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Abstract. We define piecewise semiprime (PWSP) rings R in terms of a set

of triangulating idempotents in R. The class of PWSP rings properly contains

both the class of semiprime rings and the class of piecewise prime rings. The

PWSP property is Morita invariant and it is shared by some important ring

extensions. A ring is PWSP if and only if it has a generalized upper triangular

matrix representation with semiprime rings on the main diagonal. Another

characterization of PWSP rings involves a generalization of the concept of

m-systems and is similar to the description of a semiprime ring in terms of

the prime radical. Finally we use the PWSP property to determine (right)

weak quasi-Baer rings. These are rings in which the right annihilator of every

nilpotent ideal is generated as a right ideal by an idempotent.
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1. Introduction

All rings are associative and R denotes a ring with unity 1. The word ideal with-

out the adjective right or left means two sided ideal. A ring R is quasi-Baer (Baer)

if the right annihilator of every right ideal (nonempty subset) of R is generated as

a right ideal by an idempotent. We now recall a few definitions and results from [1]

which motivated our study and serve as the background material for the present

work. An idempotent e ∈ R is a left semicentral idempotent if exe = xe, for all

x ∈ R. Similarly right semicentral idempotent can be defined. The set of all left

(right) semicentral idempotents of R is denoted by Sl(R) (Sr(R)). An idempotent

e ∈ R is semicentral reduced if Sl(eRe) = {0, e}. If 1 is semicentral reduced,

then R is called semicentral reduced. An ordered set {e1, ..., en} of nonzero distinct

idempotents of R is called a set of left triangulating idempotents of R if all the

following hold.

(1) e1 + · · ·+ en = 1,

(2) e1 ∈ Sl(R),

(3) ek+1 ∈ Sl(ckRck), where ck = 1− (e1 + · · ·+ ek) for 1 ≤ k ≤ n.
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From part (3) of the above definition, it can be seen that a set of left triangulating

idempotents is a set of pairwise orthogonal idempotents. A set E = {e1, ..., en} of

left triangulating idempotents of R is complete, if each ei is semicentral reduced.

A (complete) set of right triangulating idempotents is defined similarly. The car-

dinalities of complete sets of left triangulating idempotents of R are the same and

is denoted by τdim(R) [1, Theorem 2.10]. According to [1, Proposition 1.3] R has

a (complete) set of left triangulating idempotents if and only if there exists an

isomorphism of rings between R and an n by n upper triangular matrix ring with

the (i, j)-entry Rij where each Rii is a (semicentral reduced) ring with identity,

and each Rij is a left Rii right Rjj bimodule for i < j. In this case, the ring R is

said to have a (complete) generalized triangular matrix representation [3]. Following

[1, p. 591], a ring R is called piecewise prime (abbreviated PWP) if there exists

a complete set of left triangulating idempotents E = {e1, ..., en} of R such that

xRy = 0 implies x = 0 or y = 0 where x ∈ eiRej , and y ∈ ejRek for 1 ≤ i, j, k ≤ n
(in this case, we say that R is PWP with respect to E). In [1, Theorem 4.11], it

is shown that if R is a PWP ring then R is PWP with respect to any complete

set of left triangulating idempotents of R; furthermore if τdim(R) = n, then R is

a PWP ring if and only if it is a quasi-Baer ring. The factor ring of a quasi-Baer

ring by its prime radical is considered in [3]. For a comprehensive study of these

concepts and results the reader is referred to [1-5]. It should be mentioned that

in [7], modules whose endomorphism rings are of finite triangulating dimension are

thoroughly investigated and the triangulating dimension is generalized from rings

to modules.

In this paper, we define (in Section 2 to follow) piecewise semiprime (abbreviated

PWSP) rings with respect to sets of left triangulating idempotents. We show that

if R is PWSP with respect to a set of left triangulating idempotents of R, then

it is PWSP with respect to any complete set of left triangulating idempotents of

R. We prove that R is PWSP if and only if R has a generalized triangular matrix

representation with semiprime rings on the main diagonal. The PWSP property is

Morita invariant and it is shared between a ring and some of the more important

extensions of that ring. Another characterization of PWSP rings is given using the

concept of generalized m-systems with respect to sets of triangulating idempotents.

