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ABSTRACT 

In this paper, we first define the new notion of fuzzy uniform normal structure. Moreover, we  prove that the 

spectrum of the category of fuzzy reflexive spaces is broader than the category of the spaces which have  fuzzy 

normal structure. Also, we introduce the notions of FNST, FNSTN and we prove the  theorems of the fixed points of 
some classes of mappings on the sets from the fuzzy reflexive space, which have some of the properties FNST, 

FNSTN.  

Key Words: Fixed point,  Fuzzy norm, Fuzzy normed spaces,   Fuzzy reflexive spaces  . 

 
1. INTRODUCTION 

Baillon and Schoneberg [6] showed that the space X 

have the Browder-Kirk-Gohde (BKG) property if any 

nonexpansive self-mapping of a nonempty closed 

convex and bounded subset E of X have a fixed point in 

E. Also, Browder and Gohde, independently, showed  

that uniformly convex Banach spaces have the property 

BKG. We know for some of the mappings on fuzzy 

Banach spaces that have the fuzzy normal structure, 

there are many results about the existence of the fixed 

point. W. A. Kirk showed that a class of Banach spaces, 

namely, reflexive Banach spaces with normal structure, 

have the property BKG or every reflexive Banach space 

with asymptotic normal structure has the property BKG 

and proved that if K is a subset of reflexive Banach 

space with normal structure, the nonexpansive mapping  

 

T: K   K  has a fixed point. The existence of the 

fixed point for one class of mappings on the sets which 

have the normal structure is considered in the paper 

[17]. Now we introduce the conditions FNST and 

FNSTN for subsets on the fuzzy reflexive spaces which 

extend the fuzzy normal structure and we obtain some 

new results in fixed point theory. 

2. PRELIMINARIES 

Let η  be a fuzzy subset  on ℝ,  i.e .  a  mapping η: ℝ → 

[0 ,  1] with grade of membership η (t), for each real 

number t . 
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In this paper we consider the concept of fuzzy real 

numbers (fuzzy intervals)  in the sense of Xiao and Zhu 

which is defined below: 

 Definition 2.1.[18]  A fuzzy subset η  on  ℝ  is called a 

fuzzy  real number (fuzzy intervals) ,  whose α-level set is 

denoted by [𝜂]α,  i.e. , [𝜂]α = {𝑡 ∶  𝜂 (𝑡) ≥ α },  if it 

satisfies two axioms :  

 (𝑁1 ) There exists r' ∈ℝ such that  η (r')=1. 

  (𝑁2 )  For all  0 < α ≤ 1 ,   there exists real number  -
<𝜂α

− ≤ 𝜂α
+<+  such that [𝜂]α  is equal to the closed 

interval  [𝜂α
−,  𝜂α

+ ].  

 The set of all fuzzy real numbers (fuzzy intervals) is 

denoted by  F(ℝ). If η ∈ F (ℝ) and η (t) = 0  whenever t 

< 0 ,  then  η  is called  a non-negative fuzzy real number 

and ( )F


denotes the set of all non-negative fuzzy 

real numbers . Real number 𝜂α
− ≥ 0  for all ( )F


  

and each  α∈ (0 ,  1]. The number  0  stands for the fuzzy 

real number as : 

0̃(𝑡) = {
1, 𝑡 = 0,
0, 𝑡 ≠ 0.

 

 It is clear that  0 ( ).F


   

 Fuzzy real number  r   F (ℝ)   defined by  

r �( t ) =  {
1, 𝑡 = 𝑟,
0, 𝑡 ≠ 𝑟,

 

 

 it follows that  ℝ  can be embedded in F (ℝ), that is if  r 

∈ ( ,   ) ,  then r   F (ℝ) satisfies ( ) 0( )r t t r     

and  α-level of  r   is given by [ ] [ , ], (0,1].r r r    
 

  

 Definition 2.2.[9]  Let  δ, γ ∈ F (ℝ) and  [𝛿]α =
[ δα

−, 𝛿 α
+], [𝛾]α = [ γα

−, 𝛾 α
+], for each α ϵ (0 ,  1] .  Define a 

partial ordering by  δ ≼ γ in F (ℝ) if and only if   δα
− ≤

 γα
−  and  δα

+ ≤  γα
+,  for each  α∈ (0, 1]. The strict 

inequality in  F (ℝ)   is defined by   δ ≺ γ    if and only 

if  δα
− < γα

−    and  δα
+ < γα

+  ,  for each α  ∈ (0, 1].   

 Lemma 2.3.  Let   η ∈ F ( ℝ ) .  Then    η ≽ 0  if and only 

if ( ).F


  

 Proof. The proof follows immediately from Definition 

2.2 .  

