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1. Introduction

In this work we consider some classes of modules closed under certain closure

properties such as being closed under taking submodules, quotients, injective hulls

and direct sums. We use the notation L{≤}, L{�}, L{E} and L{⊕} describe as

follows. We will denote L{≤} the class of hereditary classes, L{�} the class of

module classes closed under taking quotients, L{E} the class of module classes

closed under taking injective hulls, L{⊕} the class of module classes closed under

taking direct sums. L{≤,E} will denote the class of module classes closed under

taking submodules and injective hulls. In general, if A is a set of closure properties,

we denote by LA the class of module classes closed with respect to the closure

properties in A. If A denotes a subset of {≤,�, E,⊕} we should notice that LA

becomes a big lattice ordered by class inclusion with infima given by intersections.

There are many lattices of module classes of this type which are interesting to

study for themselves. In this paper we will study lattices of module classes like

L{≤,E}, L{�,E}.

We obtain some characterizations of artinian principal ideal rings using proper-

ties of big lattices of module classes. In the sequel, R denotes an associative ring

with identity.
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2. Generation in the lattices L{≤,E}, L{�,E}, L{≤,⊕} and L{≤,�}

Definition 2.1. Let A be a set of closure properties and let C be a class of R-

modules, we denote by ξA(C ) the least class of modules containing C and being

closed under the properties in A.

We omit the easy verification of the following proposition.

Proposition 2.2. If C ⊆ R-mod, then

(1) ξ≤(C ) = {N | there exists a monomorphism N � C with C ∈ C }.
(2) ξE(C ) = C ∪ {E(C)|C ∈ C }.
(3) ξ�(C ) = {M | there exists a epimorphism N �M with N ∈ C }.
(4) ξ⊕(C ) = {M |M =

⊕
i∈I

Ci with I a set and Ci ∈ C ∀i ∈ I}.

Remark 2.3. If LP = LQ, we have ξP (C ) = ξQ(C ) for each class C of R-modules.

Proof. By definition, ξP (C ) is the least class in LP containing C , as LP = LQ,

then C ⊆ ξP (C ) and ξP (C ) ∈ LQ; thus ξQ(C ) ⊆ ξP (C ). By symmetry ξP (C ) ⊆
ξQ(C ). �

Now we describe generation in the lattices L{≤,E}, L{≤,⊕} and L{�,E}.

Proposition 2.4. If C ∈ L{E}, then ξ≤(C ) ∈ L{E}.

Proof. Let N ∈ ξ≤(C ) then there exists a monomorphism t : N � C with

C ∈ C . We obtain a commutative diagram:

N
� � //

��
t

��

E(N)

��
f

��
C �
� // E(C).

Inasmuch as N is essential in E(N) we have that f is a monomorphism, E(C) ∈ C ,

then E(N) ∈ ξ≤(C ). �

Remark 2.5. If C ⊆ R-mod, then ξ≤ξE(C ) = {M ∈ R-mod| there exists a

monomorphism M � E(C) for some C ∈ C }.

The next result is an immediate consequence of Proposition 2.4.

Proposition 2.6. If C is a class of R-modules, then ξ≤,E(C ) = ξ≤ξE(C ).
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Example 2.7. Notice that in general ξ≤ξE(C ) 6= ξEξ≤(C ). For example C =

{ZZ}, then ξ≤ξE(ZZ) = {M |there exists a monomorphism M � ZQ } and

ξEξ≤(ZZ) = {M |there exists a monomorphism M � ZZ }
⋃
{E(M)| there exists

a monomorphism M � ZZ }. Just notice that { a2n |a ∈ Z, n ∈ Q} belongs to the

class ξ≤ξE(C ) but not belongs to the second class ξEξ≤(C ).

Remark 2.8. Notice that L{≤,E} is a complete and distributive big lattice, where

infima and suprema are given by intersection and union of classes respectively.

Furthermore R-mod and {0} are the greatest and least elements of the lattice.

Remark 2.9. If C is a class of R-modules, then ξ≤ξ⊕(C ) = {M | there exists a

monomorphism M �
⊕
i∈I

Ci , with I a set, and Ci ∈ C , for each i ∈ I}.

Proposition 2.10. If C is a class of R-modules, then ξ≤,⊕(C ) = ξ≤ξ⊕(C ).