Accordingly, a ring R is PWSP with respect to a set of triangulating idempotents

E if and only if for every e ∈ E, eNe = 0 where N is the prime radical of R. In

the final section of this paper the concept of weak quasi Baer ring is defined and

investigated in terms of PWSP property. Throughout the paper, we shall only deal

with rings of finite triangulating dimension in all results.
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2. Piecewise Semiprime Rings

In this section, we define a piecewise semiprime (ideal) ring and show that this

property is shared between a ring and some of the more important extensions of

that ring. Also, piecewise semiprime endomorphism rings are investigated. We

begin with the following definitions.

Definition 2.1. Let I be a proper ideal of a ring R.

(1) The ideal I is called piecewise prime (PWP ideal) if there is a complete

set of left triangulating idempotents E = {e1, · · · , en} such that xRy ⊆ I

implies x ∈ I or y ∈ I, where x ∈ eiRej , and y ∈ ejRek for 1 ≤ i, j, k ≤ n.

(2) If E = {e1, · · · , en} is a set of left triangulating idempotents then the ideal

I is called a piecewise semiprime (PWSP) ideal with respect to E if for

any x ∈ R and i = 1, · · · , n,

eixeiReixei ⊆ I ⇒ eixei ∈ I

The ring R is piecewise semiprime with respect to E if 0 is a PWSP ideal

with respect to E. Also an ideal J of a ring R is said to be PWSP if there

exists a set of left triangulating idempotents E of R such that J is PWSP

with respect to E. The ring R is then called PWSP if 0 is a PWSP ideal

of R.

Remarks 2.2. If E = {e1, ..., en} is a set of left triangulating idempotents of a

ring R, then I is a PWSP ideal of R with respect to E if and only if R/I is a

PWSP ring with respect to {e1 + I, ..., en + I}. Any semiprime ring is PWSP with

respect to any set of left triangulating idempotents. If R is PWSP with respect to

the set of left triangulating idempotent {1R}, then it is semiprime. In general if R

is a PWSP ring with respect to a set of left triangulating idempotents then R is not

necessarily semiprime. The following non reversible implications hold for rings; see

Examples and Remarks 2.12.

prime ⇒ semiprime

⇓ ⇓
piecewise prime ⇒ piecewise semiprime

Theorem 2.3. Let E = {e1, ..., en} be a set of left triangulating idempotents of

a ring R and I an ideal of R. If I is a PWSP ideal with respect to E, then it is

PWSP with respect to any complete set of left triangulating idempotents.

Proof. Let F = {f1, ..., fm} be a complete set of left triangulating idempotents ofR

and fixfiRfixfi ⊆ I for some fi ∈ F and x ∈ R. Let d be the smallest in {1, ..., n}
such that fied 6= 0. Since fixfiRfixfi ⊆ I, ed(fixfi)edRed(fixfi)ed ⊆ I which
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implies that edfixfied ∈ I and then fiedfixfiedfi ∈ I. If cd = e1 + ... + ed, then

ficd = fied 6= 0. Since cd ∈ Sl(R) by [1, Proposition 1.6], we have ficd = ficdficd.

Thus ficdfi = fiedfi 6= 0. By [1, Lemma 1.4(ii)], ficdfi ∈ Sl(fiRfi). Since fi

is a semicentral reduced idempotent, fiedfi = ficdfi = fi. Hence fixfi ∈ I as

desired. �

Corollary 2.4. Let E = {e1, ..., en} be a set of left triangulating idempotents of R.

If R is PWSP with respect to E, then it is PWSP with respect to any complete set

of left (right) triangulating idempotents of R.

Proof. This is evident by Theorem 2.3. �

Proposition 2.5. Let R be a PWSP ring with respect to a set of left triangulating

idempotents E = {e1, ..., en}. Then R is semiprime if and only if E ⊆ Sl(R).

Proof. If R is semiprime then each semicentral left idempotent is central. Since for

each 1 ≤ i ≤ n, ci = e1 + ...+ ei ∈ Sl(R) by [1, Proposition 1.6], we deduce that for

each 1 ≤ i ≤ n, ci is central. This implies that for each 1 ≤ i ≤ n, ei is central. In

particular E ⊆ Sl(R). Conversely if E ⊆ Sl(R), then R = ⊕n
i=1Rei = ⊕n

i=1eiRei.