 According to Mizumoto and Tanaka [13] ,  fuzzy 

arithmetic operations ⨁, ⊖, ⊗ and  ⊘  on  F(ℝ) × F(ℝ) 

can be defined as : 

(𝜂 ⊕  𝛿 )(𝑡) =  ˅𝑡=𝑥+𝑦 ( 𝑚𝑖𝑛  (𝜂  (𝑥), 𝛿 (𝑦))) 

                               = 𝑠𝑢𝑝𝑠∈ℝ {𝜂 (𝑠)⋀ 𝛿 (𝑡 − 𝑠) }, 𝑡 ∈ ℝ 

(𝜂 ⊖  𝛿 )(𝑡) =  ˅𝑡=𝑥−𝑦 ( 𝑚𝑖𝑛  (𝜂  (𝑥), 𝛿 (𝑦))) 

                               = 𝑠𝑢𝑝𝑠∈ℝ {𝜂 (𝑠)⋀ 𝛿 (𝑠 − 𝑡) }, 𝑡 ∈ ℝ 

(𝜂  ⊗  𝛿 )(𝑡) =  ˅𝑡=𝑥𝑦 ( 𝑚𝑖𝑛  (𝜂  (𝑥), 𝛿 (𝑦)))     

                        = 𝑠𝑢𝑝𝑠∈ℝ,𝑠≠0 {𝜂 (𝑠)⋀ 𝛿 (𝑡 / 𝑠) }, 𝑡 ∈ ℝ 

(𝜂  ⊘  𝛿 )(𝑡) =  ˅𝑡=
𝑥

𝑦

 ( 𝑚𝑖𝑛  (𝜂  (𝑥), 𝛿 (𝑦))) 

              = 𝑠𝑢𝑝𝑠∈ℝ{𝜂 (𝑠𝑡) ⋀ 𝛿 ( 𝑠)}, 𝑡 ∈ ℝ. 

which are special cases of Zadeh's extension principle . 

The additive and multiplicative identities in F (ℝ)  are  

0  and1,   respectively .   Let  ⊖ 𝜂  be defined as 0  ⊖

𝜂.  It is clear that  𝜂 ⊖  𝛿 = 𝜂 ⊕ ( ⊖  𝛿 ). 

Lemma 2.4.[15]  Let  γ, δ  be fuzzy real numbers .  Then  

 ∀α ∈ (0, 1],  [ γ ]α = [δ ]α⇔∀t  ∈ℝ, γ (t)= δ (t).  

 Definition 2.5. [9]  The absolute value | η  | of  η ∈ F 

(ℝ)  is defined by  

  | η |   ( t ) =  {
sup  (η ( t ), η ( −t )) , 𝑡 ≥ 0,
0 ,                                       𝑡 < 0.

 

Lemma 2.6.  Let  γ, δ ∈ F ( ℝ )  and  [ γ ]α= [ γα
−,  

γα
+],  [ δ ]α= [  δα

−,  δα
+]. Then for all α ∈ (0, 1], 

[ γ⊕ δ ]α= [  γα
− + δα

−,  γα
+ + δα

+] 

[ γ⊖ δ ]α= [  γα
− − δα

+,  γα
+ − δα

−] 

[ γ⊗ δ ]α= [  γα
−δα

−,  γα
+δα

+] 

[1 /γ]α= [  
1

γα
+,  

1

γα
− ],  γα

− > 0 

[ | γ | ]α= [max (0, γα
−, −γα

+ ), max  (| γα
−| , | γα

+|) ] 

Proof. Lemma 2.1 [9]. 

 Proposition 2.7. [2]  If   𝜂i,  i=1 ,  2 ,  be the fuzzy real 

numbers (fuzzy intervals)  generated by the family of 

nested bounded closed intervals  { [𝑎𝛼
𝑠 , 𝑏𝛼

𝑠 ]: 0< 𝑎 ≤  1}, 

for s =- , + and for each  α ∈ (0, 1],  𝑎α 
− ≤ 𝑎α 

+ , 𝑏α 
− ≤ 𝑏α 

+ , 
then η 1 ≼ η 2.  

From  [4]  we know that if η  is a fuzzy real number  

with  [ η ]α= [  η α
−,  η α

+ ]  and  η ∗  is the fuzzy number 

(fuzzy interval)  generated by the family of nested 

bounded closed intervals  [ η α
−, η α

+ ], α ∈ (0, 1],  

then η = η ∗.  

 A definition of fuzzy norm on a linear space was 

introduced by Felbin [7]. Bag and Samanta  

[4] ,  changed slightly this definition to define a  fuzzy 

Felbin's norm on a linear space as is given below. 

Definition 2.8. [4] Let X be a linear space over ℝ. 

Suppose  ∥ .  ∥∶ 𝑋 ⟶ 𝐹∗ is a mapping satisfying : 

 (𝑖) ∥ 𝑥 ∥= 0̃ 𝑖𝑓𝑓 𝑥 = 0, 

 (𝑖𝑖) ∥ 𝑟𝑥 ∥ =  r ∥ 𝑥 ∥ , 𝑥 ϵ𝑋, 𝑟ϵℝ, 

(𝑖𝑖𝑖)for all 𝑥, 𝑦 ∈ X, ∥ 𝑥 + 𝑦 ∥ ≼∥ 𝑥 ∥ ⊕ ∥ 𝑦 ∥, and  

(𝐴′) ∶ x ≠ 0 ⇒  ∥ 𝑥 ∥ (t) = 0, for all t≤ 0. 

Then (X ,  ∥ .  ∥ ) is called a fuzzy normed linear space 

and  ∥ .  ∥ is called a fuzzy norm on  X. 

