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Abstract. In this paper, we introduce the concept of total quantum integrals

in the case of weak Hopf algebras and study the affineness criterion for weak

Yetter-Drinfel’d modules, which is a generalization of the results studied by
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1. Introduction

The integrals for a Hopf algebra H and the more general ones were introduced

by Doi ([7]), stating that the existence of an integral is the necessary and sufficient

condition for the existence of a natural transformation between two functors linking

the categories of relative Hopf-modules MH
A and right H-comodules MH . The

categorical point of view towards integrals associated to a Doi-Koppinen datum

(H,A,C) was introduced by Caenepeel et al. ([4]) to prove separability theorems.

In [9], the authors weakened the conditions for a total A-integral in the sense of

Caenepeel. The integrals cover the integrals introduced by Doi and the classic

integral by Larson and Sweedler [8]. As a major application, the quantum integrals

associated to quantum Yetter-Drinfel’d modules HYDA were introduced.

Weak bialgebras and weak Hopf algebras given in [2] generalize the ordinary

bialgebras and Hopf algebras by weakening the comultiplication of the unit and

the multiplication of the counit. Comultiplication is allowed to be non-unital,

∆(1H) = 11⊗12 6= 1H⊗1H but the comultiplication is coassociative. In exchange for

coassociativity, the multipicativity of the counit is repaced by a weaker condition:

ε(hg) = ε(h11)ε(12g), implying that the unit representation is not necessarily one-

dimensional and irreducible. Weak Hopf algebras provide a good framework for

studying symmetries of certain quantum field theories. The examples of weak
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Hopf algebras are groupoid algebras, face algebras and generalized Kac algebras.

It has turned out that many classical results of bialgebras and Hopf algebras can

be generalized to weak bialgebras and weak Hopf algebras. The main purpose of

this paper is to define the more general concept of an integral associated to weak

Yetter-Drinfel’d modules, which generalizes the integral introduced by Menini and

Militaru in ordinary Hopf algebra setting.

The paper is organized as follows: In Section 3, we introduce weak Yetter-

Drinfel’d modules and prove that there exists some equivalence between the cat-

egory HYDA of weak Yetter-Drinfel’d modules and the category MB of left B-

module, where B = AcoH = {a ∈ A|ρ̃(a) = S−1(1(1))1(−1)⊗a1(0)} (see Proposition

3.5), and study the affineness criterion for weak Yetter-Drinfel’d modules (see The-

orem 3.7).

2. Preliminaries

We always work over a fixed field k and follow Sweedler’s book [10] for the ter-

minologies on coalgebras and comodules. For the comultiplication ∆ in a coalgebra

C, we use the Sweedler-Heyneman’s notation, ∆(c) = c1 ⊗ c2, for all c ∈ C. All

algebras, linear spaces etc. will be over k. All maps are k-linear and ⊗ means ⊗k

unless otherwise specified, etc.

Definition 2.1. Let H be both an algebra and a coalgebra. Then H is called a

weak bialgebra in [2] if it satisfies the following conditions:

4(xy) = 4(x)4(y),

42(1) = (4(1)⊗ 1)(1⊗4(1)) = (1⊗4(1))(4(1)⊗ 1),

ε(xyz) = ε(xy1)ε(y2z), ε(xyz) = ε(xy2)ε(y1z),

for any x, y, z ∈ H, where 4(1) = 11 ⊗ 12 and 42 = (4⊗ idH) ◦ 4.

Moreover, if there exists a k-linear map S : H −→ H called antipode, satisfying

the following axioms for all x ∈ H,

x1S(x2) = ε(11x)12, S(x1)x2 = 11ε(x12), S(x1)x2S(x3) = S(x).

Then the weak bialgebra H is called a weak Hopf algebra.

For any weak Hopf algebra H, we define two maps εt, εs : H → H by the

formulas

εt(x) = ε(11x)12, εs(x) = 11ε(x12)

and denote by Ht the image εt(H), and denote by Hs the image εs(H).
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Let H be a weak Hopf algebra. Recall from [2] that the following properties

hold, for all h, g ∈ H,

(W1) Ht and Hs are two sub-algebras of H,

(W2) 4(1) = 11 ⊗ 12 ∈ Hs ⊗Ht, εt(h)εs(g) = εs(g)εt(h),

(W3) 4(εt(h)) = 11εt(h)⊗ 12, 4(εs(g)) = 11 ⊗ εs(g)12,

(W4) h1 ⊗ εs(h2) = h11 ⊗ S(12), εt(h1)⊗ h2 = S(11)⊗ 12h,

(W5) h1 ⊗ εt(h2) = 11h⊗ 12, εs(h1)⊗ h2 = 11 ⊗ h12,

(W6) εt ◦ εt = εt, εs ◦ εs = εs,

(W7) εt ◦ S = εt ◦ εs = S ◦ εs, εs ◦ S = εs ◦ εt = S ◦ εt,
(W8) S(hg) = S(g)S(h), S(h2)⊗ S(h1) = S(h)1 ⊗ S(h)2, and S(1) = 1, ε ◦ S = ε,

