
International Electronic Journal of Algebra

Volume 15 (2014) 101-116

DP-PROJECTIVE MODULES AND DIMENSIONS

Tiwei Zhao

Received: 1 June 2013; Revised: 30 August 2013

Communicated by Abdullah Harmancı

Dedicated to the memory of Professor Efraim P. Armendariz

Abstract. In this paper, we introduce the notion of DP-projective modules.

It is shown that a left R-module M over a ring R is DP-projective if and only if

it is a cokernel of a Ding projective preenvelope f : A → B with B projective.

It is also shown that a ring R is semisimple if and only if every module is

DP-projective. Moreover, we investigate (global) DP-projective dimensions of

modules and rings. It is shown that l.DP -dim(R) = l.DP -ID(R). In addition,

other applications of those dimensions defined in this way are presented.
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1. Introduction

Throughout this article, R is an associative ring with identity and all modules

are unitary. Unless stated otherwise, an R-module will be understood to be a left

R-module. As usual, pdR(M), idR(M) and fdR(M) will denote the projective,

injective and flat dimensions of a left R-module M , respectively and l.gldim(R)

and w.gldim(R) denote the left global dimension and weak global dimension of R,

respectively. For an R-module M , E(M) and M∗ stand for the injective envelope

and character module of M , respectively. For unexplained concepts and notations,

we refer the reader to [6,8,13,15].

In [8], Gillespie introduced the notions of Ding projective, Ding injective and

Ding flat modules and used techniques of Enochs et al to show that Ding modules

have properties analogous to Gorenstein modules. In [11], it is shown that the

Ding flat modules are nothing more than the Gorenstein flat modules. Moreover,

the Ding projective and Ding injective modules, as special cases of the Gorenstein

projective and Gorenstein injective modules, were introduced and studied by Ding

et al in [5] and [11] as strongly Gorenstein flat and Gorenstein FP -injective modules

respectively. These two classes of modules over coherent rings possess many nice

properties analogous to those of Gorenstein projective and Gorenstein injective

modules over Noetherian rings. In [15], Yang described how the homological theory

on modules over a Gorenstein ring generalizes to a homological theory on modules
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over a Ding-Chen ring. Inspired by [7], we will introduce concepts of DP-projective

modules, which will be useful to study the Ding projective preenvelope.

In Section 2, we give some terminology and some preliminary results. In Sec-

tion 3, we give the concept of DP-projective modules, and present some of the

general properties. We show that a left R-module M is DP-projective if and only

if it is a cokernel of a Ding projective preenvelope A → B with B projective.

We also show that a ring R is semisimple if and only if every module is DP-

projective. In Section 4, we give the notions of the DP-projective dimensions of

an R-module M and the global DP-projective dimensions of a ring R denoted by

l.DP -dim(R) = sup{l.DP -pdR(M) | M is a left R-module}. Moreover, we define

the so-called “global” dimensions of a ring R:

l.DP -ID(R) = sup{idRM |M is any Ding projective left R-module}

and show that l.DP -dim(R) = l.DP -ID(R). In addition, other applications of

those dimensions defined in this way are presented.

2. Preliminaries

In this section, we first recall some notions and terminologies, which are needed

in the following section.

Definition 2.1. ([8]) Let R be a ring. A left R-module M is called Ding projective

if there exists an exact sequence of projective left R-modules

· · · // P1
// P0

// P 0 // P 1 // · · ·

with M = Ker(P 0 → P 1) and which remains exact after applying HomR(−, F ) for

any flat left R-module F .

A left R-module M is called Ding injective if there exists an exact sequence of

injective modules

· · · // I1 // I0 // I0 // I1 // · · ·

with M = Ker(I0 → I1) and which remains exact after applying HomR(E,−) for

any FP -injective module E.

Clearly, every projective left R-module is Ding projective and every Ding projec-

tive left R-module is Gorenstein projective. It follows from [8, Corollary 4.6] Ding

projective left R-modules coincide with Gerenstein projective left R-modules over a

Gorenstein ring. Also, by [6, Proposition 10.2.6], a finitely presented left R-module

is Ding projective if and only if it is Gorenstein projective.