 In the rest of this paper was use this definition of fuzzy  

norm .  We note that ∥  x ∥α 
𝑠  , 𝑠 = −, + are crisp norms 

on X where  [∥ x ∥]α = [∥ 𝑥 ∥α
− , ∥ 𝑥 ∥α

+], 0 < α ≤ 1. 
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Definition 2.9. [18] Let (X ,  ∥ .  ∥ )  be a fuzzy normed 

linear space . 

(𝑖) A sequence {𝑥𝑛 } ⊂ 𝑋 is said to converge to 

 𝑥 ∈  X (lim𝑛→∞ 𝑥n =  𝑥), if 𝑙𝑖𝑚𝑛→∞ ∥ 𝑥𝑛 − 𝑥 ∥α
− =

𝑙𝑖𝑚𝑛→∞ ∥ 𝑥𝑛 − 𝑥 ∥α
+ = 0, ∀α ∈  (0,1]. 

 (𝑖𝑖) A sequence {𝑥𝑛  } ⊂ 𝑋 is said 

Cauchy ,  if 𝑙𝑖𝑚𝑛,𝑚→∞ ∥ 𝑥𝑛 − 𝑥m ∥α
− = 𝑙𝑖𝑚𝑛,𝑚→∞ ∥ 𝑥𝑛 −

 𝑥m ∥α
+ = 0, ∀α  ∈    (0,1]. 

Definition 2.10. [18] Let (X ,  ∥ .  ∥)  be a fuzzy normed 

linear space . A subset Ω  of X is said to be complete ,  if 

every Cauchy  sequence in  Ω converges in Ω. The 

fuzzy normed space ( X ,  ∥ .  ∥ ) is said to be a fuzzy 

Banach space if it is complete . 

 Definition 2.11.[1] Let ( X ,  ∥ .  ∥ )   be a fuzzy normed 

linear space and α ∈ (0, 1]. The space  X is said to be α-

complete if it is complete w.r.t . ∥. ∥α
− where  [∥ x ∥]α =

[∥ 𝑥 ∥α
− , ∥ 𝑥 ∥α

+]. 

Remark 2.12. [1] It is easily followed that if X is α-

complete then it is also complete  w.r.t .  ∥. ∥α
+. 

Definition 2.13. Let ( X ,  ∥ .  ∥ )   be fuzzy normed linear 

space .  A  subset S of X is said to be fuzzy bounded if 

there is a fuzzy real number  η ≽ 0  such  that for 

all  𝑥 ∈ S, 

   ∥ 𝑥 ∥ ≼ η. 

Definition 2.14. [3]  Let 𝑇: 𝑋 ⟶ 𝑋 be a mapping where   

( X ,  ∥ .  ∥)   is a fuzzy normed linear space .Then  T is 

said to be fuzzy nonexpansive if for all 𝑥, 𝑦 ∈   X, 
∥ 𝑇𝑥 − 𝑇𝑦 ∥≼ ∥ 𝑥 − 𝑦 ∥.  

Proposition 2.15. [3]  Let ( X ,  ∥ .  ∥ )  be a fuzzy 

normed linear space .  A mapping 𝑇: 𝑋 ⟶ 𝑋 is fuzzy 

nonexpansive iff T is nonexpansive w.r.t .  ∥ . ∥α 
– 

 and  
∥ . ∥α

+  , for all α ∈ (0, 1]. 

 Definition 2.16. A set 𝐶 ⊂  𝑋  is said to be fuzzy 

convex if  𝜆𝐶 + (1 −  𝜆)𝐶 ⊂ 𝐶  for   0 ≤  𝜆 ≤ 1. 

 Notice that Definition 2.16   is subtly different from 

definition of fuzzy convex set in  [14] and is extention 

of it. 

Theorem 2.17. [11] Let E be a nonempty ,  weakly 

compact ,  convex subset of a Banach space and Ehas 

normal structure .  Then every nonexpansive mapping  

𝑇: 𝐸 ⟶ 𝐸  has a fixed point . 

 Remark 2.18. [5] Let  ( X ,  ∥ .  ∥ )   be a fuzzy normed 

linear space .  Then  ( X ,  ∥ .  ∥α
− ) and  ( X ,  ∥ .  ∥α

+)   are 

normed linear spaces for each α ∈ (0, 1].  We denote by  

( 𝑋α
∗−,  ∥ . ∥α

∗ − ) and by ( 𝑋α
∗+,  ∥ .  ∥α

∗ + ) the first 

conjugate space of ( X ,  ∥ .  ∥α
− ) and ( X ,  ∥ .  ∥α

+)   

respectively; also we denote by 𝑋α
∗∗−

  and  𝑋α
∗∗+

 the 

second conjugate spaces of  ( X ,  ∥ .  ∥α
− )  and  ( 

X ,  ∥ .  ∥α
+)    respectively . 

 Remark 2.19. [5]  𝜑𝑥,α
+ (𝑓) = 𝑓 (𝑥),  for all   𝑓 ∈ 𝑋α

∗− ⊂

𝑋α
∗+.  For fixed  𝑥𝜖𝑋,  we  define for each  α ∈  (0,1], a 

functional  𝜑𝑥,α
−  on  𝑋α

∗−
  by  𝜑𝑥,α

− (𝑓) = 𝑓 (𝑥),   for all  

𝑓 ∈ 𝑋α
∗−. 