Proof. Clearly C ⊆ ξ≤ξ⊕(C ). Now we will prove that ξ≤ξ⊕(C ) is a class closed

under taking submodules and direct sums. As C clearly is a hereditary class, it

suffices to show that it is closed under taking direct sums. Let {Mi}i∈I ⊆ ξ≤ξ⊕(C )

be a family, then for every Mi there exists a family {Cij}j∈Ji of modules in C

such that there is a monomorphism Mi �
⊕
j∈Ji

Cij , thus there is a monomorphism⊕
i∈I

Mi �
⊕
i∈I
{
⊕
j∈Ji

Cij}. Hence
⊕
i∈I

Mi ∈ ξ≤ξ⊕(C ). Let D is a class of modules closed

under taking submodules and direct sums containing C . If M ∈ ξ≤ξ⊕(C ), then

there exists a monomorphism M �
⊕
i∈I

Ci with {Ci}i∈I ⊆ C . Hence {Ci}i∈I ⊆ D ,

then by hypothesis
⊕
i∈I

Ci ∈ D , thus M ∈ D . Therefore ξ≤ξ⊕(C ) ⊆ D . �

Definition 2.11. Let η = ξEξ� we define η0 = Id, ηn+1 = ηηn for all n ∈ N and

for a class of R-modules C we define η∞(C ) = ∪
n∈N

ηn(C ).

Remark 2.12. Observe that for each n ∈ N and for each class C of R-modules,

we have that ηn+1(C ) = ξ�(ηn(C )) ∪ {E(N)|N ∈ ξ�(ηn(C ))}.

Lemma 2.13. If C ⊆ R-mod, then η∞(C ) = ξ�,E(C ).

Proof. It is clear that C ⊆ η∞(C ), we will show that η∞(C ) is closed under taking

quotients and injective hulls. Let M ∈ η∞(C ) and M � N an epimorphism,

then M ∈ ηn(C ) for some n ∈ N, thus N ∈ ξ�(ηn(C )) ⊆ ηn+1(C ). Also E(M) ∈
ηn+1(C ). Therefore η∞(C ) ∈ L{�,E}.

Now we prove that η∞(C ) is the least class of the classes closed under taking

quotients and injective hulls containing C . Consider D ∈ L{�,E} such that C ⊆ D .

We prove by induction that ηn(C ) ⊆ D for all n ∈ N. For n = 0 we have η0(C ) =
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C ⊆ D . Assume ηn(C ) ⊆ D and M ∈ ηn+1(C ) = ξ�(ηn(C )) ∪ {E(N)|N ∈
ξ�(ηn(C ))}. If M ∈ ξ�(ηn(C )) then M ∈ D since D is closed under taking

quotients. If M ∈ {E(N)|N ∈ ξ�(ηn(C )) we have that M ∈ D because D is

closed under taking injective hulls and quotients. Therefore ηn+1(C ) ⊆ D and thus

η∞(C ) = ∪
n∈N

ηn(C ) ⊆ D . �

Remark 2.14. If C is a class of R-modules, then ξ≤ξ�(C ) = {M |M is a sub-

quotient of K for some K ∈ C } and ξ�ξ≤(C ) = {M |M is a quotient of a

submodule K of a module N ∈ C }.

Proposition 2.15. If C is a class of R-modules, then ξ≤ξ�(C ) = ξ�ξ≤(C ).

Proof. An immediate application of push outs and pull backs. �

3. Some relations among the lattices L{≤,E}, L{�,E} and L{≤,⊕}

Theorem 3.1. The following assertions are equivalent:

(1) L{≤,E} ⊆ L{�,E}.

(2) For each left injective R-module I, if there exists an epimorphism I � K,

then there exists a monomorphism K � I.

Proof. (1) ⇒ (2) Assume L{≤,E} ⊆ L{�,E}. If I � K is an epimorphism,

then by hypothesis ξ≤,E(I) ∈ L{�,E}, then K ∈ ξ≤,E(I). Thus there exists a

monomorphism K � I.

(2) ⇒ (1) Let us take C ∈ L{≤,E}, it suffices to prove that C is closed under

taking quotients. If M ∈ C and f : M � N is an epimorphism, consider the

following commutative diagram:

Kerf �
� // M

f // //
� _

��

N

h

��

Kerf �
� // E(M)

π // // E(M)
Kerf.

