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ABSTRACT. In [1] a Levitzki module which we here call an [-prime module was
introduced. In this paper we define and characterize I-prime submodules. Let
N be a submodule of an R-module M. If

VN :={m €M : every l- system of M containingm meets N},

we show that 1.v/N coincides with the intersection £(N) of all I-prime submod-
ules of M containing N. We define the Levitzki radical of an R-module M as
L(M) =1.1/0. Let (M), U(M) and Rad(M) be the prime radical, upper nil
radical and Jacobson radical of M respectively. In general 3(M) C L(M) C
U(M) C Rad(M). If R is commutative, (M) = L(M) = U(M) and if R is
left Artinian, B(M) = L(M) = U(M) = Rad(M). Lastly, we show that the

class of all [-prime modules g M with RM # 0 forms a special class of modules.
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1. Introduction

All modules are left modules, the rings are associative but not necessarily unital.
By I <R and N < M we respectively mean [ is an ideal of a ring R and N is a
submodule of a module M. A submodule P of an R-module M with RM ¢ P is
prime if for all A< R and every N < M such that AN C P, we have AM C P or
N C P. In all our definitions for “prime” submodules P of g M, we shall assume
(without mention) that RM ¢ P. In [10], a generalization of upper nil radical of
rings to modules was done. A submodule P of an R-module M is s-prime if P is
prime and the ring R/(P : M) has no nonzero nil ideals, i.e., U(R/(P : M)) =0
where U is the upper nil radical map. This definition generalizes that of s-prime
ideals in [14, Definition 2.6.5, p.170] and in [16]. Since the upper nil radical of
rings (sum of all nil ideals of a ring) coincides (see [16] ) with the intersection of all
s-prime ideals of R, in [10] we defined the upper nil radical of a module M denoted
by U(M) as the intersection of all s-prime submodules of M. For any unital ring
R, U(rR) =U(R).
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Definition 1.1. [17] An ideal I of a ring R is [-prime if it satisfies one of the

following equivalent statements:

(1) I is a prime ideal and L(R/I) = 0, where L is the Levitzki radical map,
i.e., the ring R/I has no nonzero locally nilpotent ideals;
(i) if a,b & I, then (a)(b) € I where (a) denotes principal ideal and
(ii) if @ &€ I, then (a) is not locally nilpotent modulo T;
(2) given a,b & I, there exists elements ay, az, - ,a, € (a) and
b1,ba, - by € (b) such that for every p > 1 there exists a product of

N > p factors, consisting of als and b;-s, which is not in I.

A set L of elements of a ring R is an l-system [17] if to every element a € L is
assigned a finite number of elements a1, az,- - , @y () € (a), such that the following
condition is satisfied: If a,b € L, then for every m > 1 there exists a product of
N > m factors, consisting of a; and b;’s, which is in L.

From [2], the intersection of all I-prime ideals coincides with the Levitzki radical
of a ring (the sum of all locally nilpotent ideals of a ring). The notion of I-prime
ideals and [-systems of near-rings was defined and studied by Groenewald and
Potgieter in [9]. In this paper we generalize the Levitzki radical of rings to modules
by defining I-prime submodules and having the Levitzki radical £(M) of a module
M as the intersection of all I-prime submodules of M.

2. [-prime submodules

Definition 2.1. A proper submodule P of an R-module M is an [-prime sub-
module if for any A< R, N < M and for every {aj,as, - ,a,} C A there exists
m € N such that for any product aj;as; - - am; of elements from {a1,as,- - ,a,},
a1;a9;  + + G N C P implies N C P or AM C P.