(W9) h1εs(g)⊗ h2 = h1 ⊗ h2S(εs(g)), h1 ⊗ εt(g)h2 = S(εt(g))h1 ⊗ h2.

Definition 2.2. Let H be a weak Hopf algebra over the field k. Recall from [3]

that a left H-comodule algebra is an algebra A together with a multiplicative left

H-coaction ρl : A→ H ⊗A satisfying the condition

ρl(1A) = (εs ⊗ idA) ◦ ρl(1A).

We use the standard notation ρl(a) = a(−1) ⊗ a(0), for any a ∈ A. For the

coassociativity of the left comodule, we write ((idH ⊗ ρl) ◦ ρl)(a) = a(−2) ⊗ a(−1) ⊗
a(0) = a(−1)1 ⊗ a(−1)2 ⊗ a(0) = ((∆H ⊗ idA) ◦ ρl)(a), for any a ∈ A.

Similarly, a right H-comodule algebra is an algebra A together with a multiplica-

tive right H-coaction ρr : A→ A⊗H satisfying the condition

ρr(1A) = (idA ⊗ εt) ◦ ρr(1A).

We use the notation ρr(a) = a(0) ⊗ a(1). For the coassociativity of the right co-

module, we write ((ρr ⊗ idH) ◦ ρr)(a) = a(0) ⊗ a(1) ⊗ a(2) = a(0) ⊗ a(1)1 ⊗ a(1)2 =

((idA ⊗∆) ◦ ρr)(a), for any a ∈ A.

An H-bicomodule algebra is an algebra A, that is an H-bimodule, such that A is

a left and a right H-comodule algebra.

3. The affineness criterion for weak Yetter-Drinfel’d modules

Recall form [6], a weak Yetter-Drinfel’d module is a right A-module and a left

H-comodule (M, ·, ρM ) such that

(1) ρM (m) ∈ H �M = {h1(−1) ⊗m · 1(0)|h ∈ H,m ∈M},
(2)

m(−1)a(−1) ⊗m(0) · a(0) = a(1)(m · a(0))(−1) ⊗ (m · a(0))(0). (3. 1)

The category of weak Yetter-Drinfel’d modules and k-linear maps that preserve the

A-action and H-coaction is denoted HYDA.
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Lemma 3.1. Let A be an H-bicomodule algebra. For all a ∈ A, we have

εt(a(1))⊗ a(0) = 1(1) ⊗ 1(0)a, (3. 2)

εs(a(1))⊗ a(0) = S(1(1))⊗ a1(0), (3. 3)

1(−1) ⊗ 1(0)(0) ⊗ 1(0)(1) = 1(−1) ⊗ 1(0)1(0) ⊗ 1(1). (3. 4)

Proof. Similar to [10]. �

Lemma 3.2. Let M be a right A-module and a left H-comodule. Then the com-

patibility relation Eq. (3.1) is equivalent to

ρM (m · a) = S−1(a(1))m(−1)a(−1) ⊗m(0) · a(0). (3. 5)

Proof. Assume first that Eq.(3.5) holds. Then for a ∈ A,m ∈M ,

a(1)(m · a(0))(−1) ⊗ (m · a(0))(0)
(3.5)
= a(2)S

−1(a(1))m(−1)a(0)(−1) ⊗m(0) · a(0)(0)

= a(1)2S
−1(a(1)1)m(−1)a(0)(−1) ⊗m(0) · a(0)(0)

= S−1(εt(a(1)))m(−1)a(0)(−1) ⊗m(0) · a(0)(0)
(3.2)
= S−1(1(1))m(−1)(1(0)a)(−1) ⊗m(0) · (1(0)a)(0)

= S−1(1(1))m(−1)1(−1)a(−1) ⊗m(0) · 1(0)a(0)
(3.5)
= m(−1)a(−1) ⊗m(0) · a(0).