Since each eiRei is semiprime by definition, we deduce that R is a semiprime

ring. �

Proposition 2.6. Let E = {e1, ..., en} be a set of left triangulating idempotents

and I be an ideal of R. Then the following are equivalent.

(1) I is a PWSP ideal with respect to E.

(2) If J is any ideal of R such that JeiJ ⊆ I for some ei ∈ E, then eiJei ⊆ I.

(3) If J is any right ideal of R such that JeiJ ⊆ I for some ei ∈ E, then

eiJei ⊆ I.

(4) If J is any left ideal of R such that JeiJ ⊆ I for some ei ∈ E, then

eiJei ⊆ I.

(5) If (a) is any principal right (left) ideal of R such that (a)ei(a) ⊆ I for some

ei ∈ E, then eiaei ⊆ I.

Proof. (1) ⇒ (2) Let x ∈ J . Since eixeiReixei ⊆ JeiJ ⊆ I, eixei ∈ I. Hence

eiJei ⊆ I.

(2) ⇒ (1) Assume eixeiReixei ⊆ I for some x ∈ R and ei ∈ E. Thus

(ReixeiR)ei(ReixeiR) ⊆ I which implies that eixei ∈ I.

(2) ⇒ (3) If JeiJ ⊆ I for some ei ∈ E and a right ideal J , then (ReiJ) is an ideal

and (ReiJ)ei(ReiJ) ⊆ I which implies eiJei ⊆ I.

(3)⇒(1) Assume eixeiReixei ⊆ I for some x ∈ R and ei ∈ E. Then

(eixeiR)ei(eixeiR) ⊆ I which implies that eixei ∈ I.

(1) ⇔ (4) The proof is similar to the proof of (1) ⇔ (3).

(2) ⇔ (5) It is routine. �
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Proposition 2.7. Let R ⊆ S be rings, RS be free with a multiplicatively closed

basis set X such that rx = xr for all x ∈ X and r ∈ R. If E = {e1, ..., en} is a set

of left triangulating idempotents of R, then

(1) E is a set of left triangulating idempotents of S.

(2) R is PWSP with respect to E if and only if S is PWSP with respect to E.

Proof. By hypothesis aRb = 0 if and only if aSb = 0 where a, b ∈ R. This proves

(1). Also, if (eisei)S(eisei) = 0 for some ei ∈ E, s ∈ S and s =
∑m

j=1 rjxj with

x1, ..., xm ∈ X, then since X is a multiplicatively closed set, we can deduce that

(eirjei)R(eirjei) = 0 for each j = 1, ...,m, the proof is complete. �

Suppose that R is a ring. The n by n matrix ring on R will be denoted by

Mn(R). Let X be a non empty set of not necessarily commuting indeterminates

on R and x, y ∈ X. By R[[x]] and R < X > we mean the ring of formal power

series in x and the free R-ring generated by X, respectively. Also if xy = yx and I

= the ideal generated by xy − 1 in R[x, y], then the ring R[x, y]/I, as usual, we be

denoted by R[x, x−1]; see [8, 1.2, p. 6] for an excellent reference for these rings.

Proposition 2.8. Let E = {e1, ..., en} be a set of left triangulating idempotents

of R, x ∈ X be a non empty set of not necessarily commuting indeterminates on

R, and Im be an identity matrix of size m. Then the following statements are

equivalent.

(i) R is PWSP with respect to E.

(ii) Mm(R) is PWSP with respect to E = {eiIm}ni=1.

(iii) R < X > is PWSP with respect to E.

(iv) R[[x]] is PWSP with respect to E.

(v) R[x, x−1] is PWSP with respect to E.

Proof. (i)⇔ (ii). Let ēi = eiIm for each i. If J is an ideal of R, then it is seen that

Mm(J)ēiMm(J) = Mm(JeiJ) and ēiMm(J)ēi = Mm(eiJei). Thus the equivalence

(i) ⇔ (ii) is true by Proposition 2.6 and the fact that any ideal of Mm(R) has the

form Mm(J) for some ideal J of R. The proof is now completed by Proposition

2.7. �

Lemma 2.9. Let T =

(
R M

0 S

)
, where R and S are two rings and RMS is a

nonzero bimodule. If {

(
ei mi

0 fi

)
}ni=1 is a set of left triangulating idempotents

of T , then E0 = {e1, ..., en} \ {0}, and F0 = {f1, ..., fn} \ {0} are sets of left

triangulating idempotents of R and S respectively.
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Proof. It is easy to see that for each 1 ≤ i ≤ n, ei and fi are idempotents with∑
ei = 1R and

∑
fi = 1S . Thus [1, Lemma 1.2], implies that E0 and F0 are sets

of left triangulating idempotents of R and S respectively. �

Proposition 2.10. Let T be a formal triangular matrix ring as in 2.9. Then T is

PWSP if and only if R and S are PWSP.