Proposition 2.2. If P < M, then the following statements are equivalent:

(1) P is an l-prime submodule;

(2) P is a prime submodule and for all A< R with AM ¢ P there exists
F ={ay,a2, - ,a,} € A\ (P : M) such that a;ya;e---ai;M € P for all
1 <1 € N where a;; € F;

(3) P is a prime submodule and L(R/(P : M)) = 0;

(4) P is a prime submodule and L(R/(P : N)) =0 for all N < M with N € P;

(5) for allm € M, for each a € R and for every finite set F = {a1, - ,a,} C
(a) there exists n € N such that for any product of elements a;ja; -+ aip
from F, a;1a;9 -+ - aj <m>C P implies m € P or aM C P, where <m>
denotes the submodule of M generated by m;

(6) P is a prime submodule of M and (P : M) is an l-prime ideal of R;
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(7) P is a prime submodule of M and (P : N) is an l-prime ideal of R for all
N < M with N ¢ P.

Proof. (1) = (2) Let A< R, N < M such that AN C P. For any finite
subset {a1,as,---,an} C A, and for any t € N, a;1a;2---axN C P for a;; €
{a1,a2,--ay}. Since P is [-prime we have N C P or AM C P. Hence P is a prime
submodule. Let A< R such that AM € P. Am ¢ P for some m € M. Since P
is [-prime, there exists {a1, a2, - ,a,} C A such that a;1a;2 - - a3 Am € P for any
i > 1, where a;; € A. Hence, as1a:0---aM € P for any ¢ > 1 and a;; € A.

(2) = (1) Let A<R and N < M such that N € P and AM ¢ P. Since P
is prime, (P : M) = (P : N). From our assumption, there exists a finite subset
F ={ay,a9, -+ ,a,} C A such that a;1a;2--a;; M € P for every natural number
i > 1 and a;; € F. Hence, a;10:2---auN € P forall 1 <ie€ N and a;; € . Thus,
P is an [-prime submodule.

(2) < (3) This is clear since L(R/(P : M)) = 0 if and only if R/(P : M) contains
no nonzero locally nilpotent ideals.

(3) = (4) Let P is a prime submodule such that L(R/(P : N) = 0. Now let
N < Psuch that N € P. Since P is a prime submodule, we have (P : N) = (P : M)
and from our assumption L(R/(P : N)) = L(R/(P : M)) = 0.This proves 4.

(4) = (3) Let P is a prime submodule such that L(R/(P: N)=0forall N < P
such that N ¢ P. Since P is a prime submodule and N ¢ P, we have (P : N) =
(P : M) and from our assumption £L(R/(P : N)) = L(R/(P : M)) = 0.This proves
3.

(5) = (1) Let A<R, N < M such that AM ¢ P and N ¢ P. There exists a € A
such that aM ¢ P and m € N \ P. So, there exists F' = {ay,--+ ,a,} C (a) C A
such that a;1 - a;; <m>Z P for all i > 1. Hence a;1a:2---ay;IN € P for all 4 > 1.
Therefore P is [-prime.

(1) = (5) Suppose m € M \ P and a € R such that aM ¢ P. Then (a)M € P
and <m>¢ P. Since P is l-prime there exists F = {a1,---a,} C (a) such that
1050 -+ - az; <m>Z P for all 4 > 1.

(6) = (3) Suppose P is a prime submodule and (P : M) is an [ -prime ideal of
R. By definition of I-prime ideals, (P : M) is a prime ideal and L(R/(P : M)) = 0.
It follows that P is a prime submodule and £L(R/(P : M)) = 0 which is 3.

(3) = (6) Suppose that P is a prime submodule of M and L(R/(P : M)) = 0.
Then (P : M) is a prime ideal of R and L(R/(P : M)) = 0. So, by definition
(P : M) is an l-prime ideal of R.

(6) = (7) Let P be a prime submodule of M and (P : M) an [-prime ideal of R.
Now, let N < M with N € P. Since P is a prime submodule and N ¢ P, we have
(P:N)=(P:M) and from our assumption (P : N) is an [-prime ideal of R.
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(7) = (6). Let P be a prime submodule of M and (P : N)is an [-prime ideal of
R for all N < M with N € P.Since P is a prime submodule and N ¢ P,we have
(P:N)=(P:M)and from our assumption (P : M)is an [-prime ideal of R. O

P is an l-prime submodule of M if and only if M/P is an l-prime module.