Conversely, if Eq.(3.1) holds, then

S−1(a(1))m(−1)a(−1) ⊗m(0) · a(0)
(3.1)
= S−1(a(2))a(1)(m · a(0))(−1) ⊗ (m · a(0))(0)

= S−1(a(1)2)a(1)1(m · a(0))(−1) ⊗ (m · a(0))(0)

= S−1(εs(a(1)))(m · a(0))(−1) ⊗ (m · a(0))(0)
(3.3)
= 1(1)(m · a1(0))(−1) ⊗ (m · a1(0))(0)

(3.1)
= (m · a)(−1)1(−1) ⊗ (m · a)(0) · 1(0)

= (m · a)(−1) ⊗ (m · a)(0) = ρM (m · a).

�

An important object of HYDA is the Verma structure (A, ·, ρ̃), where · is the

multiplication on A and the left H-coaction ρ̃ is given by

ρ̃ : A→ H ⊗A, a 7→ S−1(a(1))a(−1) ⊗ a(0),
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for all a ∈ A.

Recall from [1], see also [5], that HYDA can be viewed as a category of weak Doi-

Koppinen modules associated to the weak Doi-Koppinen datum (H ⊗Hop, A,H),

where

(1) A is a weak left H ⊗Hop-comodule algebra via

a 7→ (a(−1) ⊗ S−1(a(1)))⊗ a(0),

for all a ∈ A,

(2) H is a weak right H ⊗Hop-module coalgebra via

g · (h⊗ k) = kgh,

for all g, h, k ∈ H. Then HYDA = HM(H ⊗Hop)A. Here we shall check

g · εt(h⊗ k) = ε(g1 · (h⊗ k))g2,

which is a condition for being a module coalgebra. Indeed,

ε(g1 · (h⊗ k))g2 = ε(hg1k))g2

= ε(εs(h)g1εt(k))g2
(W3)
= ε(εs(h)(gεt(k))1)(gεt(k))2

(W9)
= ε((gεt(k)1)S−1(εs(h))(gεt(k))2

= S−1(εs(h))(gεt(k))

= g · (εt(k)⊗ S−1(εs(h)))

= g · εt(h⊗ k).

Definition 3.3. Let H be a weak Hopf algebra with a bijective antipode S and A

an H-bicomodule algebra. A k-linear map γ : H → Hom(H,A) is called a quantum

integral, if

g1 ⊗ γ(g2)(h) = S−1((γ(g)(h1))(1))h2(γ(g)(h1))(−1) ⊗ (γ(g)(h1))(0), (3. 6)

for all g, h ∈ H. A quantum integral γ : H → Hom(H,A) is called total, if

γ(h1)(h2) = ε(S−1(1(1))h1(−1))1(0), (3. 7)

for all h ∈ H.

Proposition 3.4. Let H be a weak Hopf algebra with a bijective antipode S and

A an H-bicomodule algebra. Assume that there exists a total quantum integral

γ : H → Hom(H,A). Then ρ̃ : A→ H �A splits in HYDA.
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Proof. We can prove that the map

λ : H �A→ A,

S−1(1(1))h1(−1) ⊗ a1(0) 7→ a(0)γ(1
′

1h11)(1
′

2S
−1(a(1))a(−1)12),

for all h ∈ H, a ∈ A, is a left H-colinear retraction of ρ̃. In particular,

λ(S−1(1(1))1(−1) ⊗ 1(0)) = 1.

Since

λ(S−1(1(1))1(−1) ⊗ 1(0))

= 1(0)γ(1
′

111)(1
′

2S
−1(1(1))1(−1)12)

= 1(0)γ(1
′

111)(1
′

212S
−1(1(1))1(−1))

= 1(0)γ(11)(12S
−1(1(1))1(−1))

= 1(0)γ((S−1(1(1))1(−1))1)((S−1(1(1))1(−1))2)

= 1(0)ε(S
−1(1

′

(1))S
−1(1(1))1(−1)1

′

(−1))1
′

(0)

= 1(0)ε(S
−1(1(1)1

′

(1))1(−1)1
′

(−1))1
′

(0)

= 1(0)ε(S
−1(1(1))1(−1)),

we have

1(0)ε(S
−1(1(1))1(−1)) = 1.