Note that Ding projective left R-modules were introduced and studied by Ding

et al in [5] as strongly Gorenstein flat left R-modules. For more properties of Ding

projective modules, we refer the reader to [5,8,12,14,15,16,17].
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Definition 2.2. ([15]) Let R be a ring. Given a left R-module M . Let l.DpdR(M)

denote inf{n | there exists an exact sequence 0 → Dn → · · · → D1 → D0 →
M → 0 with Di Ding projective for any 0 ≤ i ≤ n} and call l.DpdR(M) the Ding

projective dimension of M . If no such n exists, then set l.DpdR(M) =∞.

Next we give homological descriptions of the Ding projective dimension of mod-

ules over arbitrary associative rings.

Lemma 2.3. ([14, Proposition 2.8]) Let R be a ring, n a non-negative integer and

M a left R-module with finite Ding projective dimension. Then the following are

equivalent:

(1) l.DpdR(M) ≤ n;

(2) ExtiR(M,Q) = 0 for any R-module Q with finite flat dimension and i ≥ n+1;

(3) ExtiR(M,F ) = 0 for any flat R-module F and i ≥ n + 1;

(4) For every exact sequence

0 // Kn
// Dn−1 // · · · // D1

// D0
// M // 0

with Di Ding projective, Kn is Ding projective.

Recall from [7] that a left R-module M is called strongly copure projective if

Exti+1
R (M,F ) = 0 for all flat left R-modules F and all i ≥ 0. Consequently, we

have the following results.

Corollary 2.4. Let M be a left R-module with finite Ding projective dimension.

Then a left R-module M is Ding projective if and only if it is strongly copure

projective.

Definition 2.5. ([6]) Let R be a ring and F a class of R-modules. By an F-

preenvelope of an R-module M , we mean a morphism ϕ : M → F , where F ∈ F
such that for any morphism f : M → F

′
with F

′ ∈ F , there is a morphism

g : F → F
′

such that g ◦ ϕ = f . If furthermore, when F
′

= F and f = ϕ, the

only such g are automorphisms of F , then ϕ : M → F is called an F-envelope of

M . Dually, we have the definition of F-(pre)cover of an R-module. Note that F-

envelopes and F-covers may not exist in general, but if they exist, they are unique

up to isomorphism.

Definition 2.6. ([13]) Let R be a ring. Given a left R-module M . A left R-module

Kn is called the n-th syzygy of M if there is an exact sequence:

0 // Kn
// Pn−1 // · · · // P1

// P0
// M // 0

with each Pi projective for 0 ≤ i ≤ n− 1.

Dually, one can define the notion of the n-th cosyzygy of a left R-module M.
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Similarly, if each Pi is Ding projective left R-module in the above sequence, then

we call Kn the n-th Ding syzygy of M .

In homological algebra, semisimple rings play an important role. By [13, Propo-

sition 4.5], a ring R is semisimple if and only if every left R-module is projective,

if and only if every left R-module is injective. Here, we also give a description of

semisimple rings with respect to Ding projective module. For convenience, we give

this result and its proof.

Proposition 2.7. A ring R is semisimple if and only if every Ding projective left

R-module is injective.

Proof. ⇒ It is obvious by [13, Proposition 4.5].

⇐ Let N be any left R-module. Note that every projective module is Ding

projective, and hence every projective module is injective by the hypothesis. Thus

by [1, Theorem 31.9] R is a quasi-Frobenius ring. By [5, Proposition 2.16], N is

Ding projective. By the hypothesis again, N is injective, that is, every module is

injective. Thus R is semisimple. �

3. The DP-projective modules

We begin with the following definition:

Definition 3.1. Let R be a ring. A left R-module M is called DP-projective if

Ext1R(M,D) = 0 for any Ding projective left R-module D.

By the definition, we have the following result.

Lemma 3.2. Let R be a ring. Then the class of DP-projective left R-modules is

closed under extensions, direct sums and direct summands.

Clearly, every projective module is DP-projective, but the converse is not true

in general as shown in the following.

Proposition 3.3. Let R be a ring. Then a left R-module M is projective if and

only if M is DP-projective and l.DpdR(M) ≤ 1.

Proof. ⇒ It is trivial.