Definition 2.3. A module M is prime if the zero submodule of M is a prime
submodule.

Proposition 2.4. If R is a unital ring, then R is l-prime if and only if gR is an
I -prime module.

Proof. We know that R is a prime ring if and only if pR is a prime module. R
prime implies (0 : R) = 0. Hence, whenever R is prime, £L(R) = 0 if and only if
L(R/(0: R)) = 0. It follows that: R is prime and £(R) = 0 if and only if gR is
prime and £(R/(0: R)) =0, i.e., R is l-prime if and only if grR is [-prime. O

Corollary 2.5. For any unital ring R, L(R) = L(rR).

Example 2.6. Any mazimal submodule is l-prime, hence any simple module is

l-prime.
Proposition 2.7. For any submodule P of rM,
s-prime = l-prime = prime.

Proof. Suppose P is prime and U(R/(P : M)) = 0. Since for rings £L C U, we
have L(R/(P : M)) =0. So, P is l-prime. The last implication is trivial. O

Corollary 2.8. For any module M,
B(M) C L(M) CU(M).

Example 2.9. Any strictly prime submodule (as defined by Dauns in [6]) is s-
prime (see [11]). Hence, it is l-prime by Proposition 2.7.

Example 2.10. In [18, Section 2.2], an example of a ring R which is prime and
locally nilpotent was constructed. Hence R is prime but not l-prime. Thus, the

module M = pR is prime but not l-prime.

Example 2.11. In [18, Section 2.3], an example of a prime nil ring R which is
not locally nilpotent was constructed. Hence R is l-prime but not s-prime. Thus,

the module M = grR is l-prime but not s-prime.
Theorem 2.12. For modules over commutative rings,
s-prime < l-prime < prime.

Hence,
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Proof. Follows from Proposition 2.7 and the fact that prime and s-prime are the
same for modules over commutative rings, see [10]. O

3. Semi [-prime submodules

An ideal Z of a ring R is semi s-prime (resp. semi [ -prime) if U(R/I) = 0 (resp.
L(R/I)=0). A submodule P of an R-module M is a semi s-prime [15] submodule
if for all A< R and every N < M with a € A and N € P such that a"N C P
for some n € N, then AN C P. It was shown in [15] that P is a semi s-prime
submodule if and only if #(R/(P: N)) =0 for all N < M with N Z P.

Definition 3.1. P is a semi [-prime submodule of M, if for all A<R, for all N < M
such that N Z P and for every finite subset F' = {aq,a2, -+ ,a,} C A, there exists
T = T(F) € N such that for any product of m elements (m less or equal to T')
consisting of the a;’s we have a;1 - - - @, N C P implies AN C P.

Proposition 3.2. For any submodule P of an R-module M, the following state-
ments are equivalent:

(1) P is a semi l-prime submodule of pM ;
(2) L(R/(P:N))=0 for all N < M with N ¢ P.

Proof. Follows from the definition of a semi I-prime submodule and the notion of
a locally nilpotent ideal. O

Theorem 3.3. A submodule P of gM 1is l-prime if and only if P is prime and

semi l-prime.
Proof. Follows from Proposition 2.2 and Proposition 3.2. (]

Proposition 3.4. For any module p M,
(1) L(M) =n{P : P < M, P l-prime submodule of M} is a semi l-prime
submodule;
(2) P is a semi l-prime submodule of gM if and only if (P : N) is a semi
l-prime ideal of R for any N < M with N € P.

