergent for  

 0,Bf C  . 

Theorem 3.1. For every  , 0,n x    

such that   , 0,1,2,...,
k

x k
n

    the following 

identity holds: 
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Proof  Since   1; 1nV x  , we  get 
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.                             (3.1) 

By simple computation following identity archived, 

             , , , ,1n k n kk n x x x x x x                                                                                  (3.2) 

        , , , 1, 1 , 1, ,n k n k n kx n x x x       
                                                                                               (3.3) 

where  , 1, 1 0n x    . Using (3.2) and (3.3) in (3.1), we get 
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Since  , 1, 1 0n x    , we write 
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From the definition of the divided difference 
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Corollary 3.1. If f  is convex   on  0, , then 

   ;nV f x f x   

for 0n   and  0,x   such that    , 0,1,2,... .
k

x k
n

     

The above corollary is an immediate consequence of  Theorem 3.1. 

Theorem 3.2.  If f  is convex   on  0, , then  
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for 0n   and  0,x  . 

Proof  We can write  
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On the other hand, we have 
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Now, we obtain 
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From the  equalities 
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Using some simple calculations about divided difference, we have 
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Combining equations (3.4) and (3.5), we archived our results. 

Corollary 3.2. If  f  is convex   on  0, , then    1; ;n nV f x V f x 

 ,  for all 0n   and 

 0,x  . If  1f  
 is linear then    1; ;n nV f x V f x 

 .     

The following corollary is an immediate consequence of Theorem 3.2. 

    Now, we define the notion of star shaped  with respect to  . A function f  is star shaped  with respect 

to   if and only if  1f  
 is star shaped  in the classical sense. 

Theorem 3.3. Let   be star shaped .  If  f  is star shaped   ,  then  ;.nV f
 is  star shaped . 
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Proof   By taking derivative of   ;.nV f
, we get 
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From the facts that  
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Since f  is star shaped   , we have   

   1 11
,

1

k k k
f f

k n n
     

   
    

 

also since    0,
inf 1

x
x

 
  , we get  

 
1.

x

x


        (3.7) 

Using inequalities (3.6) and (3.7),  

the assertion of the theorem follows. 
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