 Remark 2.20. [5] For each  α  ∈    (0,1],  we define a 

mapping  𝐽α
−  ∶ 𝑋 ⟶  𝑋α

∗∗−
  by  𝐽α

−(𝑥) = 𝜑𝑥,α
− ,  for all 

 𝑥 ∈ 𝑋  then 𝐽α
−  is isomorphically isometric between the 

space  ( X ,  ∥ .  ∥α
− )   and the subspace 𝐽α

−(𝑋)    of  𝑋α
∗∗−

   

and   ∥   𝐽α
− ∥α

− =1, for all α  ∈    (0,1]. 

 Remark 2.21.  [5] For each  α  ∈    (0,1], we define a 

mapping   𝐽α
+  ∶ 𝑋 ⟶  𝑋α

∗∗+
 by  𝐽α

+(𝑥) = 𝜑𝑥,α
+ ,   for all 

𝑥 ∈ 𝑋   then 𝐽α
+  is isomorphically isometric between the 

space ( X ,  ∥ .  ∥α
+)  and the subspace 𝐽α

+(𝑋)  of  𝑋α
∗∗+

    

and   ∥   𝐽α
+ ∥α

+ =1,  for all α ∈  (0,1]. 

 Definition 2.22. [5] Let  ( X ,  ∥ .  ∥ )   be a fuzzy normed 

linear space .  X is said to be left fuzzy   reflexive if there 

exists  α1 ∈  (0,1],  such that  𝐽α
−  is onto ,  for all α ≥

α1 ,  i.e .  𝐽α
−(𝑋) = 𝑋α

∗∗−
for all  α ≥ α1. 

Definition 2.23. [5] Let  ( X ,  ∥ .  ∥ )   be a fuzzy normed 

linear space .  X is said to be right fuzzy   reflexive if 

there exists  α2 ∈  (0,1],  such that 𝐽α
+  is onto ,  for all 

α ≤  α2, i.e .  𝐽α
+(𝑋) = 𝑋α

∗∗+
for all α ≤  α2. 

Definition 2.24. [5] Let ( X ,  ∥ .  ∥ )   be a fuzzy normed 

linear space .  X is said to be fuzzy reflexive if it  is both 

left and right fuzzy reflexive , i.e. ,  there exists β1 , β2   ∈
 (0,1] such that 

 𝐽α
−(𝑋) = 𝑋α

∗∗−
   , for all  α ≥ β1 , 

 and  

 𝐽α
+(𝑋) = 𝑋α

∗∗+, for all  α ≤  β2. 

 Since  (𝑋∗∗ ,  ∥ .  ∥ )  must always be a complete fuzzy 

normed linear  space ,  no incomplete space can be fuzzy 

reflexive . However there exists fuzzy irreflexive 

complete fuzzy normed linear space. 

 

3. EXTENTION OF FUZZY NORMAL 

STRUCTURE 

Definition 3.1. Let ( X ,  ∥ .  ∥ )  be a fuzzy normed linear 

space .  X is said to   have fuzzy uniform normal structure 

if for nonempty convex closed and bounded  subset C of  

X  there exists 1N     (for  N < 1 )  such that  

 rad (C)  ⊘ diam (C)  ≼ N    

 i.e. , 

 {  inf  { sup  ∥ y-x ∥ ,  y ∈  C } ,  x  ∈ C }  ⊘  sup x , y ∈ C  ∥

 y-x∥≼ N  

 thus since   [ N ]α = [N, N],  for α ∈   (0,1],   then  

 {  inf  { sup  ∥  y − x ∥α
−  ,  y  ∈  C } ,  x  ∈  C }     

sup    x , y ∈ C  ∥  y − x ∥α
− ≤ 𝑁 

 and  

 {  inf  { sup  ∥  y − x ∥α
+  ,  y  ∈  C } ,  x  ∈  C }     

sup    x , y ∈ C  ∥  y − x ∥α
+ ≤ 𝑁. 

 Definition 3.2. Let  ( X ,  ∥ .  ∥ ) be a fuzzy normed linear 

space .  X  is said to  have fuzzy normal structure if there 

exists β1 , β2   ∈ (0,1]  such that X has fuzzy uniform 
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normal structure w.r.t . ∥ .  ∥α
−  , for all α ≥ β1 and 

w.r.t .   ∥ .  ∥α
+ for all α ≤  β2. 

 Now ,  we show that the spectrum of the category of 

fuzzy reflexive spaces is broader than the category   of 

the spaces which have fuzzy normal structure. 

 Theorem 3.3.  Let  ( X ,  ∥ .  ∥ )   be   α-complete fuzzy 

normed linear space for each α ∈   (0,1]. If  X has fuzzy 

normal structure,  then it is fuzzy reflexive . 

 Proof.  Since ( X ,  ∥ .  ∥ ) be α-complete for each   α ∈
 (0,1],  then  X  is complete w.r.t .  ∥ .  ∥α

−  and  ∥ .  ∥α
+  for 

each α ∈  (0,1]. Again X has fuzzy normal 

structure ,  thus by Definition 3.2 ,  it follows that   there 

exists β1 , β2   ∈    (0,1]  such that  X  has fuzzy uniform 

normal structure w.r.t .  ∥ .  ∥α
− for all  α ≥ β1 and 

w.r.t .   ∥ .  ∥α
+,  for all α ≤  β2. We know that if a Banach 

space has normal structure then it is reflexive . Thus X is 

reflexive w.r.t .   ∥ .  ∥α  
− for all α ≥ β1 and    ∥ .  ∥α

+  for all 

α ≤  β2 .  Hence  X  is fuzzy reflexive . 