By hypothesis, there exists a monomorphism E(M)
Kerf � E(M) with E(M) ∈ C since

M ∈ C . So that E(M)
Kerf ∈ C . It remains to prove that h is a monomorphism. Let

us take x ∈ Kerh and let m ∈ M be such that f(m) = x. Then we have that

π(m) = h(f(m)) = h(x) = 0, hence m ∈ Kerf , thus 0 = f(m) = x proving that

Kerh = {0}. �

Theorem 3.2. L{�,E} ⊆ L{≤,E} if the following condition holds for each injective

left R-module I: If there exists a monomorphism K � I then there exists an

epimorphism I � K.
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Proof. Let C ∈ L{�,E}, it suffices to prove that C is closed under taking sub-

modules. Let us take M ∈ C and let N � M be a monomorphism, then there

exists an epimorphism f : E(M) � N . Then N ∈ C since C is closed under taking

quotients and injective hulls. �

Theorem 3.3. For a ring R, the following conditions are equivalent:

(1) L{≤,E} = L{�,E}.

(2) For each left injective R-module I we have:

There exists a monomorphism K � I if and only if there exists an epimor-

phism I � K.

Proof. (2)⇒ (1) It follows from Theorems 3.1 and 3.2.

(1) ⇒ (2) From Theorem 3.1 we have that, if there exists an epimorphism

I � K then there also exists a monomorphism K � I. Now if there exists a

monomorphism K � I we can change I for E(K). If L ∈ ξ�(E(K)), then there

exists an epimorphism E(K) � L. Let E(L) be the injective hull of L. As we

pointed out at the beginning then there exists a monomorphism L� E(K) which

extends to

L // //
� _

i

��

E(K)

E(L)

<<

f
<<

with f being a monomorphism. Then E(L) is isomorphic to direct summand of

E(K); therefore E(L) ∈ ξ�(E(K)). Then ξ�(E(K)) ∈ L{�,E} and ξ�(E(K))

contains E(K), thus ξ�(E(K)) = ξ�,E(E(K)). By Remark 2.3 we have that

ξ≤,E(E(K)) = ξ�,E(E(K)), now as K ∈ ξ≤,E(E(K)) we get K ∈ ξ�(E(K)). �

Theorem 3.4. If L{�,E} ⊆ L{≤}, then R is a quasi-Frobenius ring.

Proof. We will show that each projective module is injective, a condition which

is equivalent to R being quasi-Frobenius by the Faith-Walker Theorem (see [2],

[6] or [8]). Let P be a projective R-module. As ξ�,E(E(P )) ∈ L{≤} then P ∈
ξ�,E(E(P )). Let n ∈ N be least such that P ∈ ηn(E(P )). Note that if n = 0

then P ∈ η0(E(P )) = {E(P )} and therefore P is an injective R-module. If n > 0

then P ∈ ξ�(ηn−1(E(P ))) ∪ {E(N)|N ∈ ξ�(ηn−1E(P ))}. So just consider the

case P ∈ ξ�(ηn−1(E(P ))), thus there exists M1 ∈ ηn−1(E(P )) = ξ�(ηn−2E(P ))∪
{E(N)|N ∈ ξ�(ηn−2E(P ))} and an epimorphism π1 : M1 � P , if M1 is injective

then π1 splits because P is a projective R-module, thus P is an injective module.
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If M1 ∈ ξ�(ηn−2E(P )), then there exists M2 ∈ ηn−2(E(P )) = ξ�(ηn−3E(P )) ∪
{E(N)|N ∈ ξ{�}(ηn−3E(P ))} and an epimorphism π2 : M2 �M1 , thus P is a

quotient of M2. If M2 is injective module, as before we have finished. Repeating

the argument we have a finite sequence of modules M1, . . . ,Mn and epimorphisms

πi+1 : Mi+1 �Mi with Mi+1 ∈ ξ�(ηn−(i+1)(E(P ))) for i ∈ {1, . . . , n − 1} and

with Mi ∈ ηn−i(E(P )) for i ∈ {1, . . . , n}. Then we have the sequence

Mn

πn // // Mn−1

πn−1 // // . . .
π1 // // P .