Proof. (1) Let AR, N < M such that AN Z £(M). Then there exists an {-prime
submodule P such that AN Z P. From Proposition 2.2, there exists a finite subset
F ={ai,a2, - ,an} C A\ (P : N) such that a;1a;2---a;; N € Pforall 1 <ieN
with a;; € F. Hence, a;10:2 - a; N € L(M) for all ¢ > 1 with a;; € F.

(2) Follows from Proposition 3.2 and the definition of semi /-prime ideals. O

Definition 3.5. A submodule P of an R-module M is

(1) semiprime [6] if for all a € R and every m € M, if aRam C P then am € P;
(2) classical semiprime [3] if for all A< R and every N < M, if A2N C P then
AN C P.
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Remark 3.6. Classical semiprime submodules are called “semiprime” by Behboodi
in [3].

Proposition 3.7. For any submodule P,

semi s-prime = semi l-prime = classical semiprime.

Proof. Suppose P is a semi s-prime submodule of M, then U(R/(P : N)) =0
for all N < M with N € P. We know £ C U, hence L(R/(P : N)) = 0 for all
N < M with N € P, i.e., P is semi l-prime. Let P be a semi [-prime submodule
of gRM. Suppose A< R and N < M such that AN ¢ P. Then there exists
F = {a1,---an} € A such that for all ¢ > 1, ajnae---,a;N € P for a;; € F.
Hence for i = 2, there exists as;,a12 € F such that agia,oN € P, ie., A2N ¢ P
and hence P is classical semiprime. (I

Proposition 3.8. For modules over a commutative ring,

semi s-prime < semi l-prime < classical semiprime < semiprime.

Proof. Suppose R is commutative and P is classical semiprime. Let A< R and
AN ¢ P for some N < M. Then there is a € A such that aN € P. P semiprime
implies (P : N) is semiprime and because R is commutative (P : N) is completely
semiprime, hence a”™ ¢ (P : N) for all n € N, i.e., a"N € P for all n € N which
shows that P is semi s-prime. The rest follows from Proposition 3.7 and the fact
that for commutative rings the notions of semiprime and classical semiprime are

the same. O

Remark 3.9. We have seen in Proposition 3.4 that any intersection of l-prime
submodules is a semi l-prime submodule. The converse does not hold in general.
For over a commutative ring, prime is the same as l-prime (see Theorem 2.12) and
semiprime is the same as semi l-prime, (see Proposition 3.8). Now, let R = Z[x]
and F=R®R . If f := (2,2) € F and P = 2R + Rx which is a mazimal ideal
of R, then N = Pf is a semiprime submodule of F' which is not an intersection of

prime submodules, see [12, p.3600].

Definition 3.10. Let R be a ring and M an R-module. A nonempty set L C
M\{0} is called an I-system if, for each A<R and for all J, K < M, if (K+J)NL #
and (K + AM) N L # (), then there exists a finite subset F = {aj,a2,---a,} C A
such that K + (ajas2---a;;JJ) N L # 0 for any ¢ > 1 and a;; € F.

It is easy to see that every s-system as defined in [10] is an [-system and any

l-system is an m-system as defined in [4].

Corollary 3.11. Let M be an R-module. A submodule P of M is l-prime if and
only if M\ P is an l-system of M.
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Proof. (=) Suppose L := M\P. Let A<R and K, J < M such that (K+J)NL # 0
and (K+AM)NL # (). Suppose that for every finite subset F' = {a1, a2, --a,} C A
there exists t = ¢(F') € N such that for any product of ¢ elements a;1a;2 - - - a;¢ from
F we have (K + aja42---a3J) N L = (. Hence ajia:2---azJ C P. Since P is
[-prime, J C P or AM C P. It follows that (J+ K)NL =0 or (AM+K)NL =0,
a contradiction.