 Definition 3.4.  Let M be a nonempty closed fuzzy 

convex and fuzzy bounded subset of a fuzzy  reflexive 

X.  Suppose S  be any closed and convex subset of  M  

with  more than one element . Let for α ∈  (0,1],  diam 

(S)=[ diam(S) α
− ,  diam(S) α

+  ]. For the set M ⊂  X, we 

say that it has the property LFNST if there is a mapping   

T:M⟶ M, so that for some  𝑥0 ∈  𝑆   there is  α1  ∈
(0,1],  such that for  α ≥ α1,  

 𝑠𝑢𝑝𝑧∈𝑆  ∥ 𝑥0 − 𝑇𝑘  𝑧 ∥α
−<  diam (S) α

−, 

 for some   𝑘 ∈  ,   𝑇𝑘(𝑆) ⊂  𝑆.     

 Definition 3.5.  Let's assume that sets M, S  satisfy 

conditions of the above definition . For the set  M ⊂ X,  

we say that it has the property  RFNST if   there is a 

mapping T:M ⟶ M, so that for some 𝑥0 ∈  𝑆 there 

is  α2 ∈  (0,1],  such that for α ≤  α2 , 

𝑠𝑢𝑝𝑧∈𝑆  ∥ 𝑥0 − 𝑇𝑘  𝑧 ∥α
+<  diam (S) α

+, 

  for some   𝑘 ∈  ,   𝑇𝑘(𝑆) ⊂  𝑆. 

 Definition 3.6.  Let's assume that sets M, S be as 

above .  For the set  M ⊂ X  we say that it has the property 

FNST  if it is both LFNST and RFNST, i.e. ,  there is a 

mapping T:M⟶ M  so that for some 𝑥0 ∈  𝑆, 

 𝑠𝑢𝑝𝑧∈𝑆  ∥ 𝑥0 − 𝑇𝑘  𝑧 ∥ ≺   diam  (𝑆), 

   for some   𝑘 ∈  ,   𝑇𝑘(𝑆) ⊂  𝑆.   

Definition 3.7. Let's assume that sets M, S be as 

above .  For the set  M ⊂ X  we say that it has the property 

LFNSTN if   there is a mapping T:M ⟶ M,  so that for 

some 𝑥0 ∈  𝑆, there is α1  ∈  (0,1],  such that for  α ≥
α1, 

 𝑠𝑢𝑝
n

  ∥ 𝑥0 − 𝑇𝑛𝑥0 ∥α
−<  diam (S) α

−, 

 and   𝑇𝑥0 ∈  𝑆. 

 Definition 3.8.  Let's assume that sets M, S be as 

above .  For the set  M ⊂ X  we say that it has the property  

RFNSTN  if   there is  a mapping  T:M  ⟶ M,   so that 

for some  𝑥0 ∈  𝑆,  there is α2  ∈  (0,1], such that 

for  α ≤  α2, 

 𝑠𝑢𝑝
n

  ∥ 𝑥0 − 𝑇𝑛𝑥0 ∥α
+<  diam (S) α

+, 

 and  𝑇𝑥0 ∈  𝑆. 

Definition 3.9. Let's assume that sets M, S be as 

above .  For the set     M ⊂ X  we say that it has the 

property  FNSTN if  it is both LFNSTN and RFNSTN, 

i.e. ,  if  there is a mapping T:M ⟶ M,  so that for some 

𝑥0 ∈  𝑆, 

𝑠𝑢𝑝
n

  ∥ 𝑥0 − 𝑇𝑛𝑥0 ∥ ≺   diam (𝑆), 

and 𝑇𝑥0 ∈  𝑆. 

4. THE NEW RESULTS 

 Definition 4.1. Let  ( X ,  ∥ .  ∥ )  be a fuzzy normed 

linear space .  The fuzzy bounded set  K ⊂  X  is said to 

be weakly compact if every open cover of K has   a 

finite subcover. 

 Let E be a reflexive fuzzy space ,  i.e. ,  right and left 

fuzzy reflexive ,. We know on reflexive fuzzy spaces,  a 

closed ,  convex and fuzzy bounded set is weakly 

compact. 

 Let us prove the existence of the fixed point for T  that 

is defined on the sets from  fuzzy reflexive space X, with  

the condition FNST or FNSTN. 

 Theorem 4.2.  Let K  be nonempty closed fuzzy convex 

and fuzzy bounded subset of the fuzzy reflexive space X  

and let K  have the property FNST, where T is one of 

the mappings which is defined in the property FNST. If 

for every closed and convex subset E ⊂ K  it  satisfy 

that T(E) ⊂ E, k    and for  set  K  which has the 

property FNST is valid that  

 ∥   𝑇𝑥 − 𝑇𝑦 ∥≼ 𝑠𝑢𝑝𝑧∈𝐸 ∥  𝑥 − 𝑇𝑘  𝑧 ∥,       ( 1 ) 

 then the mapping   T  has a fixed point . 