Since λ is an H-colinear map, we have

g1 ⊗ λ(S−1(1(1))g21(−1) ⊗ a1(0))

= S−1(λ(S−1(1(1))g1(−1) ⊗ a1(0))(1))λ(S−1(1(1))g1(−1) ⊗ a1(0))(−1)

⊗λ(S−1(1(1))g1(−1) ⊗ a1(0))(0),

for all g ∈ H and a ∈ A. We define now

λ : H �A→ A,

S−1(1(1))h1(−1) ⊗ a1(0) 7→ λ(S−1(1(1))S
−2(a(1))hS(a(−1))1(−1) ⊗ 1(0))a(0),

for all h ∈ H, a ∈ A. Then, for a ∈ A, we have

(λ ◦ ρ̃)(a)

= λ(S−1(a(1))a(−1) ⊗ a(0))

= λ(S−1(1(1))S
−2(a(0)(1))S

−1(a(1))a(−1)S(a(0)(−1))1(−1) ⊗ 1(0))a(0)(0)

= λ(S−1(1(1))S
−2(a(0)(1)1)S−1(a(0)(1)2)a(−1)S(a(0)(−1))1(−1) ⊗ 1(0))a(0)(0)

= λ(S−1(1(1))S
−2(εt(a(0)(1)))a(−1)S(a(0)(−1))1(−1) ⊗ 1(0))a(0)(0)
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(3.2)
= λ(S−1(1(1))S

−2(1
′

(1))a(−1)S((1
′

(0)a(0))(−1))1(−1) ⊗ 1(0))(1
′

(0)a(0))(0)

= λ(S−1(1(1))S
−2(1

′

(1))a(−2)S(1
′

(−1)a(−1))1(−1) ⊗ 1(0))1
′

(0)a(0)

= λ(S−1(1(1))S
−2(1

′

(1))a(−1)1S(a(−1)2)S(1
′

(−1))1(−1) ⊗ 1(0))1
′

(0)a(0)

= λ(S−1(1(1))S
−2(1

′

(1))εt(a(−1))S(1
′

(−1))1(−1) ⊗ 1(0))1
′

(0)a(0)

= λ(S−1(1(1))S
−2(1

′

(1))S(1
′′

(−1))S(1
′

(−1))1(−1) ⊗ 1(0))1
′

(0)1
′′

(0)a

= λ(S−1(1(1))S
−2(1

′

(1))S(1
′

(−1)1
′′

(−1))1(−1) ⊗ 1(0))1
′

(0)1
′′

(0)a

= λ(S−1(1(1))S
−2(1

′

(1))S(1
′

(−1))1(−1) ⊗ 1(0))1
′

(0)a

= 1(0)γ(1
′

1S
−2(1

′

(1))S(1
′

(−1))11)(1
′

2S
−1(1(1))1(−1)12)1

′

(0)a

= 1(0)γ(S−2(1
′

(1))S(1
′

(−1))11)(S−1(1(1))1(−1)12)1
′

(0)a

= 1(0)γ((S−2(1
′

(1))S(1
′

(−1))S
−1(1(1))1(−1))1)

((S−2(1
′

(1))S(1
′

(−1))S
−1(1(1))1(−1))2)1

′

(0)a

= 1(0)ε(S
−1(1

′′

(1))S
−2(1

′

(1))S(1
′

(−1))S
−1(1(1))1(−1)1

′′

(−1))1
′′

(0)1
′

(0)a

= 1(0)ε(S
−1(1

′′

(1))S
−1(1(1))S

−2(1
′

(1))S(1
′

(−1))1(−1)1
′′

(−1))1
′′

(0)1
′

(0)a

= 1(0)ε(S
−1(1(1)1

′′

(1))S
−2(1

′

(1))S(1
′

(−1))1(−1)1
′′

(−1))1
′′

(0)1
′

(0)a

= 1(0)ε(S
−1(1(1))S

−2(1
′

(1))S(1
′

(−1))1(−1))1
′

(0)a

= 1(0)ε(S
−2(1

′

(1))S
−1(1(1))1(−1)S(1

′

(−1)))1
′

(0)a

= 1(0)ε(εs(εt(S
−2(1

′

(1))))S
−1(1(1))1(−1)εt(1

′

(−1)))1
′

(0)a

= 1(0)ε(S
−1(1

′

(1))S
−1(1(1))1(−1)1

′

(−1))1
′

(0)a

= 1(0)ε(S
−1(1(1))1(−1))a = a,

i.e., λ still is a retraction of ρ̃. Now, for h ∈ H, a, b ∈ A, we have

λ((S−1(1(1))h1(−1) ⊗ a1(0)) · b)

= λ(S−1(b(1))hb(−1) ⊗ ab(0))