Where Mn ∈ ηn−n(E(P )) = η0(E(P )) = {E(P )}, then P is a quotient of E(P ).

Therefore P is injective. �

Theorem 3.5. If L{≤,⊕} ⊆ L{E}, then R is a left V -ring and a left noetherian

ring.

Proof. Let C = {M |M is semisimple}. Clearly C is a class of R-modules closed

under taking submodules and direct sums, then C is closed under taking injective

hulls. Hence E(M) is semisimple for each M ∈ C , this implies that M is a direct

summand of its injective hull, so that M = E(M). Thus every semisimple module

is injective, therefore R is a left V -ring. We also have that
⊕
i∈N

E(Si) =
⊕
i∈N

Si is

semisimple and injective, therefore R is left noetherian. �

Proposition 3.6. If I is an indecomposable injective left R-module, then ξ≤,E(I)

is an atom in L{≤,E}.

Proof. Let 0 6= C ∈ C ⊆ ξ≤,E(I), this implies that there exists a monomorphism

C � I so that E(C) is a direct summand of I, as I is indecomposable then

I ∼= E(C); therefore C ⊇ ξ≤,E(C) = ξ≤,E(E(C)) = ξ≤,E(I). �

Theorem 3.7. Let R be a left noetherian ring. Then the following assertions are

equivalent for a class C of left R-modules:

(1) C is an atom in L{≤,E}.

(2) There exists an indecomposable injective left R-module I such that C =

ξ≤,E(I).

Proof. (2)⇒ (1) It follows from Proposition 3.6.

(1) ⇒ (2) Assume that C is an atom of L{≤,E} and let us take C ∈ C . Then

E(C) ∈ C . As R is a left noetherian ring we have that there exists a family {Iα}α∈J
of left indecomposable injective modules such that ⊕

α∈J
Iα = E(C). For α ∈ J we

have that ξ≤,E(Iα) ⊆ C , but as C is an atom then ξ≤,E(Iα) = C . �
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4. Artinian principal ideal rings

The following theorem contains some well known results about artinian principal

ideal rings (i.e. left and right artinian, left and right principal ideal rings), we

include them here for convenience.

Theorem 4.1. The following properties are equivalent:

(1) R is an artinian principal ideal ring.

(2) R is a left principal ideal ring and a quasi-Frobenius ring.

(3) The injective hull and the projective cover of each (right or left) finitely

generated R-module are isomorphic.

(4) For each left R-module M , Rsoc(M) ∼= M
JM and for each right R-module

N , soc(N)R ∼= N
NJ , where J denotes the Jacobson radical of the ring R.

(5) For each ideal I of R, R/I is quasi-Frobenius.

(6) L{≤} = L{�}.

Proof. (1) ⇔ (2) See Faith [6], (1) ⇔ (3) ⇔ (4) see Boyle [3], (1) ⇔ (5) can be

found in [7] and [2]. Finally (1) ⇔ (6) is a theorem given by Alvarado, Rincón,

Ŕıos and can be found in [1]. �

Theorem 4.2. For a ring R the following properties are equivalent:

(1) For each injective left R-module I, if there exists a monomorphism

K � I , then there exists an epimorphism I � K .

(2) R is an artinian principal ideal ring.

(3) L{≤,E} = L{�,E}.

(4) L{≤} ⊆ L{�}.

(5) L{≤} ⊇ L{�}.

Proof. (1)⇒ (2) Let us consider the inclusion R� E(R) . Then by hypothesis,

there exists an epimorphism g : E(R) � R . Since RR is a projective module,

then E(R) = Kerg ⊕ R. Therefore, R is left selfinjective. For each left ideal I of

R there exists an epimorphism f : R� I , therefore I is cyclic. Thus R is a left

principal ideal ring in particular it is left noetherian. As R is a left noetherian and

left selfinjective ring, R is a quasi-Frobenius ring. Thus condition 2) of Theorem

4.1 is fulfilled.

(2) ⇒ (1) By Theorem 4.1 we have that L{≤} = L{�} and that implies that

ξ≤(M) = ξ�(M) for each R-module M , in particular this holds for each injective

module I.

(2)⇒ (3) By Theorem 4.1 we have that L{≤} = L{�} and this implies (3).
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(3)⇒ (1) This follows from Theorem 3.3.