⇐ Let M be a DP-projective left R-module. Then there is an exact sequence

0 → K → P → M → 0 of left R-modules with P projective. Note that since

l.DpdR(M) ≤ 1, K is Ding projective by Lemma 2.3. By Definition 3.1, Ext1R(M,K) =

0, and so 0 → K → P → M → 0 is split. Therefore M is projective as a direct

summand of P . �

Proposition 3.4. Let S and R be two rings. If M is a DP-projective S-R-module

and N a projective left R-module, then M ⊗R N is DP-projective left S-module.
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Proof. It follows from the isomorphism: ExtnS(M⊗RN,L) ∼= HomR(N,ExtnS(M,L))

for any left S-module L. �

Next we give some characterizations of DP-projective modules.

Proposition 3.5. Let R be a ring and M a left R-module. Then the following are

equivalent:

(1) M is DP-projective;

(2) For every exact sequence 0 // L
f // N // M // 0 , where N is Ding

projective, L→ N is a Ding projective preenvelope of L;

(3) M is a cokernel of a Ding projective preenvelope g : A→ B with B projective;

(4) The functor HomR(M,−) is exact with respect to each exact sequence

0 // A
u // B

v // C // 0

with A Ding projective.

Proof. (1)⇒(2) Assume M is DP-projective. For every exact sequence

0 // L
f // N // M // 0 ,

where N is Ding projective, applying HomR(−, D) with D Ding projective, we have

the following exact sequence

HomR(N,D)
f∗ // HomR(L,D) // Ext1R(M,D) .

By Definition 3.1, Ext1R(M,D) = 0, and hence HomR(N,D) → HomR(L,D) is

epimorphism, that is, for any h : L → D, there exists h′ : N → D such that

f∗(h′) = h′f = h. Hence f : L→ N is a Ding projective preenvelope of L.

(2)⇒(3) It is trivial.

(3)⇒(1) By the hypothesis, there is an exact sequence 0 // A // B // M // 0 .

Then for any Ding projective left R-module D, we have the following exact sequence

HomR(B,D) // HomR(A,D) // Ext1R(M,D) // Ext1R(B,D) = 0 .

On the other hand, since g : A→ B is a Ding projective preenvelope,

HomR(B,D) // HomR(A,D) // 0

is exact. Thus Ext1R(M,D) = 0 and hence M is DP-projective.

(1) ⇒ (4) Consider each exact sequence 0 // A
u // B

v // C // 0 with A

Ding projective. Applying the functor HomR(M,−), we have the following exact

sequence

0 // HomR(M,A)
u∗ // HomR(M,B)

v∗ // HomR(M,C) // Ext1R(M,A) = 0 ,

which induces that HomR(M,−) is exact whenever M is DP-projective.
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(4) ⇒ (1) For any Ding projective left R-module D, there exists a short exact

sequence

0 // D // E // L // 0

with E injective, which induces the following exact sequence

HomR(M,E) // HomR(M,L) // Ext1R(M,D) // Ext1R(M,E) = 0 .

By (4), HomR(M,E) // HomR(M,L) // 0 is exact. So Ext1R(M,D) = 0 for

any Ding projective left R-module D. Thus M is DP-projective. �

Recall from [6] that a left R-module is called coreduced if it has no nonzero

projective quotient modules.

Corollary 3.6. Let R be a ring. Then for any short exact sequence 0→ L→ P →
M → 0 with P projective, if f : L → P is a Ding projective envelope, then M is

coreduced DP-projective.

Proof. By Proposition 3.5, M is DP-projective, so it suffices to show that M is

coreduced. Assume that Q is a projective quotient module of M , then P = Q⊕RN

for some left R-module N . Let p : P → N is the projection and i : N → P the

inclusion. Then ipf = f since f(L) = N . Hence ip is an isomorphism since f is

an envelope. This implies that i is epic and so Q = 0, which means that M is

coreduced. �

Proposition 3.7. Let R be a ring and M a left R-module. If ExtiR(M,D) = 0 for

any i with 1 ≤ i ≤ n + 1 and any Ding projective left R-module D, then every k-th

syzygy of M is DP-projective for 0 ≤ k ≤ n.

Proof. Let Lk be a k-th syzygy of M . Then we have the following exact sequence

0 // Lk
// Pk−1 // · · · // P1

// P0
// M // 0

with each Pi, 0 ≤ i ≤ k − 1 projective. For any Ding projective left R-module D,

we have that Ext1R(Lk, D) ∼= Extk+1
R (M,D). Note that Extk+1

R (M,D) = 0 by the

hypothesis, and so Ext1R(Lk, D) = 0, which means that Lk is DP-projective. �

We will call a left R-module M strongly DP-projective if ExtiR(M,D) = 0 for

any Ding projective left R-module D and any i ≥ 1.