= λ(S−1(1(1))S
−2((ab(0))(1))S

−1(b(1))hb(−1)

S((ab(0))(−1))1(−1) ⊗ 1(0))(ab(0))(0)

= λ(S−1(1(1))S
−2(a(1))S

−2(b(0)(1))S
−1(b(1))hb(−1)

S(b(0)(−1))S(a(−1))1(−1) ⊗ 1(0))a(0)b(0)(0)

= λ(S−1(1(1))S
−2(a(1))S

−2(b(0)(1)1)S−1(b(0)(1)2)hb(−1)

S(b(0)(−1))S(a(−1))1(−1) ⊗ 1(0))a(0)b(0)(0)

= λ(S−1(1(1))S
−2(a(1))S

−2(εt(b(0)(1)))hb(−1)S(b(0)(−1))
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S(a(−1))1(−1) ⊗ 1(0))a(0)b(0)(0)

= λ(S−1(1(1))S
−2(a(1))S

−2(1
′

(1))hb(−1)S((1
′

(0)b(0))(−1))

S(a(−1))1(−1) ⊗ 1(0))a(0)(1
′

(0)b(0))(0)

= λ(S−1(1(1))S
−2(a(1))S

−2(1
′

(1))hb(−1)1S(b(−1)2)S(1
′

(−1))

S(a(−1))1(−1) ⊗ 1(0))a(0)1
′

(0)b(0)

= λ(S−1(1(1))S
−2(a(1))S

−2(1
′

(1))hεt(b(−1))S(1
′

(−1))

S(a(−1))1(−1) ⊗ 1(0))a(0)1
′

(0)b(0)

= λ(S−1(1(1))S
−2(a(1))S

−2(1
′

(1))hS(1
′′

(−1))S(1
′

(−1))S(a(−1))

1(−1) ⊗ 1(0))a(0)1
′

(0)1
′′

(0)b

= λ(S−1(1(1))S
−2(a(1))hS(1

′′

(−1))S(a(−1))1(−1) ⊗ 1(0))a(0)1
′′

(0)b

= λ(S−1(1(1))S
−2(a(1))hS(a(−1))1(−1) ⊗ 1(0))a(0)b

= λ(S−1(1(1))h1(−1) ⊗ a1(0))b,

hence λ is right A-linear. It remains to prove that λ is also left H-colinear.

ρ̃ ◦ λ(S−1(1(1))h1(−1) ⊗ a1(0))

= ρ̃(λ(S−1(1(1))S
−2(a(1))hS(a(−1))1(−1) ⊗ 1(0))a(0))

= S−1(λ(S−1(1(1))S
−2(a(1))hS(a(−1))1(−1) ⊗ 1(0))a(0))(1)

λ(S−1(1(1))S
−2(a(1))hS(a(−1))1(−1) ⊗ 1(0))a(0))(−1)

⊗λ(S−1(1(1))S
−2(a(1))hS(a(−1))1(−1) ⊗ 1(0))a(0))(0)

= S−1(a(1))S
−1(λ(S−1(1(1))S

−2(a(2))hS(a(−2))1(−1) ⊗ 1(0))(1))

λ(S−1(1(1))S
−2(a(2))hS(a(−2))1(−1) ⊗ 1(0))(−1)a(−1)

⊗λ(S−1(1(1))S
−2(a(2))hS(a(−2))1(−1) ⊗ 1(0))(0)a(0)

= S−1(a(1))S
−2(a(2)1)h1S(a(−2)2)a(−1)

⊗λ(S−1(1(1))S
−2(a(2)2)h2S(a(−2)1)1(−1) ⊗ 1(0))a(0)

= S−1(a(1)1)S−2(a(1)2)h1S(a(−2)2)a(−1)

⊗λ(S−1(1(1))S
−2(a(1)3)h2S(a(−2)1)1(−1) ⊗ 1(0))a(0)

= S−2(εs(a(1)1)h1S(a(−2)2)a(−1)

⊗λ(S−1(1(1))S
−2(a(1)2)h2S(a(−2)1)1(−1) ⊗ 1(0))a(0)

= S−2(11)h1S(a(−2)2)a(−1)

⊗λ(S−1(1(1))S
−2(a(1)12)h2S(a(−2)1)1(−1) ⊗ 1(0))a(0)
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= h1S(a(−2)2)a(−1)

⊗λ(S−1(1(1))S
−2(a(1))h2S(a(−2)1)1(−1) ⊗ 1(0))a(0)