(<) Suppose A<R, N < M and for every finite subset F' = {a1, a2, -+ ,a,} C A
there exists t = t(F) € N such that for any product of ¢ elements a;1, - - ,a; from
F,a;0:0-a3J CP.IfJZPand AM Z P, JNL # () and AM NL # (. Since
M \ P is an [l-system, there exists a finite subset {b1,ba, -, by} C A such that
bi1bia - by J N L # O for every 4 > 1. This leads to a contradiction. Hence J C P
or AM C P and therefore P is an [-prime submodule of M. O

Lemma 3.12. Let M be an R-module, L C M an l-system and P a submodule of
M mazimal with respect to the property that PN L = (). Then, P is an l-prime
submodule of M.

Proof. Let A<R and J < M. Suppose that for any finite subset F' = {a1, a2, ,an}
C A there exists a natural number n such that for the product of any n elements
i1, 5 Ay from F we have ajiai0---a;J € P. If J € P and AM ¢ P then
(J+P)NL # 0 and (AM + P)NL # (. Since L is an l-system, there exists
{b1,b2, by} C A such that (bj1bia---byJ + P)NL # § for every ¢ > 1 and
bij € {b1,---bm}. But for this finite subset {by,---by,} it follows from above that
there exists a natural number n such that for the product of any n elements from
the set b;j1bsg -+ by C P. Hence PN L # (. Thus, we must have J C P or
AM C P and therefore P must be an [-prime submodule. (I

Definition 3.13. Let R be a ring and M an R-module. For N < M, if there is an

[-prime submodule containing N, then we define
IVN :={me M : every l-system of M containing m meets N}.

We write [../N = M whenever there are no l-prime submodules of M containing
N.

Theorem 3.14. Let M be an R-module and N < M. Then, either IVN =M or
I/ N equals the intersection of all l-prime submodules of M containing N.

Proof. Suppose I.v/N # M. This means
BYN):=n{P : P is an l-prime submodule of M and N C P} # ().

Both I.7/N and N are contained in the same I-prime submodules. By definition of
1.v/N it is clear that N C [.v/N. Hence, any [-prime submodule of M which contains
1.v/N must necessarily contain N. Suppose P is an [-prime submodule of M such
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that N C P, and let t € [.\/N. If t € P, then the complement of P, C(P) in M is
an [-system containing ¢ and therefore we would have C(P)NN # (). However, since
N C P, C(P)N P = () and this contradiction shows that ¢ € P. Hence IVNCP
as we wished to show. From this we have [.v/N C B!(N). Conversely, assume
s € 1.W/N. Then there exists an l-system L such that [ € L and LN N = §. From
Zorn’s lemma, there exists a submodule P O N which is maximal with respect to
PNL = 0. From Lemma 3.12, P is an [-prime submodule of M and [ ¢ P, as
desired. (]

Proposition 3.15. If P < R, then there is an l-prime R -module M with P = (0 :
M) if and only if P is an | -prime ideal of R.

Proof. Suppose M is an I-prime module. Then by Proposition 2.2, P = (0 : M) is
an [-prime ideal of R. For the converse, let P be an [-prime ideal of R. M = R/P
is an R-module with the usual operation and P = (0 : M). (0 : M) l-prime implies
(0: M) is prime and L(R/(0 : M)) = 0. From [8, Proposition 3.14.16] (0 : M) prime
implies M is a prime module. Thus M is a prime module and £L(R/(0: M)) =0
which proves that M is an [-prime module. [

Corollary 3.16. A ring R is an l-prime ring if and only if there exists a faithful

I -prime R-module.

Example 3.17. If R is a domain, then g R is a faithful l-prime module since every

domain is an l-prime ring.

Throughout the remaining part of this section rings have unity and all modules
are unital left modules.

For any module M, we define the Levitzki radical £(M) as £(0), i.e.,
L(0) :={m € M, every l-system in M which contains m also contains 0}.
From Theorem 3.14, we have
LM)=n{K : K <M,M/K is l-prime}

which is a radical by [13, Proposition 1] since I-prime modules are closed under

taking non-zero submodules.