(5) ⇒ (2) By Theorem 3.4 and (5) we obtain that R is a quasi-Frobenius ring.

Notice that condition (5), which we are assuming, holds also for R
I -modules for each

two-sided ideal I. Thus we conclude that R
I is quasi-Frobenius for each two-sided

ideal I. Now we use Theorem 4.1.

(2) ⇒ (4) and (2) ⇒ (5) follow from the fact that (2) is equivalent to L{≤} =

L{�} by Theorem 4.1.

(4) ⇒ (2) We claim that ξ≤({F ∈ R-mod|F is free })=R-mod. Indeed, as

each R-module M is a quotient of a free left R-module F and as F ∈ ξ≤({F ∈
R-mod|F is free }) ∈ L� then M belongs to this class. Thus each R-module RM

is a submodule of a free module and this is equivalent to R being a quasi-Frobenius

ring (see [7]). Thus R is a quasi-Frobenius ring. Observe that condition (4) holds

also for R
I for each two-sided ideal I. Thus R

I is a quasi-Frobenius ring for each

two-sided ideal I. Now use Theorem 4.1. �

Recall that artinian modules are precisely the left R-modules such that all of their

quotients are finitely cogenerated. As the class of finitely cogenerated left modules

is closed under taking submodules and injective hulls, we have the following result.

Theorem 4.3. If L{≤,E} ⊆ L{�,E}, then for each R-module M the following

statements are equivalent:

(1) M is artinian.

(2) M is finitely cogenerated.

Recall that a ring R is called left co-noetherian if the injective hull of each simple

R-module is artinian [11].

Proposition 4.4. If L{≤,E} ⊆ L{�,E}, then R is a left co-noetherian ring.

Proof. If S is a simple left R-module, then S is finitely cogenerated, then also E(S)

is finitely cogenerated. By Theorem 4.3 we have that E(S) is artinian, therefore R

is co-noetherian. �

Proposition 4.5. If L{≤,E} ⊆ L{�,E}, then E(R) is a cogenerator of R-mod.

Proof. Let S a simple R-module. If 0 6= x ∈ S then Rx = S. As we have an

epimorphism R // // Rx and ξ≤,E(R) ∈ L{≤,E} ⊆ L{�,E}, then by Theorem

3.1 there exists a monomorphism Rx� E(R). Therefore E(R) contains a copy of

each simple left R-module, thus E(R) is an injective cogenerator. �

Proposition 4.6. If L{≤,E} ⊆ L{�,E}, then R is a left semiartinian ring.
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Proof. We show that each non zero R-module contains a simple submodule. If

M is a non zero R-module, then the class ξ≤(E(M)) belongs to L{≤,E}. As a

consequence, a simple quotient S of a non zero cyclic submodule of M , also embeds

in E(M). Thus, such a simple quotient S embeds in M , inasmuch as M is an

essential submodule of E(M). �

In the proof of the following Theorem we adapt an idea of [5] which also uses a

Lemma in [10]. Recall that a ring is left local when all of its simple left modules

are isomorphic.

Theorem 4.7. If R is a left local and left co-noetherian ring, then R satisfies the

ascending chain condition for two-sided ideals.

Proof. Since R is a left local ring then there exists just one simple left R-module S

up to isomorphism. Then E = E(S) is a cogenerator for R-mod. Also notice that

it is left artinian by the actual hypothesis. Let I0 = 0 ⊆ I1 ⊆ . . . be an ascending

chain of two-sided ideals of R. Taking Li = {x ∈ E|Iix = 0} we obtain a descending

chain of left submodules of E, L0 = E ⊇ L1 ⊇ L2 ⊇ . . . . As E is left artinian then

there exists i ∈ N such that Li+k = Li for all k ≥ 0. We may identify Lj with

HomR

(
R
Ij
, E
)

by letting correspond x in Lj to the homomorphism sending 1 + Ij

into x. Since

0 −→ Ij+1

Ij
−→ R

Ij
−→ R

Ij+1
−→ 0

is an exact sequence of left R-modules and as E is a left injective R-modules, we

obtain an exact sequence of abelian groups

0 −→ HomR

(
R

Ij+1
, E

)
−→ HomR

(
R

Ij
, E

)
−→ HomR

(
Ij+1

Ij
, E

)
−→ 0.