Remark 3.8. Let R be a ring. Then the class of strongly DP-projective left R-

modules is closed under extensions, direct sums and direct summands.

Proposition 3.9. Let R be a ring and M a left R-module. If M is strongly DP-

projective, then Ext1R(M,N) = 0 for any left R-module N with finite Ding projective

dimension.
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Proof. Assume that l.DpdR(N) = n <∞. Then there exists an exact sequence

0 // Dn
// · · · // D1

// D0
// N // 0

such that each Di is Ding projective. For strongly DP-projective left R-module M ,

let Ki be i-th Ding syzygy of N , then we have that

Ext1R(M,N) ∼= Ext2R(M,K1) ∼= · · · ∼= Extn+1
R (M,Dn) = 0.

�

Clearly, every projective module is strongly DP-projective. However, the con-

verse is not true in general.

Proposition 3.10. Let R be a ring and M a left R-module. Then M is projective

if and only if M is strongly DP-projective and l.DpdR(M) <∞.

Proof. ⇒ It is trivial.

⇐ First we have an exact sequence 0 // K // P // M // 0 with P projec-

tive. Since l.DpdR(M) <∞, l.DpdR(K) <∞. By Proposition 3.9, Ext1R(M,K) =

0, and so the above sequence is split. Therefore, M is projective as a direct sum-

mand of P , as desired. �

This shows that if gl l.Dpd(R) < ∞, then projective modules coincide with

strongly DP-projective modules, where gl l.Dpd(R) is the global Ding projective

dimension of R defined by

gl l.Dpd(R) = sup{l.DpdR(M) |M is any left R-module}.

Recall from [3] that a module M is called fp-Ω1-module if there is a projective

resolution

· · · // P2
// P1

d1 // P0
// M // 0

such that Ω1 = Im(P1 → P0) is finitely presented.

Next, we will give a characterization of DP-projective modules under the as-

sumption of fp-Ω1-module.

Lemma 3.11. Let R be a left coherent ring and M an fp-Ω1-module. Then M is

projective if and only if Ext1R(M,N) = 0 for any left finitely presented R-module

N .

Proof. ⇐ Let G be a finitely generated R-module. Then we have an exact se-

quence 0 // K // F // G // 0 with F finitely generated free and K finitely

presented. By [13, Example 5.32], the family {Ki}i∈I of all the finitely generated

submodules of K is a directed set and lim−→Ki = K. Moreover, by [13, Example

5.21], we have that G ∼= lim−→(F/Ki). Since R is left coherent, F/Ki is finitely pre-

sented for each i ∈ I, so Ext1R(M,F/Ki) = 0 by the hypothesis. In addition, since
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M is an fp-Ω1-module, the functor Ext1R(M,−) commutes with direct limits by [3,

Theorem 2.3], and so

Ext1R(M,G) ∼= Ext1R(M, lim−→(F/Ki)) ∼= lim−→Ext1R(M,F/Ki) = 0.

Similarly, using [13, Example 5.32] and [3, Theorem 2.3] again, we can obtain

Ext1R(M,L) = 0 for any left R-module L, and so M is projective.

⇒ It is trivial. �

Proposition 3.12. Let R be an n-FC ring and M an fp-Ω1-module. Then the

following are equivalent:

(1) M is strongly DP-projective;

(2) Ext1R(M,N) = 0 for any finitely presented left R-module N ;

Proof. (1)⇒(2) Assume that N is a finitely presented left R-module, then

l.DpdR(N) ≤ n by [5, Theorem 3.6] since R is n-FC ring. Hence we have the

following exact sequence

0 // Dn
// · · · // D1

// D0
// N // 0

with each Di, 0 ≤ i ≤ n, Ding projective. Hence we have Ext1R(M,N) ∼=
Extn+1

R (M,Dn). By (1), Extn+1
R (M,Dn) = 0, and so Ext1R(M,N) = 0 for any

finitely presented left R-module N .

(2)⇒(1) By Lemma 3.11, M is projective. Note that every projective module is

strongly DP-projective. Thus (1) holds. �

Theorem 3.13. Let R be a ring. Then the following are equivalent:

(1) Every Ding projective module is projective;

(2) Every Ding projective module is DP-projective;

(3) Every Ding projective module is strongly DP-projective.