Proposition 3.18. For any R-module M,
(1) L(L(M)) = L(M), i.e., L is idempotent;
(2) L(M) is a characteristic submodule of M ;
(3) If M is projective then L(R)M = L(M).

Proof. Follows from [5, Proposition 1.1.3]. O
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Proposition 3.19. For any M € R-mod,
(1) if M = @ M, is a direct sum of submodules My(\ € A), then
A

L(M) =P L(My)
A
(2) if M =] My is a direct product of submodules Mx(\ € A), then
A
(M) c ] £(my).
A
Proof. Follows from [5, Proposition 1.1.2]. O
4. The radicals £L(rR) and L(R)

Lemma 4.1. For any associative ring R, L(rR) C L(R).

Proof. Let 2 € L(grR) and I be an [-prime ideal of R. From Proposition 3.15,

we have R/I is an [-prime R-module. Hence, € I and we have x € L(R), i.e.,
L(rR) C L(R). O

Remark 4.2. [In general the containment in Lemma 4.1 is strict.

ry
0 0
that (0) is an l-prime submodule of gR. Hence, L(rR) = 0. Now, we have (0: R)g

Example 4.3. Let R ={ : x,y € Za} and M = gR. It is easy to check

is an l-prime ideal of R, (0: R)r # (0). For if b#0, b € Za, then g g R=0.

Hence, L(R) C (0 : R)g. But since (0: R)r(0: R)g =0 C L(R) and L(R) is a
semiprime ideal, we have (0: R)r C L(R). Hence, L(R) = (0: R)r # 0.

Lemma 4.4. For any ring R and any R-module M,
L(R) C (L(M) : M).

Proof. We have (L(M) : M) =(( S:M)= () (S: M), where S is an

S<M S<M
[-prime submodule of M. Since (S : M) is an I-prime ideal of R for each l-prime
submodule S of M, we get L(R) C (L(M) : M). O

Remark 4.5. In general, L(R)M C L(M) even over a commutative ring. For
let R=7Z and M = Zyp~ & Z. Since R is commutative, L(M) = B(M). From [4,
Example 3.4], we have 3(M) = Z,~. But B(R) = L(R) = 0. Hence, 0 = L(R)M C
LOM) = Zpe.

We recall that, the Jacobson radical Rad(M) of a module M is the intersection
of all maximal submodules of M.
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Theorem 4.6. If M is a module over a left Artinian ring R, then
B(M)=L(M)=U(M) = Rad(M).
Proof. Since every maximal submodule is s-prime, we have
U(M) C Rad(M) = Jac(R)M.
Since R is left Artinian £(R) = Jac(R). Hence,

L(M) CU(M) C Rad(M) = Jac(R)M = L(R)M C L(M).

Proposition 4.7. For any ring R, L(R) = (L(rR) : R).

Proof. From Lemma 4.4, L(R) C (L(rR) : R). Since L(rR) C L(R) we have
L(R) C (L(grR) : R) C (L(R) : R). Let x € (L(R) : R). Hence 2R C L(R) =
N P C P for all I-prime ideals P of R. Since xR C P for P [-prime, we

P l-prime in R

have x € P and « € L(R). Hence, (L(R) : R) C L(R). O

Proposition 4.8. For all R-modules M,

(1) LM)={zeM : Rt CLIM)};
(2) if L(R) = R, then L(M) =M.

Proof. (1) Since L(M) < M, we have RL(M) C L(M). Conversely, let x € M
with Rx C L(M). Hence Rx C P for all I-prime submodules P of M. Since P is
also a prime submodule, we have x € P and hence x € L(M).

(2) R= L(R) gives R C (L(M) : M) from Lemma 4.4. Hence RM C L(M) and
from (1), we have M C L(M), i.e., M = L(M). O

Proposition 4.9. Let R be any ring. Then, any of the following conditions implies
L(R) = L(rR).