Proof. Let R and S be PWSP with respect to the sets of left triangulating idem-

potents E = {e1, ..., en} and F = {f1, ..., fm} respectively. Then T is PWSP with

respect to {

(
e1 0

0 0

)
, ...,

(
en 0

0 0

)
,

(
0 0

0 f1

)
, ...,

(
0 0

0 fm

)
}.

Conversely if T is PWSP with respect to {

(
ei mi

0 fi

)
}ni=1, then R, and S are

PWSP with respect to E0 and F0 as in 2.9. To see this let eixeiReixei = 0 where

ei ∈ E0, and x ∈ R. Since eixeiReixei = 0, If(
ei mi

0 fi

)(
xei 0

0 0

)(
ei mi

0 fi

)
=

(
eixei eixeimi

0 0

)
= t

then tT t = 0. This implies t = 0. Hence eixei = 0. A similar argument implies

that S is PWSP with respect to F0. �

Corollary 2.11. Let R = ⊕n
i=1Ri be a ring decomposition. Then R is PWSP

(PWP) if and only if each Ri is PWSP (PWP).

Proof. For the PWSP case use induction and Proposition 2.10. The PWP case

has a routine argument. �

Examples and Remarks 2.12. (1) If R1 and R2 are PWP rings, then by Corol-

lary 2.11, R1 ⊕R2 is a PWP ring but not a prime ring.

(2) If R =

(
A M

0 B

)
with a nonzero bimodule AMB, then R is never a semiprime

ring but it is a PWSP ring provided that A, B are so (Proposition 2.10). Also

if A is a prime ring, X is a non-trivial ideal of A and R =

(
A A/X

0 A

)
,

then R is PWSP with respect to the complete set of left triangulating idempotents

{

(
1 0

0 0

)
,

(
0 0

0 1

)
}. But the right annihilator of

(
0 A/X

0 0

)
is

(
A A/X

0 X

)
which is not a direct summand of R. This shows that R is not quasi-Baer. Hence

by [1, Theorem 4.11], R is not PWP.

(3) A subring of a PWSP ring need not be PWSP. To see this let R be a PWSP

ring with respect to a set of left triangulating idempotents E = {e1, ..., en}. Then
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S = {

(
r a

0 r

)
| r, a ∈ R} is a subring of T =

(
R R

0 R

)
. Now T is PWSP but

S is not. For if E∗ = {

(
ei ri

0 ei

)
|ei ∈ E, ri ∈ R, i = 1, ..., n} is a set of left trian-

gulating idempotents of S, then

(
ei ri

0 ei

)(
0 1

0 0

)(
ei ri

0 ei

)
=

(
0 ei

0 0

)
,

and so it can be seen that

(
0 ei

0 0

)
S

(
0 ei

0 0

)
= 0.

(4) Part (2) above shows that if R is PWSP with respect to a set of left trian-

gulating idempotents E = {e1, ..., en}, then R need not be PWSP with respect to

another set of left triangulating idempotents E′ of R say E′ = {1R}.

(5) If R is a PWSP ring and α is a ring endomorphism of R, then the skew

polynomial ring S = R[x, α] of R need not be PWSP. Note that by definition, S

is a ring extension of R such that RS is free with a basis of the form 1, x, x2....

and xr = α(r)x for all r ∈ R. Now consider S = R[x, α], where R = k[y] for

some field k and α : R → R is the evaluation map at zero. If S were PWSP for a

set of left triangulating idempotents then by Corollary 2.4, it would be PWSP with

respect to any complete set of left triangulating idempotents. However the singleton

{1R}, by [2, Theorem 4.4], is such a set, hence S would be semiprime. But S is not

semiprime because yxR[x, α]yx = 0. It implies that S is not PWSP.