= h1S(a(−1)2)a(−1)3 ⊗ λ(S−1(1(1))S
−2(a(1))h2S(a(−1)1)1(−1) ⊗ 1(0))a(0)

= h1εs(a(−1)2)⊗ λ(S−1(1(1))S
−2(a(1))h2S(a(−1)1)1(−1) ⊗ 1(0))a(0)

= h1S(12)⊗ λ(S−1(1(1))S
−2(a(1))h2S(a(−1)11)1(−1) ⊗ 1(0))a(0)

= h1 ⊗ λ(S−1(1(1))S
−2(a(1))h2S(a(−1))1(−1) ⊗ 1(0))a(0)

= (id⊗ λ)ρH�A(S−1(1(1))h1(−1) ⊗ a1(0)),

i.e., it is proved that λ is a retraction of ρ̃ in HYDA. �

We can define the coinvariants of A as

B = AcoH = {a ∈ A|ρ̃(a) = S−1(1(1))1(−1) ⊗ a1(0)}

= {a ∈ A|S−1(a(1))a(−1) ⊗ a(0) = S−1(1(1))1(−1) ⊗ a1(0)},

then B is a subalgebra of A and will be called the subalgebra of quantum coinvari-

ants.

Now, we will construct functors connecting HYDA and MB . First, if M ∈
HYDA, then the coinvariants of M

M coH = {m ∈M |m(−1) ⊗m(0) = S−1(1(1))1(−1) ⊗m · 1(0)}

is a right B-module. Furthermore, we have a covariant functor

(−)coH : HYDA →MB .

Now, for N ∈MB , N ⊗B A ∈ HYDA via the structures

(n⊗B a) · a
′

= n⊗B aa
′
,

ρN⊗BA(n⊗B a) = S−1(a(1))a(−1) ⊗ n⊗B a(0),

for all n ∈ N, a, a′ ∈ A. In this way, we have constructed a covariant functor called

the induction functor

−⊗B A :MB → HYDA.

We now prove that the above functors are an adjoint pair.

Proposition 3.5. Let H be a weak Hopf algebra with a bijective antipode S and A

an H-bicomodule algebra. Then the induction functor − ⊗B A : MB → HYDA is

a left adjoint of the coinvariant functor (−)coH : HYDA →MB .
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Proof. The unit and the counit of the adjointness are given by

ηN : N → (N ⊗B A)coH , n 7→ n⊗B 1A,

for all N ∈MB , n ∈ N, and

βM : M coH ⊗B A→M, m⊗B a 7→ ma,

for all M ∈ HYDA, m ∈M coH and a ∈ A. �

Let A be an H-bicomodule algebra. Notice that

H �A = {S−1(1(1))h1(−1) ⊗ b1(0)|h ∈ H, a ∈ A} ∈ HYDA

via the following structures

(S−1(1(1))h1(−1) ⊗ b1(0)) · a = S−1(a(1))ha(−1) ⊗ ba(0), (3. 8)

ρH�A(S−1(1(1))h1(−1) ⊗ b1(0)) = h1 ⊗ S−1(1(1))h21(−1) ⊗ b1(0). (3. 9)

Lemma 3.6. Let A be an H-bicomodule algebra. Then

(H �A)coH ∼= A.

Proof. We can construct the desired map as follows

θ : A→ (H �A)coH , a 7→ S−1(1(1))1(−1) ⊗ a1(0).

Notice that θ(a) ∈ (H �A)coH , we check it as follows

ρH�A(θ(a)) = ρH�A(S−1(1(1))1(−1) ⊗ a1(0))

= 11 ⊗ S−1(1(1))121(−1) ⊗ a1(0),

and

S−1(1
′

(1))1
′

(−1) ⊗ (S−1(1(1))1(−1) ⊗ a1(0)) · 1
′

(0)

= S−1(1
′

(1))1
′

(−1) ⊗ S
−1(1

′

(0)(1))1
′

(0)(−1) ⊗ a1
′

(0)(0)

= S−1(1
′

2)11 ⊗ S−1(1
′

11(1))121(−1) ⊗ a1(0)

= 11 ⊗ S−1(1(1))121(−1) ⊗ a1(0)

= ρH�A(θ(a)).

�

From Lemma 3.6 it follows that the adjunction map βH�A can be viewed as a

map in HYDA via

βH�A : A⊗B A→ H �A, a⊗B b 7→ S−1(b(1))b(−1) ⊗ ab(0),
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for all a, b ∈ A. Here A⊗B A ∈H YDA via the structures

(a⊗B b) · a
′

= a⊗B ba
′
,

ρA⊗BA(a⊗B b) = S−1(b(1))b(−1) ⊗ a⊗B b(0),

for all a, b, a
′ ∈ A.