Proof. (1)⇒(3) It follows from the fact that every projective module is strongly

DP-projective.

(3)⇒(2) It follows from the fact that every stronglyDP-projective isDP-projective.

(2)⇒(1) Let D be any Ding projective left R-module. Then there exists an exact

sequence 0 // K // P // D // 0 such that P is projective. Since D is Ding

projective, K is also Ding projective by [16, Theorem 2.6]. On the other hand, D

is DP-projective by (2), so Ext1R(D,K) = 0, i.e. the above exact sequence is split.

Therefore, D is projective as a direct summand of P , as desired. �

Now we conclude this section with a description of semisimple rings.

Theorem 3.14. Let R be a ring. Then the following are equivalent:

(1) R is semisimple;

(2) Every module is DP-projective;

(3) Every module is strongly DP-projective.
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Proof. (1)⇒(3) Assume R is semisimple, then every module is projective, and

hence strongly DP-projective.

(3)⇒(2) It follows from the fact that every strongly DP-projective module is

DP-projective.

(2)⇒(1) Let D be a Ding projective module. For any left R-module M , M

is DP-projective by the hypothesis, and so Ext1R(M,D) = 0. This implies D is

injective, that is, every Ding projective module is injective. By Proposition 2.7, R

is semisimple, as desired. �

4. The DP-projective dimensions of modules and rings

We know that the homological dimension is a valuable tool in homological al-

gebra and a number of well-known theorems can be reformulated in terms of the

homological dimension. Therefore, it is interesting and valuable to study the ho-

mological dimension in details.

We begin with the following definition.

Definition 4.1. Let R be a ring. The left DP-projective dimension, l.DP -pdR(M),

of a left R-module M is defined to be the smallest positive integer n such that

Extn+1
R (M,D) = 0 for any Ding projective left R-module D. The left global DP-

projective dimension, l.DP -dim(R), of R is defined as

l.DP -dim(R) = sup{l.DP -pdR(M)|M is a left R-module}.

Similarly, we can define r.DP -dim(R). If R is commutative, we drop r and l.

If M is strongly DP-projective, we set l.DP -pdR(M) = 0.

Remark 4.2. (1) By Theorem 3.14, l.DP -dim(R) = 0 if and only if R is semisim-

ple, that is, the left global DP-projective dimension measures how far away a ring

is from being semisimple.

(2) An equivalent description of the left DP-projective dimension is that

l.DP -pdR(M) = sup{n | ExtnR(M,D) 6= 0 for some Ding projective left R-module D}.

Applying Remark 4.2(2), we have the following results.

Proposition 4.3. Let R be a ring and M a left R-module. If pdR(M) < ∞,

then l.DP -pdR(M) = pdR(M). Consequently, if l.gldim(R) < ∞, then l.DP -

dim(R) = l.gldim(R).

Proof. Clearly, l.DP -pdR(M) ≤ pdR(M). Conversely, suppose that pdR(M) =

m < ∞. Then we have ExtmR (M,N) 6= 0 for some left R-module N . For module

N , we have an exact sequence of left R-module 0 // K // P
g // N // 0 with
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P projective, which induces the following exact sequence

ExtmR (M,P )
Extm

R (M,g)
// ExtmR (M,N) // Extm+1

R (M,K) .

Extm+1
R (M,K) = 0 since pdR(M) = m, so ExtmR (M, g) is an epimorphism. Thus

ExtmR (M,N) 6= 0 implies ExtmR (M,P ) 6= 0, which means l.DP -pdR(M) ≥ m, as

desired. �

Proposition 4.4. Let R be a ring and M a left R-module with finite DP-projective

dimension. Then the following are equivalent:

(1) l.DP -pdR(M) ≤ n;

(2) Extn+i
R (M,D) = 0 for all Ding projective left R-modules D and all i ≥ 1;

(3) For every exact sequence

0 // Ln
// Pn−1 // · · · // P1

// P0
// M // 0 ,

where Pi, 0 ≤ i ≤ n− 1 are projective, then Ln is strongly DP-projective;

(4) There exists an exact sequence

0 // P̃n
// P̃n−1 // · · · // P̃1

// P̃0
// M // 0

with each P̃i strongly DP-projective.