(1) R is commutative;
(2) x € xR for all x € R, e.g., if R has an identity or R is Von Neumann

reqular.

Proof. (1) Since R is commutative, it follows from Proposition 4.7 and Proposition
4.8 that L(R) C L(rR) C L(R) and L(R) = L(grR).

(2) Let z € L(R), then from Proposition 4.7, xR C L(rR) and since = € zR, we
get © € L(grR) such that L(grR) = L(R). O
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5. A special class of [-prime modules

A class p of associative rings is called a special class if p is hereditary, consists of
prime rings and is closed under essential extensions, cf., [8, p.80]. Andrunakievich
and Rjabuhin in [1] extended this notion to modules and showed that prime mod-
ules, irreducible modules, simple modules, modules without zero divisors, etc form
special classes of modules. De La Rosa and Veldsman in [7] defined a weakly special
class of modules. We follow the definition in [7] of a weakly special class of modules

to define a special class of modules.

Definition 5.1. For a ring R, let Kr be a (possibly empty) class of R-modules.
Let K =U{Kgr : R aring}. K is a special class of modules if it satisfies:

S1. M € Kr and I <R with I C (0: M)g implies M € Kg/;.

S2. If I<R and M € Kg/r , then M € Kg.

S3. M € Kr and I < R with IM # 0 implies M € K.

S4. M € Kg implies RM # 0 and R/(0: M)g is a prime ring.

S5. If I<R and M € Ky, then there exists N € Kg such that (0: N); C (0:

M);y.

Remark 5.2. [t is known that the class of all prime R-modules M with RM # 0
is special hence satisfies the conditions S1 through S5.

Theorem 5.3. Let R be any ring and
Mp:={M : M is an l-prime R-module with RM # 0}.
If M =UMRp, then M is a special class of R-modules.

Proof. S1. Let M € Mp and I <R with IM = 0. M is an R/I-module via
(r4+1I)m =rm. Since M € Mg, M is a prime R-module and L(R/(0: M)gr) = 0.
Since M is also a prime R/I-module we only need to show that L((R/I)/(0 :
M)g/r) = 0. Because

(R/1)/(0: M)y = (R/I)/((0: M)r/T) = R/(0: M)g,
we have L((R/I)/(0: M)g/r) = 0 and therefore M € Mpg/;.
S2. Let I aR and M € Mp,;. Then M is a prime R/I-module and
L((R/1)/(0: M)g,r) =0. From
(R/1)/(0: M)y = (R/I)/((0: M)r/T) = R/(0: M)g,

we get L(R/(0: M)gr) =0. Thus, M € Mg.
S3. Suppose M € Mpg and I < R with IM # 0. Then M is a prime R-module
and L(R/(0: M)gr) =0. Since

I/(0: M) =1/((0: M)gnI)=(I+(0: M)g)/(0: M)g<aR/(0: M)g
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and a Levitzki semisimple class is hereditary, we have £(I/(0: M);) = 0. Hence,
M € Mj. Therefore, M € M;.

S4. Let M € Mp. Hence RM # 0. Since (0 : M)g is an l-prime ideal of R,
R/(0: M)p is an l-prime ring and hence a prime ring.

S5. Let I<aR and M € Mj. Since M is an [-prime I-module, (0 : M); is
an [-prime ideal of I. Now, (0 : M);<I< R and I/(0 : M)r an l-prime ring
implies (0 : M); < R. Choose K/(0: M)r < R/(0 : M) maximal with respect to
I/(0: M)ynK/(0: M)y =0. Then, I/(0: M) = (I+ K)/K<-R/K by [8,
Lemma 3.2.5]. Since I/(0: M);<-R/K and I/(0: M); an l-prime ring R/K is
l[-prime. Let N = R/K. N is an R-module. Clearly, RN # 0. From Proposition
3.15, we have (0: N)gp = K. We show (0: N); C(0: M);. Let € (0: N);. Then
zR/K =0, ie., 2R C K. Now, zR C I N K and from definition of K/(0: M), we
have tR C INK C (0: M);. Hence xtRM = 0 and since zIM C xRM we have
xl C(0: M)y and (0 : M); is a prime ideal of I implies € (0 : M);. Hence,
(ON)[Q(OM)[ O

Proposition 5.4. If M, is the special class of l-prime modules, then the special
radical induced by My on a ring R is L.