We will now prove the main result of this section, that is, the affineness criterion

for weak Yetter-Drinfel’d modules.

Theorem 3.7. Let H be a weak Hopf algebra with a bijective antipode S, A an

H-bicomodule algebra, and B = AcoH . Assume that

(1) there exists a total quantum integral γ : H → Hom(H,A);

(2) the canonical map

β : A⊗B A→ H �A, a⊗B b 7→ S−1(b(1))b(−1) ⊗ ab(0)

is surjective. Then the induction functor −⊗BA :MB → HYDA is an equivalence

of categories.

Proof. In Proposition 3.5 we have shown that the adjunction map ηN : N →
(N ⊗B A)coH is an isomorphism for all N ∈ MB under the assumption (1). It

remains to prove that the other adjunction map, namely βM : M coH ⊗B A→M is

also an isomorphism for all M ∈ HYDA.

Let V be a k-module. Then A ⊗ V ∈ HYDA via the structures induced by A,

i.e.,

(a⊗ v) · b = ab⊗ v,

ρA⊗V (a⊗ v) = S−1(a(1))a(−1) ⊗ a(0) ⊗ v,

for all a, b ∈ A and v ∈ V . In particular, for V = A,A⊗A ∈ HYDA via

(a⊗ a′) · b = ab⊗ v, (3. 10)

ρA⊗A(a⊗ a′) = S−1(a(1))a(−1) ⊗ a(0) ⊗ a′, (3. 11)

for all a, b, a′ ∈ A. We will first prove that the adjunction map βA⊗V : (A ⊗
V )coH ⊗B A→ A⊗ V is an isomorphism for any k-module V .

First, V ⊗ B and B ⊗ V ∈ MB via the usual B-actions (v ⊗ a) · b = v ⊗ ab,
and a′ · (b′ ⊗ v′) = a′b′ ⊗ v′ for all a, b, a′, b′ ∈ B and v, v′ ∈ V . The flip map

τ : V ⊗ B → B ⊗ V, τ(v ⊗ b) = b⊗ v, for all b ∈ B and v ∈ V , is an isomorphism

in MB . On the other hand V ⊗A ∈ HYDA via the structures induced by A, i.e.

(v ⊗ a) · b = v ⊗ ab, (3. 12)

ρV⊗A(v ⊗ a) = S−1(a(1))a(−1) ⊗ v ⊗ a(0), (3. 13)



52 SHUANGJIAN GUO

It is easy to see that the flip map τ : A ⊗ V → V ⊗ A, τ(a ⊗ v) = v ⊗ a is an

isomorphism in HYDA.

Applying Proposition 3.5 for N = V ⊗ B ∼= B ⊗ V , we obtain the following

isomorphisms in MB :

B ⊗ V ∼= V ⊗B ∼= (V ⊗B ⊗B A)coH ∼= (V ⊗A)coH ∼= (A⊗ V )coH .

Hence, (A⊗ V )coH ⊗B A ∼= A⊗ V .

Let us define

β̃ : A⊗B A→ H �A, a⊗B b 7→ S−1(b(1))b(−1) ⊗ ab(0),

for all a, b ∈ A. As β is surjective, β̃ is surjective, because β̃ = β ◦ can, where

can : A⊗A→ A⊗B A is the canonical surjection.

Let us define now

ξ : A⊗A→ H �A, ξ(a⊗ b) = (β̃ ◦ τ)(a⊗ b) = S−1(a(1))a(−1) ⊗ ba(0)

for all a, b ∈ A. The map ξ is surjective, as β̃ and τ are. We will prove that ξ is a

morphism in HYDA. where A ⊗ A and H � A are weak Yetter-Drinfel’d modules

via Eq.(3.8), Eq.(3.9), and Eq.(3.10), Eq.(3.11), respectively. Indeed,

ξ((a⊗ b)c) = ξ(ac⊗ b) = S−1(c(1))S
−1(a(1))a(−1)c(−1) ⊗ ba(0)c(0)

= (S−1(a(1))a(−1) ⊗ ba(0))c

= ξ(a⊗ b)c,

and

ρH�Aξ(a⊗ b) = ρH�A(S−1(a(1))a(−1) ⊗ ba(0))

= S−1(a(1)2)a(−1)1 ⊗ S−1(a(1)1)a(−1)2 ⊗ ba(0)

= (id⊗ ξ)(S−1(a(1))a(−1) ⊗ a(0) ⊗ b)

= (id⊗ ξ)ρA⊗A(a⊗ b).