Following [9], an R-module M is called duo if every submodule of M is fully

invariant in M .

Proposition 2.13. Let M be an R-module, S = EndR(M) and F = {b1, ..., bn} be

a set of left triangulating idempotents of S.

(1) S is PWSP with respect to F if and only if bigbiN = 0 implies bigbi = 0

where bi ∈ F , N any fully invariant submodule of M , and g ∈ HomR(M,N).

(2) If M is a duo module then S is PWSP with respect to F if and only if for

each g ∈ S, (big)2 = 0 implies bigbi = 0.

Proof. Let S be PWSP with respect to F . If bigbiN = 0, then we have

bigbiSbigbiM ⊆ bigbiN = 0, which implies bigbi = 0. Conversely let bigbiSbigbi =

0. Then N = SbigbiM is a fully invariant submodule of M where bigbiN = 0. Thus

bigbi = 0. For second part let N = g(M) for g ∈ S. �

Let M be a nonzero R-module. A decomposition M = ⊕n
i=1Mi is a left (right)

orthogonal decomposition if HomR(Mj ,Mi) = 0 for each i < j (j < i)(i, j =

1, ..., n) [7].
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Proposition 2.14. Let M be an R-module and S = EndR(M). Then the following

statements are equivalent.

(1) S is PWSP.

(2) There exists a left orthogonal decomposition M = ⊕n
i=1Mi such that for

each i, EndR(Mi) is semiprime.

Proof. (1) ⇒ (2) Let S be PWSP with respect to a set of left triangulating idem-

potents F = {f1, ..., fn} ⊆ S. Then M = ⊕n
i=1fiM is an orthogonal decomposition

for M and for each i, EndR(fiM) ' fiSfi which is semiprime by Definition 2.1.

(2) ⇒ (1) Let X = ⊕n
i=2Mi. Since M has a left orthogonal decomposition M =

M1 ⊕ X, the ring S is isomorphic to

(
A N

0 C

)
where A = EndR(M1), N=

HomR(X,M1) and C = EndR(X). Thus the result follows by Proposition 2.10,

using an induction argument on n. �

Corollary 2.15. The following statements are equivalent.

(1) R is a PWSP ring.

(2) There exists a set of left triangulating idempotents E = {e1, ..., en} of R

such that for each i, eiRei is semiprime.

(3) R has a triangular matrix ring representation with semiprime rings on the

main diagonal.

Proposition 2.16. If R is a PWSP ring and e an idempotent in R, then eRe is

a PWSP ring.

Proof. Let R be a ring and e an idempotent in R. Suppose that R is a PWSP

ring. By Corollary 2.15, there exists a ring isomorphism φ from R to a generalized

triangular matrix ring T with semiprime rings on its main diagonal. Since φ(e)

is an idempotent in T then its main diagonal elements are idempotent and the

restriction of φ is a ring isomorphism from eRe onto φ(e)Tφ(e), where the rings on

the main diagonal of φ(e)Tφ(e) are also semiprime. Thus again by Corollary 2.15,

eRe is PWSP. �

Theorem 2.17. The property PWSP is Morita invariant.

Proof. If R is Morita equivalent to a ring S, then it is known that S is isomorphic to

the ring eMn(R)e for some natural number n and suitable idempotent e in Mn(R).

The result is now obtained by Propositions 2.8(2) and 2.16. �

Proposition 2.18. Let R be a PWSP ring with respect to a set of left triangulating

idempotents E = {e1, ..., en}. Then R = A ⊕ B such that A = ⊕k
i=1Ai is a direct
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sum of semiprime rings and there is a ring isomorphism

B '


B1 B12 ... B1l

0 B2 ... B2l

...
...

. . .
...

0 0 ... Bl

 (∗)

such that each Bi is a semiprime ring, Bij is a left Bi- right Bj bimodule, and

k + l = n.

Proof. Let {a1, ..., ak} be the set of central idempotents of E. Since e = a1+...+ak

is a central idempotent, R ' eR ⊕ (1 − e)R = A ⊕ B is a ring decomposition in

which A = ⊕k
i=1Ai = ⊕k

i=1aiRai. By definition, for each i, Ai is semiprime. It can

be seen that {b1, ..., bl} = E\{a1, ..., ak} is a set of left triangulating idempotents

for B. Thus there is an isomorphism as in (∗) such that for each 1 ≤ j ≤ l, Bj is

semiprime. Also k + l = n. �

Let Q be a ring. A right order in Q is any subring R such that

(1) Every regular element b of R (i.e., r.annR(b) = l.annR(b) = 0) is invertible

in Q.