 Proof.  Let G be the set of all nonempty closed and 

convex subsets E of set K for which  T(E) ⊂ E. The set 

G is nonempty ,  because  K∈G.  Set inclusion defines a 

relation of ordering on G.  From the fuzzy norming and 

mapping of the space X, it follows that the space X is 

complete ,  so every chain in G, which is consists of 

nonempty closed fuzzy convex and fuzzy bounded set 

of  G, by reflexivity of X,  has nonempty intersection . 

By Zorn's Lemma there is the minimal element  S of the 

set G. 

 If S consists only of one element ,  on the basis of 

supposition that  T(S) ⊂  S,  this element is also the fixed 

point of the mapping T. 

 If S has more than one point with  the property FNST, it  

satisfy that  

𝑠𝑢𝑝𝑧∈𝑆  ∥ 𝑥0 − 𝑇𝑘  𝑧 ∥≺ 𝑑𝑖𝑎𝑚 (𝑆), 

 for certain  k    and  𝑥0 ∈  𝑆.  

 If in the inequality ( 1 ) we put that 𝑥 = 𝑥0 , we have 

that  
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  ∥   𝑇𝑥0 − 𝑇𝑦 ∥≼ 𝑠𝑢𝑝𝑧∈𝑆  ∥ 𝑥0 − 𝑇𝑘  𝑧 ∥, 

 so that all Ty, y ∈  S are in the ball with the center in 

𝑇𝑥0 and radius  𝑠𝑢𝑝𝑧∈𝑆  ∥ 𝑥0 − 𝑇𝑘  𝑧 ∥= r, i.e. , T(S) 

⊂ 𝐵(𝑇𝑥0 , 𝑟)  and that is also  𝑇𝑘(S) ⊂ 𝐵(𝑇𝑥0 , 𝑟). 

 Since T(S) ⊂  S  it implies that  𝑇𝑘(S) ⊂ S so that  𝑇𝑘(S) 

⊂ 𝐵(𝑇𝑥0 , 𝑟) ∩ 𝑆  and on the basis of minimality of  the 

set S, it satisfy 𝐵(𝑇𝑥0 , 𝑟) ∩ 𝑆 = 𝑆, so that  𝑆 ⊂
𝐵(𝑇𝑥0 , 𝑟). From the relation 𝑆 ⊂ 𝐵(𝑇𝑥0 , 𝑟)   it implies 

that  

   ∥   𝑇𝑥0 − 𝑦 ∥≼ 𝑠𝑢𝑝𝑧∈𝑆  ∥ 𝑥0 − 𝑇𝑘  𝑧 ∥ ,        (2) 

 for all 𝑦 ∈  𝑆. 

 Let us form the set  

 S′ = { 𝑣 ∈  𝑆 ∶  𝑠𝑢𝑝𝑧∈𝑆  ∥  𝑣 −  𝑧 ∥≼ 𝑠𝑢𝑝𝑧∈𝑆  ∥ 𝑥0 −
𝑇𝑘  𝑧 ∥ }. 

 On the basis of definition of the set S'  and the relation 

(2) we conclude that the set S′ is fuzzy bounded and 

closed , with regard to   𝑇𝑥0 ∈ 𝑆′, then  S′  also nonempty 

set. 

 Let us prove that for all  𝑣 ∈S', it  satisfy that   𝑇𝑣 ∈ S′. 
Since S is a nonempty , limited ,  closed and convex set 

with  more than  one element and it is a minimal element 

of the family G and is valid that   TS⊂ S, then is 

.S CoTS  

 If 𝑧 ∈  𝑆, then 𝑧  can be calculated as convex 

combination of the elements from TS, i.e . 

𝑧 = ∑ α𝑖

𝑛

𝑖=1
 𝑇𝑧 𝑖 ,   ∑ α𝑖

𝑛

𝑖=1
= 1, α𝑖 ≥ 0, 𝑧 𝑖 ∈ 𝑆. 

 Now  

∥ 𝑇𝑣 − 𝑧 ∥𝛼
−=∥ 𝑇𝑣 − ∑ 𝛼𝑖𝑇𝑧𝑖  ∥𝛼

−𝑛
𝑖=1 ≤   ∑ 𝛼𝑖 ∥𝑛

𝑖=1

𝑇 𝑣 − 𝑇𝑧𝑖  ∥𝛼
− 

≤ ∑ 𝛼𝑖

𝑛

𝑖=1
𝑠𝑢𝑝𝑧∈ 𝑆 ∥ 𝑣 − 𝑇𝑘𝑧 ∥𝛼

− 

≤ ∑ 𝛼𝑖

𝑛

𝑖=1
𝑠𝑢𝑝𝑧∈𝑆 ∥ 𝑣 − 𝑧 ∥𝛼

− 

                   ≤ 𝑠𝑢𝑝𝑧∈ 𝑆 ∥ 𝑥0 − 𝑇𝑘𝑧  ∥𝛼
− ∑ 𝛼𝑖

𝑛

𝑖=1
 

  =  𝑠𝑢𝑝𝑧∈ 𝑆 ∥ 𝑥0 − 𝑇𝑘𝑧 ∥𝛼
− , 

 

 and  

∥ 𝑇𝑣 − 𝑧 ∥𝛼
+=∥ 𝑇𝑣 − ∑ 𝛼𝑖𝑇𝑧𝑖  ∥𝛼

+𝑛
𝑖=1 ≤   ∑ 𝛼𝑖 ∥𝑛

𝑖=1

𝑇 𝑣 − 𝑇𝑧𝑖  ∥𝛼
+ 

 