Proof. (1)⇔(2) are easy.

(2)⇒(3) For every exact sequence

0 // Ln
// Pn−1 // · · · // P1

// P0
// M // 0

where Pi, 0 ≤ i ≤ n− 1 are projective, we have

ExtiR(Ln, D) ∼= Exti+n
R (M,D)

for any Ding projective left R-module D and for all i ≥ 1. By (2), ExtiR(Ln, D) ∼=
Exti+n

R (M,D) = 0, and hence Ln is strongly DP-projective.

(3)⇒(4) It follows from the fact that every projective module is strongly DP-

projective.

(4)⇒(1) For every exact sequence

0 // P̃n
// P̃n−1 // · · · // P̃1

// P̃0
// M // 0

with each P̃i strongly DP-projective. Since each P̃i is strongly DP-projective, we

have Extn+1
R (M,D) ∼= Ext1R(P̃n, D) = 0 for any Ding projective module D. So

l.DP -pdR(M) ≤ n. �

In [4], Ding and Chen defined a “global” dimension r.IFD(R) as

r.IFD(R) = sup{fdR(E)|E is an injective right R-module}
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and presented some nice properties. Motivated by this work, we define the following

so-called “global” dimension of rings.

Definition 4.5. Let R be a ring, we define two “global” dimensions of R as follows:

l.DP -ID(R) = sup{idR(D) | D is any Ding projective left R-module};

l.DP -DID(R) = sup{DidR(D) | D is any Ding projective left R-module}.

Firstly, we have the following results.

Proposition 4.6. Let R be a ring. Then

(1) l.DP -ID(R) = sup{idR(M)|M is any left R-module with DpdR(M) <∞};
(2) l.DP -DID(R) = sup{DidR(M)|M is any left R-module with DpdR(M) <

∞}.

Proof. (1) It is clear that

l.DP -ID(R) ≤ sup{idR(M)|M is any left R-module with DpdR(M) <∞}.

So we only need to show that

sup{idR(M)|M is any left R-module with DpdR(M) <∞} ≤ l.DP -ID(R).

If l.DP -ID(R) = ∞, then we have completed the proof. So we assume that

l.DP -ID(R) < ∞. For any left R-module M with DpdR(M) = n < ∞, there

exists an exact sequence

0 // Dn
// · · · // D1

// D0
// M // 0

with each Di Ding projective. Clearly, idR(Di) ≤ l.DP -ID(R). Let L−1 =

M , Li = Ker(Di → Di−1), Ln−1 = Dn, then for every short exact sequence

0 // Li
// Di

// Li−1 // 0 , we have the fact that idR(Li) ≤ l.DP -ID(R)

and idR(Di) ≤ l.DP -ID(R) imply idR(Li−1) ≤ l.DP -ID(R), and hence idR(M) ≤
l.DP -ID(R), as desired.

The proof of (2) is similar to that of (1), so we omit it here. �

Next we give a relation of the left global DP-projective dimension l.DP -dim(R)

and l.DP -ID(R).

Proposition 4.7. Let R be a ring. Then l.DP -dim(R) = l.DP -ID(R). More-

over, if l.DP -dim(R) < ∞, then l.DP -dim(R) = l.DP -ID(R) ≤ sup{pdR(M) |
M is any Ding injective left R-module}.

Proof. We first show that l.DP -dim(R) ≤ l.DP -ID(R). If l.DP -ID(R) = ∞,

then we have completed the proof. So we assume that l.DP -ID(R) = m < ∞.

Let M be a left R-module, then Extm+1
R (M,D) = 0 for any Ding projective left

R-module D since idR(D) ≤ m by the hypothesis, and hence l.DP -pdR(M) ≤ m.

This show that l.DP -dim(R) ≤ m = l.DP -ID(R).
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Now we show that l.DP -ID(R) ≤ l.DP -dim(R). Indeed, assume that

l.DP -dim(R) = n < ∞. For any Ding projective left R-module D, let M be any

left R-module, it follows that l.DP -pdR(M) ≤ n, and so Extn+1
R (M,D) = 0, which

induces that idR(D) ≤ n. Thus l.DP -ID(R) ≤ n = l.DP -dim(R), as desired.

Next, we only need to show that

l.DP -ID(R) ≤ sup{pdR(M)|M is any Ding injective left R-module}.