(2) Every element of Q has the form ab−1 for some a ∈ R and some regular

b ∈ R.

Proposition 2.19. Let R be a right order in a semiprimary ring Q. If R is PWSP,

then so is Q.

Proof. Let E = {e1, ..., en} be a set of left triangulating idempotents of R and

xQx = 0 where x ∈ eiQei. By [6, Theorem A], eiRei is a right order in eiQei.

Thus x = ab−1 for some a, b ∈ eiRei. Hence ab−1Qab−1 = 0 and ab−1Qa = 0.

Since aRa ⊆ ab−1Qa = 0, a = 0 which implies that x = 0. �

3. Piecewise m-Systems

It is common knowledge that m-systems play a useful role in the study of prime

and semiprime rings. A nonempty subset S of R is called m-system if for every x

and y in S there exists r ∈ R such that xry ∈ S. It is well known that for every

ideal of R, the set {r ∈ R | every m-system containing r meets I} is equal to√
I := ∩P where P is the set of all prime ideals of R containing I. The purpose of

this section is to develop an analogous concept for the study of PWSP rings.

Definition 3.1. Let R be a ring and E = {e1, ..., en} be a set of left triangulating

idempotents of R. A nonempty subset S of R is a piecewise m-system with respect

to E, if for each eiaej and ejbek ∈ S, where ei, ej , ek ∈ E and a, b ∈ R, there
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exists r ∈ R such that eiaejrejbek ∈ S. The intersection of all PWP ideals of R

containing I will be denoted by
p√
I.

Lemma 3.2. Let R be a ring and E be a complete set of left triangulating idem-

potents of R.

(1) If P is an ideal of R then R \P is a piecewise m-system with respect to E,

if and only if P is a PWP ideal.

(2) Let P be an ideal of R such that eiPei ∩ S = ∅ for some ei ∈ E and some

piecewise m-system S. If P is maximal with respect to this property then P

is prime.

Proof. (1) It is easy to check.

(2) Let I1 and I2 be ideals such that I1I2 ⊆ P and aj ∈ Ij \P (j = 1, 2). Since P is

maximal with respect to the mentioned property, there exist sj ∈ (ei(P +(aj))ei)∩
S (j = 1, 2). Thus eis1eireis2ei ∈ (eiPei) ∩ S which is a contradiction. Thus P is

prime. �

The following example shows that m-systems and piecewise m-systems are dif-

ferent in general.

Example 3.3. Let R =

(
k k

0 k

)
where k is a field. Then R is a PWP ring.

Thus by Lemma 3.2, R \ {0} is a piecewise m-system with respect to the complete

set of left triangulating idempotents {

(
1 0

0 0

)
,

(
0 0

0 1

)
}. However that set is

not an m-system.

Proposition 3.4. Let R be a ring, E = {e1, ..., en} a set of left triangulating

idempotents, and I an ideal in R. If

Ip = {eirei | r ∈ R, every piecewise m−system containing eirei meets eiIei}

then Ip =
p√
I =
√
I.

Proof. Suppose that eirei ∈ Ip. We shall show that eirei ∈
p√
I. If there exists a

PWP ideal P of R containing I such that eirei /∈ P , then eirei ∈ R \ P := S and

S ∩ eiIei = ∅. On the other hand, S is a piecewise m-system by Lemma 3.2 and by

definition of Ip, S meets eiIei, a contradiction. Thus eirei ∈ P . This shows that

Ip ⊆
p√
I. Since each prime ideal of R is PWP, we have

p√
I ⊆

√
I. It is enough to

show that
√
I ⊆ Ip. Let eirei /∈ Ip. Then there exists a piecewise m-system T such

that eirei ∈ T and T ∩ eiIei = ∅. Let A = {J ER | I ⊆ J and eiJei ∩ T = ∅}. By

Zorn’s Lemma, A has a maximal member Q. By Lemma 3.2, Q is a prime ideal of

R. Thus eirei /∈
√
I. �
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Theorem 3.5. Let E = {e1, ..., en} be a set of left triangulating idempotents of a

ring R. Then for any ideal I in R the following are equivalent.