≤ ∑ 𝛼𝑖

𝑛

𝑖=1
𝑠𝑢𝑝𝑧∈ 𝑆 ∥ 𝑣 − 𝑇𝑘𝑧 ∥𝛼

+ 

≤ ∑ 𝛼𝑖

𝑛

𝑖=1
𝑠𝑢𝑝𝑧∈𝑆 ∥ 𝑣 − 𝑧 ∥𝛼

+ 

                  ≤ 𝑠𝑢𝑝𝑧∈ 𝑆 ∥ 𝑥0 − 𝑇𝑘𝑧  ∥𝛼
+ ∑ 𝛼𝑖

𝑛

𝑖=1
 

  =  𝑠𝑢𝑝𝑧∈ 𝑆 ∥ 𝑥0 − 𝑇𝑘𝑧 ∥𝛼
+ , 

i.e. ,  we  have  

 ∥ Tv − z ∥ ≼  supz∈ 𝑆 ∥ x0 − Tkz ∥, 

 so that  

 TS'  ⊂ S'. 

 Let us give the sequence  { 𝛼𝑛} ⊂ S',  for all   𝑛 ∈  

and let 𝛼𝑛 ⟶ α  ∈ 𝑆 when  𝑛 ⟶ .  

Now  

𝑠𝑢𝑝z∈ 𝑆 ∥ α − 𝑧 ∥≼ 𝑠𝑢𝑝z∈ 𝑆 (∥ α − 𝛼𝑛 ∥  + ∥ 𝛼𝑛 − z ∥)  

                       = ∥ α − 𝛼𝑛 ∥ + 𝑠𝑢𝑝z∈ 𝑆 ∥ 𝛼𝑛 − z ∥ 

 ≼ ∥ α − 𝛼𝑛 ∥ +r.  

 When 𝑛 ⟶  we get that  

𝑠𝑢𝑝z∈ 𝑆 ∥ α − 𝑧 ∥≼ r, 

 then the set S' is closed. 

 Let  𝑣 and 𝑢 be two points from S'. For 𝜆 ∈ [0,1]  we 

have that  

∥ 𝜆𝑣 + (1 − 𝜆 )𝑢 − 𝑧  ∥α
−=∥ 𝜆𝑣 + (1 − 𝜆 )𝑢 −

𝜆𝑧 + 𝜆𝑧 − 𝑧  ∥α
− 

≤ 𝜆 supz∈S ∥ x0 − Tkz  ∥α
−+ (1 − 𝜆)supz∈S

∥ x0 − Tkz  ∥α
− 

= 𝑟, 

 and  

∥ 𝜆𝑣 + (1 − 𝜆 )𝑢 − 𝑧  ∥α
+=∥ 𝜆𝑣 + (1 − 𝜆 )𝑢 − 𝜆𝑧 +

𝜆𝑧 − 𝑧  ∥α
+ 

≤ 𝜆 supz∈S ∥ x0 − Tkz  ∥α
++ (1 − 𝜆)supz∈S

∥ x0 − Tkz  ∥α
+ 

= 𝑟, 

 i.e. ,  we have  ∥ 𝜆𝑣 + (1 − 𝜆 )𝑢 − 𝑧 ∥≼ r,  so the set S' is 

convex. 

 Let for α ∈   (0,1], [𝑑𝑖𝑎𝑚 (𝑆′)]α = [ 𝑑𝑖𝑎𝑚 (𝑆′)α
− ,

𝑑𝑖𝑎𝑚 (𝑆′)α
+] and similarly  for diam (S). 

For v, w∈ S' we have that  

 𝑑𝑖𝑎𝑚 (𝑆′) = 𝑠𝑢𝑝𝑣,𝑤 ∈𝑆′ ∥ 𝑣 − 𝑤 ∥≼ 𝑠𝑢𝑝𝑣∈𝑆′,𝑧∈𝑆 ∥ 𝑣 −

𝑧 ∥ 

                 ≼  𝑠𝑢𝑝𝑧 ∈ 𝑆 ∥ 𝑥0 − 𝑇𝑘𝑧 ∥ 𝑑𝑖𝑎𝑚 (𝑆).                

 Now S'  is a nonempty closed convex fuzzy bounded   

subset of  K  for which T(S') ⊂ S', S'   belongs to the   

family G and it  satisfy that S' ⊂ S and S' ≠ S, which this 

contradicts the minimality of the set S, so the set S  has 

only one point   and it is fixed point of mapping T. By 

this the proof of Theorem 4.2 is completed .                                                                

  

 Theorem 4.3. Let us introduce the mapping  T:K⟶  K 

where K is a nonempty closed convex  fuzzy bounded 

subset of the fuzzy reflexive space X  and let K have the 
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property FNTN, where T is one of the mappings that is 

defined in  the property FNSTN. 