Hence, ξ is a surjective morphism in HYDA. H�A is projective as a right A-module,

where H�A is a right A-module in the usual way, i.e. (h�a)b = (S−1(1(1))h1(−1)⊗
a1(0))b = S−1(1(1))h1(−1) ⊗ ab1(0) = h � ab, for all h ∈ H and a, b ∈ A. On the

other hand, the map

u : H �A→ A�H, h⊗ a 7→ S−1(a(1))ha(−1) ⊗ a(0)

is a splitting surjection of right A-module, where the first H � A has the usual

right A-module structure and the second H � A has the right A-module given in
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Eq.(3.10). The right inverse of u is given by

v : H �A→ A�H, h⊗ a 7→ S−2(a(1))hS(a(−1))⊗ a(0).

Hence, we can view the second H �A as a right A-module direct summand of the

first H � A. So we obtain that H � A, with the right A-module structure given

in Eq.(3.10), is still projective as a right A-module. It follows that there exits

ζ : H � A → A ⊗ A such that ξ ◦ ζ = idH�A since A ⊗ A → H � A is surjective.

Hence, ξ splits in the category of right A-modules. In particular ξ is a k-split

epimorphism in HYDA.

Let now M ∈ HYDA. Then A⊗A⊗M ∈ HYDA via the structures arising from

A⊗A, that is,

(a⊗ b⊗m) · c = ac⊗ b⊗m;

ρA⊗A⊗M (a⊗ b⊗m) = S−1(a(1))a(−1) ⊗ a(0) ⊗ b⊗m,

for all a, b, c ∈ A and m ∈ M . On the other hand, H � A ⊗M ∈ HYDA via the

structures arising from H �A, that is,

(h� a⊗m) · b = S−1(b(1))hb(−1) ⊗ ab(0) ⊗m;

ρH�A⊗M (h� a⊗m) = h1 ⊗ h2 ⊗ a⊗m,

for all a, b ∈ A, h ∈ H and m ∈M . We obtain that

ξ ⊗ idM : A⊗A⊗M → H �A⊗M

is a k-split epimorphism in HYDA.

Applying HYDA = HM(H ⊗Hop)A, we obtain that the map

f : H �A⊗M →M, h� a⊗m 7→ m(0)γ(S−2(a(1))hS(a(−1)))(m(−1))a(0)

is a k-split epimorphism in HYDA. Hence, the composition

g = f ◦ (ξ ⊗ idM ) : A⊗A⊗M →M,

a⊗ b⊗m 7→ m(0)γ(S−2(b(1))S(b(−1)))(m(−1))b(0)a

is a k-split epimorphism in HYDA. We note that the structure of A⊗A⊗M as an

object in HYDA is of the form A⊗ V , for the k-module V = A⊗M .

To conclude, we have constructed a k-split epimorphism in HYDA

A⊗A⊗M = M1
g−→M −→ 0

such that the adjunction map βM1 for M1 is bijective. As g is k-split and there

exists a total quantum integral γ : H → Hom(H,A), we obtain that g also splits
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in HM. In particular, the sequence

M coH
1

gcoH

−→ M coH −→ 0

is exact. Continuing the resolution with Ker(g) instead of M , we obtain an exact

sequence in HYDA

M2 −→M1 −→M −→ 0

which splits in HM and the adjunction maps for M1 and M2 are bijective. Using

the Five lemma we obtain that the adjunction map for M is bijective. �

Finally we consider a special case. In this case if setting A = H, then A is an

H-bicomodule algebra in a natural way. And we can define the coinvariants of H

as

B = HcoH = {h ∈ H|ρ̃(h) = S−1(13)11 ⊗ a12}

= {h ∈ H|S−1(h3)h1 ⊗ h(2) = S−1(13)11 ⊗ h12},

then B is a subalgebra of H. Hence we can obtain the following result.

Corollary 3.8. Let H be a weak Hopf algebra with a bijective antipode S, B =

HcoH . Assume that

(1) there exists a total quantum integral γ : H → Hom(H,H);

(2) the canonical map

β : H ⊗B H → H �H, h⊗B g 7→ S−1(g3)g1 ⊗ hg2

is surjective. Then the induction functor −⊗BH :MB → HYDH is an equivalence

of categories.
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