Then we get the exact sequence

0 −→ Lj+1 −→ Lj −→ HomR

(
Ij+1

Ij
, E

)
−→ 0.

In particular for j = i, we obtain HomR( Ii+1

Ii
, E) ∼= Li

Li+1
= 0. As E is an injective

cogenerator of R-mod, then Ii+1

Ii
= 0. From this we obtain Ii+k = Ii for all k ≥ 0.

Therefore R satisfies the ascending chain condition for two-sided ideals. �

In [4] Bronowitz and Teply proved that the rings for which all of its hereditary

torsion theories are cohereditary are precisely the finite products of left local right

perfect rings.
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Theorem 4.8. If L{≤,E} ⊆ L{�,E}, then R is a product of finitely many left

local right perfect rings, and R satisfies the ascending chain condition for two-sided

ideals.

Proof. The hypothesis implies that each hereditary torsion theory is cohereditary,

then by [4], R is a product of finitely many left local right perfect rings. By

Proposition 4.4, R is a left co-noetherian ring. In view of Theorem 4.7, R satisfies

the ascending chain condition for two-sided ideals. �

Remark 4.9. Recall the Loewy sequence

soc(R) �
� // soc2(R) �

� // . . . �
� // socn(R) �

� // . . .

where socn+1(R)
socn(R) = soc

(
R

socn(R)

)
. If L{≤,E} ⊂ L{�,E} then R satisfies the as-

cending chain condition on two-sided ideals by Theorem 4.8. As a consequence,

the ascending Loewy sequence for RR must stabilize with socn(R) = socn+1(R) for

some n ∈ N. Since R is left semiartinian by Proposition 4.6, every nonzero left R-

module has nonzero socle. Inasmuch as soc
(

R
socn(R)

)
= socn+1(R)

socn(R) = 0, this entails
R

socn(R) = 0, whence R = socn(R).

Recall that if R is an arbitrary ring, M an arbitrary left R-module and J = J(R),

then Jsoc(M) = 0, and more generally, Jnsocn(M) = 0. Hence if socn(R) = R,

then Jn = 0.

Theorem 4.10. If L{≤,E} ⊆ L{�,E}, then R is a finite product of left local right

and left perfect rings satisfying ascending chain condition for two-sided ideals.

Proof. By Remark 4.9 and the above observation, we have that J is a nilpotent

ideal, thus J is left and right T -nilpotent. By Bass’s Theorem [2] we have that R

is right and left perfect. The remaining assertions are proved in Theorem 4.8. �

Remark 4.11. As the referee points out, a commutative ring satisfying L{≤,E} ⊆
L{�,E} must be artinian. Indeed, the ACC on ideals means that RR must have

a finitely generated socle. Since R is left semiartinian its socle is essential and a

module with finitely generated essential socle is finitely cogenerated and thus artinian

by Theorem 4.3. We dont know if there exists a left non artinian ring satisfying

L{≤,E} ⊆ L{�,E}.

The authors thank the referee for the following example showing that the con-

verse of Theorem 4.10 fails.
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Example 4.12. Let R denote the trivial extension of Z2 by V a two dimensional

Z2-vector space. That is R =

{(
a (a, b)

0 a

)
: a, b, c ∈ Z2

}
.

Notice that R is a commutative artinian local ring and also it is a Z2-algebra with

8 elements. Notice that J(R) = soc(R) is essential in R. Let us observe that

each simple module is isomorphic to S = R
J(R) . According to [9, 3.41] E(RS) ∼=

E( R
J(R) ) = HomZ2

(R,Z2). Besides, E(RS)
S is a singular module, thus it is annihi-

lated by J(R), hence E(RS)
S is a four element semisimple module. Thus E(RS)

S
∼=

S ⊕ S. For this reason, E(RS)
S cannot embed in the uniform module E(RS). Thus

ξ≤,E(S) /∈ L{�,E}, consequently L{≤,E} 6⊆ L{�,E}. With the same argument it

can be seen that for a finite field F , the trivial extension of F by V an F -vector

space of finite dimention n, L{≤,E} ⊆ L{�,E} holds if and only if n = 1.

Acknowledgment. The authors wish to express their gratitude to the referee for

his valuable comments and suggestions, which improved substantially this work.
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