(1) I is a PWSP ideal with respect to E.

(2) For each ei ∈ E, eiIei = ei
√
Iei where

√
I is the prime radical of I.

(3) For each ei ∈ E, eiIei = ei(
p√
I)ei.

Proof. (1) ⇒ (2) Let x0 = eixei /∈ eiIei. Then eix0eiReix0ei 6⊆ I. Now let

x1 ∈ eix0eiReix0ei \ I. Continuing this method will yield a set S = {x0, x1, ...}.
By Zorn’s Lemma there exists an ideal P containing I and disjoint from S. It can

be seen that P is prime. Hence x0 /∈ ei
√
Iei.

(2) ⇒ (1) Let eixeiReixei ⊆ I for some ei ∈ E and x ∈ R. Then by (2),

eixeiReixei ⊆ eiIei = ei
√
Iei ⊆

√
I. Thus eixei ∈

√
I which implies eixei ∈

ei
√
Iei = eiIei ⊆ I.

(2) ⇔ (3) This follows from Proposition 3.4. �

Proposition 3.6. Let P be a PWP (resp. PWSP) ideal of R with respect to a

complete set of left triangulating idempotents E = {e1, ..., en}. Then P contains a

minimal PWP (resp. PWSP) ideal with respect to E.

Proof. Let A be the set of PWP (resp. PWSP) ideals with respect to E which

are contained in P . By Zorn’s Lemma it can be seen that A has a minimal

member which is a PWP (resp. PWSP) ideal. Thus P contains a minimal PWP

(resp. PWSP) ideal. �

4. Weak Quasi-Baer Rings

As mentioned in Section 1, for a ring R of finite triangulating dimension, it is

shown in [1, Theorem 4.11] that R is PWP if and only if R is quasi-Baer. This

important result naturally motivates the following question. What modification of

the concept of a Baer ring is equivalent to the PWSP property? Although we do

not know the precise answer to the above question, here we introduce the concept

of right weak quasi Baer rings and then find a description of these rings in terms

of the PWSP property. If MR is a module and X is a nonempty subset of M , then

the right annihilator of X in R is denoted by rR(X).

Definition 4.1. A ring R is called right weak quasi-Baer, if the right annihilator

of every nilpotent ideal of R is generated as a right ideal by an idempotent.

Similarly, the left weak quasi-Baer property for a ring R is defined (i.e. the

left annihilator of every nilpotent ideal of R is generated as a left ideal by an

idempotent). Examples 4.8(3) shows that the weak quasi-Baer property is not

left-right symmetric.
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We recall from the introduction that τdim(R) is assumed to be finite in the

following results.

Proposition 4.2. If R is a right weak quasi-Baer ring, then R is PWSP.

Proof. Let E = {e1, ..., en} be a complete set of left triangulating idempotents of

R and let eixeiReixei = 0 for some i and element x ∈ R. Then I = ReixeiR is

an ideal of R such that I2 = 0. Since R is right weak quasi-Baer, rR(I) = fR

for some nonzero idempotent f ∈ R. Since fR is an ideal in R, zf = fzf for

all z ∈ R. It follows that eifei is an idempotent element in eiRei, and since

eiy = yei = y for all y ∈ eiRei, we can deduce that eifei ∈ Sl(eiRei). Therefore

eifei = ei or 0. If eifei = ei then eixei = eix(eifei) = 0 because If = 0. Suppose

that eifei = 0. Since eixei ∈ fR, we have eixei ∈ (eif)R = (feif)R. Hence

eixei = ei(eixei) ∈ (eifei)R = 0. The proof is complete. �

We are now going to find conditions under which a PWSP ring is right weak

quasi-Baer. Since a PWSP ring is isomorphic to a formal triangular matrix ring

T =

(
A M

0 B

)
for suitable bimodule AMB , we first state when T is a right weak

quasi-Baer ring. In [4], the characterization of T as a quasi-Baer ring is provided. A

characterization of formal triangular matrix rings that are weak quasi-Baer is then

obtained by methods as in [4, Theorem 3.2] using the fact that nilpotent ideals

of T have the form

(
I N

0 J

)
where I and J are nilpotent ideals in A and B

respectively, and N is a sub-bimodule of AMB . We record this below.