Proof. Let R be a ring. From Proposition 3.15, we have L(R) =
N{(0: M)r : M is an l-prime R-module} = N{I<R : I is an [-prime ideal}. O

Acknowledgment. We are grateful to the referee for the valuable comments.

References

[1] V. A Andrunakievich and Ju M. Rjabuhin, Special modules and special radicals,
Soviet Math. Dokl., 3 (1962), 1790-1793. Russian original: Dokl. Akad. Nauk
SSSR., 147 (1962), 1274-1277.

[2] A.M. Babic, Levitzki radical, Doklady Akad. Nauk. SSSR., 126 (1950), 242-243
(Russian).

[3] M. Behboodi, A generalization of Baer’s lower nilradical for modules, J. Alge-
bra Appl., 6 (2007), 337-353.

[4] M. Behboodi, On the prime radical and Baer’s lower nilradical of modules,
Acta Math. Hungar., 122 (2008), 293-306.

[5] L. Bican, T. Kepka and P. Nemec, Rings, modules and preradicals, Lecture
Notes in Pure and Applied Mathematics no.75, Marcel Dekker Inc., New York,
1982.

[6] J. Dauns, Prime modules, J. Reine. Angew. Math., 298 (1978), 156-181.

B. De La Rosa and S. Veldsman, A relationship between ring radicals and

module radicals, Quaest. Math., 17 (1994), 453-467.

=



(8]
[9]

[10]

ON THE LEVITZKI RADICAL OF MODULES 89

B. J. Gardner and R. Wiegandt, Radical Theory of Rings, New York: Marcel
Dekker, 2004.

N. J. Groenewald and P. C. Potgieter, A note on the Levitzki radical of a
near-ring, J. Austral. Math. Soc. (Series A), 36 (1984), 416-420.

N. J. Groenewald and D. Ssevviiri, Kdthe upper nilradical for modules, Acta
Math. Hungar., 138(4) (2013), 295-306.

N. J. Groenewald and D. Ssevviiri, 2-primal modules, J. Algebra Appl., 12(5)
(2013), DOI:10.1142/5021949881250226X.

J. Jenkins and P. F. Smith, On the prime radical of a module over a commu-
tative ring, Comm. Algebra, 20 (1992), 3593-3602.

W. K. Nicholson and J. F. Watters, The strongly prime radical, Proc. Amer.
Math. Soc., 76 (1979), 235-240.

L. H. Rowen, Ring theory, Academic Press, Inc., San Diego, 1991.

D. Ssevviiri, A contribution to the theory of prime modules, PhD Thesis,
Nelson Mandela Metropolitan University, 2012.

A. P. J. Van der Walt, Contributions to ideal theory in general rings, Proc.
Kon. Ned. Akad. Wetensch., Ser. A., 67 (1964), 68-77.

A. P. J. Van der Walt, On the Levitzki nil radical, Archiv Math., XVT (1965),
22-24.

R. Wiegandt, Rings decisive in radical theory, Quaest. Math., 22 (1999), 303-
328.

Nico J. Groenewald

Department of Mathematics and Applied Mathematics

Nelson Mandela Metropolitan University
77000 Port Elizabeth
6031 South Africa

e-mail: nico.groenewald@nmmu.ac.za

David Ssevviiri

Department of Mathematics and Applied Mathematics

Nelson Mandela Metropolitan University
77000 Port Elizabeth
6031 South Africa

e-mail: david.ssevviiri@nmmu.ac.za