 If for any closed and convex subset E ⊂ K with  more 

than one element it  satisfy that T(E) ⊂ E  and  

∥ 𝑇𝑥 − 𝑇𝑦 ∥≼ 𝑠𝑢𝑝
k 

∥ 𝑥 − 𝑇𝑘𝑥 ∥  ,      (3) 

  for all x, y ∈E, then the mapping T has the fixed point . 

 Proof. In the same way as in Theorem 4.2 ,  we come to 

the set S. If the set S  has one element ,  with  regard to  

TS ⊂ S,  it is also the fixed point of mapping T. 

 Let us presume that the set S has more than one 

element .  On the  basis of the property FNSTN  and the 

condition (3) for x = 𝑥0,  we get that  

∥ 𝑇𝑥0 − 𝑇𝑦 ∥≼ 𝑠𝑢𝑝
k 

∥ 𝑥0 − 𝑇𝑘𝑥0 ∥ , 

 for all y ∈  S. 

 By the similar reasoning, as in the Theorem 4.2 ,  we 

come to the relation  

∥ 𝑇𝑥0 − 𝑦 ∥≼ 𝑠𝑢𝑝
k 

∥ 𝑥0 − 𝑇𝑘𝑥0 ∥ , 

 for all   y ∈  S. 

 Let us form the set  

𝑆′′ = {𝑣 ∈ 𝑆 ∶  𝑠𝑢𝑝 𝑧 ∈  𝑆  ∥ 𝑣 − 𝑧 ∥≼ 𝑠𝑢𝑝
k 

∥ 𝑥0 − 𝑇𝑘𝑧 ∥}.  

 The set  S′′is nonempty .  If v ∈ S'' let us prove that  Tv∈ 

S''. Since the set S  is a convex combination of elements 

from T(S) for every  𝑧𝑖∈ S and k   the inequalities 

are valid . Since  

 

∥ 𝑇𝑣 − 𝑧 ∥𝛼
−=∥ 𝑇𝑣 − ∑ 𝛼𝑖   𝑇𝑧𝑖  ∥𝛼

−𝑛
𝑖=1  

≤ ∑ 𝛼𝑖 ∥
𝑛

𝑖=1
𝑇𝑣 − 𝑇𝑧𝑖 ∥𝛼

− 

≤ ∑ 𝛼𝑖

𝑛

𝑖=1
𝑠𝑢𝑝

k 
∥ 𝑣 − 𝑇𝑘𝑣 ∥𝛼

− ≤ 𝑠𝑢𝑝𝑧∈𝑆

∥ 𝑣 − 𝑧 ∥𝛼
− 

          ≤   𝑠𝑢𝑝
k 

∥ 𝑥0 − 𝑇𝑘𝑥0 ∥𝛼
−,   

 and  

   ∥ 𝑇𝑣 − 𝑧 ∥𝛼
+=∥ 𝑇𝑣 − ∑ 𝛼𝑖   𝑇𝑧𝑖  ∥𝛼

+𝑛
𝑖=1  

≤ ∑ 𝛼𝑖 ∥
𝑛

𝑖=1
𝑇𝑣 − 𝑇𝑧𝑖 ∥𝛼

+ 

≤ ∑ 𝛼𝑖

𝑛

𝑖=1
𝑠𝑢𝑝

k 
∥ 𝑣 − 𝑇𝑘𝑣 ∥𝛼

+ ≤ 𝑠𝑢𝑝𝑧∈𝑆

∥ 𝑣 − 𝑧 ∥𝛼
+ 

            ≤   𝑠𝑢𝑝
k 

∥ 𝑥0 − 𝑇𝑘𝑥0 ∥𝛼
+,             

 

 i.e. ,  we  have  

 ∥ 𝑇𝑣 − 𝑧 ∥ ≼ 𝑠𝑢𝑝
k 

∥ 𝑥0 − 𝑇𝑘𝑥0 ∥, 

 thus T(S'') ⊂  S''. 

 It is simple to prove that the set S′′is closed and convex . 

On the basis of the definition of the set S'' for all v, w 

∈S'',  we have that  

 𝑑𝑖𝑎𝑚 (𝑆′′) =  𝑠𝑢𝑝𝑣,𝑤 ∈𝑆′′ ∥ 𝑣 − 𝑤 ∥≼  𝑠𝑢𝑝𝑣∈𝑆′′,𝑧∈𝑆 ∥

𝑣 − 𝑧 ∥ 

 ≼  𝑠𝑢𝑝
k 

∥ 𝑥0 − 𝑇𝑘𝑧 ∥≺ 𝑑𝑖𝑎𝑚 (𝑆).               

 Now S′′is a nonempty closed convex fuzzy bounded 

subset of S  and it  satisfy that S'' ≠ S, which is 

impossible because of the  minimality of the set S. This 

completes the proof of Theorem 4.3 .                            

5. CONCLUSION 

One of the most important topics of fixed point theory 

is fixed point results  in fuzzy analysis,  because of that,  

we see in [15] the spectrum of the class of fuzzy 

normed  spaces is broader than the class of normed 

spaces .  By means of  introduction of the notions of 

FNST, FNSTN we prove the theorems of the fixed 

points of some classes of  mappings on the sets from the 

fuzzy reflexive space ,  which have  some of the 

properties FNST,  FNSTN. 
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