Proposition 4.3. Let M be an R-S bimodule and T =

(
R M

0 S

)
. Then the

following statements are equivalent.

(1) T is right weak quasi-Baer.

(2) (a) R is right weak quasi-Baer.

(b) For each nilpotent ideal I of R, rM (I) = rR(I)M .

(c) If RNS ⊆ RMS and J is any nilpotent ideal of S, then rS(N) ∩ rS(J)

is a direct summand of S.

Corollary 4.4. Let M be an R-S bimodule, R be a semiprime ring and T =(
R M

0 S

)
. Then T is right weak quasi-Baer if and only if for any RNS ⊆ RMS

and nilpotent ideal J of S, rS(N) ∩ rS(J) is a direct summand of S.

Proof. This follows from Proposition 4.3. �

Motivated by Proposition 4.3, we give the following definition.
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Definition 4.5. Let e be a semicentral idempotent in a ring R, T = eRe, and

S = (1− e)R(1− e). We say that R is right e-weak Baer if for every left-T , right-

S sub-bimodule N of eR(1− e) and nilpotent ideal J of S, the ideal rS(J)∩ rS(N)

is generated as a right ideal by an idempotent. Clearly, right 0-weak quasi-Baer

means right weak quasi-Baer.

Lemma 4.6. Let e be a semicentral reduced idempotent in a ring R. Then there

exists a complete set of left triangulating idempotents E = {e1, ..., en} such that

e = e1.

Proof. We have R = eR ⊕ (1 − e)R such that HomR(eR, (1 − e)R) = 0. Since

τdim(R) is assumed to be finite, the R-module (1 − e)R has finite triangulating

dimension [7, Theorem 2.4]. Thus (1−e)R has a left orthogonal decomposition (1−
e)R = ⊕k

i=1Mi such that for each i = 1, ..., k, τdim(EndR(Mi)) = 1 [7, Proposition

2.7]. It follows that there exists a complete set of left triangulating idempotents

E = {e1, ..., en} such that e = e1. �

Theorem 4.7. The following statements are equivalent for a ring R.

(1) R is right weak quasi-Baer.

(2) R is PWSP and right e-weak quasi-Baer for each e ∈ Sl(R).

(3) R is PWSP and right e-weak quasi-Baer for some reduced idempotent e in

Sl(R).

Proof. (1) ⇒ (2) This follows from Propositions 4.2 and 4.3 using the fact that if

e ∈ Sl(R), then R '

(
eRe eR(1− e)

0 (1− e)R(1− e)

)
.

(2) ⇒ (3) This is clear.

(3) ⇒ (1) Suppose R is PWSP and e is a reduced idempotent in Sl(R). By

Lemma 4.6, there exists a complete set of left triangulating idempotents E =

{e1, ..., en} with e = e1. By Corollary 2.4, R is PWSP with respect to E. Thus

R '

(
eRe eR(1− e)

0 (1− e)R(1− e)

)
where eRe is a semiprime ring. The result is now

obtained by e-weak quasi-Baer condition on R and Corollary 4.4. �

Examples 4.8. (1) Any semiprime ring is clearly right weak quasi-Baer. Fur-

ther examples can be readily constructed by taking S to be a semisimple ring

in Corollary 4.4.

(2) Let F be a field, Fn = F for n = 1, 2, ... and let

R = {(an)∞n=1 ∈
∞∏

n=1

Fn| (an)∞n=1 is eventually constant}

Then R is a subring of
∏n

i=1 Fn and R[[x]] is a semiprime ring which is not

quasi-Baer; see [2, Example 1.6]. Let now I be a maximal ideal of R[[x]]
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and S = R[[x]]/I. Then by [4, Theorem 3.2], T =

(
R[[x]] S

0 S

)
is not

quasi-Baer and clearly it is not semiprime but by Corollary 4.4, T is a right

weak quasi-Baer ring.

(3) The ring R =

(
Z Z2

0 Z2

)
is right weak quasi-Baer, but it is not left weak

quasi-Baer because the left annihilator of

(
0 Z2

0 0

)
is not a direct sum-

mand of RR.

We end by recording a noteworthy fact:

Remark 4.9. Being right weak quasi-Baer is a Morita invariant for rings. To see

this, in [5, Lemma 2], let I be a nilpotent ideal.
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