If sup{pdR(M)|M is any Ding injective left R-module} = ∞, then the inequality

holds since l.DP -dim(R) <∞. So we assume that

sup{pdR(M)|M is any Ding injective left R-module} = m <∞.

Let D be a Ding projective left R-module. Then we may assume idR(D) =

n < ∞ since l.DP -ID(R) = l.DP -dim(R) < ∞. We claim that n ≤ m. Oth-

erwise, let n > m. For any left R-module L, we have a short exact sequence

0 // L // E // F // 0 with E injective, which induces the following exact

sequence

ExtnR(E,D)→ ExtnR(L,D)→ Extn+1
R (F,D).

Since E is Ding injective, pdR(E) ≤ m < n and hence ExtnR(E,D) = 0. Also

since idR(D) = n, Extn+1
R (F,D) = 0. Thus ExtnR(L,D) = 0, which induces that

idR(D) ≤ n− 1. This is a contradiction. Therefore n ≤ m, as desired. �

Corollary 4.8. Let R be a ring. Then the following are equivalent:

(1) l.DP -dim(R) ≤ 1;

(2) Every Ding projective left R-module is of injective dimension at most 1;

(3) Every submodule of a DP-projective left R-module is DP-projective;

(4) Every submodule of a projective left R-module is DP-projective;

(5) Every submodule of a strongly DP-projective left R-module is strongly DP-

projective;

(6) Every submodule of a projective left R-module is strongly DP-projective.

Proof. (1)⇔(2) is trivial by Proposition 4.7.

(2)⇒(3) Let L be a submodule of a DP-projective left R-module M . Then we

have the following exact sequence

Ext1R(M,D) // Ext1R(L,D) // Ext2R(M/L,D)

for any Ding projective module D. Ext1R(M,D) = 0 since M is DP-projective and

Ext2R(M/L,D) = 0 since idR(D) ≤ 1 by the hypothesis. Thus Ext1R(L,D) = 0,

and hence L is DP-projective, as desired.

(3)⇒(4) is trivial.
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(4)⇒(1) For any left R-module M , consider an exact sequence of left R-modules

0 // K // P // M // 0 with P projective, we have the following exact se-

quence

Ext1R(K,D) // Ext2R(M,D) // Ext2R(P,D)

for any Ding projective module D. Ext1R(K,D) = 0 since K is DP-projective as

a submodule of P by (4) and Ext2R(P,D) = 0. Thus Ext2R(M,D) = 0, and hence

l.DP -pdR(M) ≤ 1. Therefore l.DP -dim(R) ≤ 1.

(5)⇒(6) It follows from the fact that every projective module is strongly DP-

projective.

(6)⇒(5) Let M be a strongly DP-projective left R-module and K a submodule

of M . Then we have an exact sequence 0 // K ′ // P // M/K // 0 with P

projective. Consider the following pull-back diagram:

0 0

↓ ↓
K ′ = K ′

↓ ↓
0 −→ K −→ N −→ P −→ 0

‖ ↓ ↓
0 −→ K −→ M −→ M/K −→ 0

↓ ↓
0 0

By (6), K ′ is strongly DP-projective as a submodule of P . Thus N is strongly DP-

projective by Remark 3.8. Now for the exact sequence 0 // K // N // P // 0

and any Ding projective R-module D, we have the following exact sequence

0 = ExtiR(N,D) // ExtiR(K,D) // Exti+1
R (P,D) = 0 ,

and hence ExtiR(K,D) = 0 for all i ≥ 1. Therefore, K is strongly DP-projective,

as desired.

(1)⇒(6) Let P be a projective left R-module and K a submodule of P . For any

Ding projective left R-module D, the exact sequence 0 // K // P // P/K // 0

induces the following exact sequence ExtiR(P,D) // ExtiR(K,D) // Exti+1
R (P/K,D)

for all i ≥ 1. Here, ExtiR(P,D) = 0 since P is projective and Exti+1
R (P/K,D) = 0

by (1). Therefore, ExtiR(K,D) = 0 and hence K is strongly DP-projective.

(6)⇒(4) It is trivial. �

It is well known that the left global dimension l.gldim(R) ≤ 1 of a left hereditary

ring R. Now we give another characterization of hereditary rings as shown in the

following:
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Corollary 4.9. A ring R is left hereditary if and only if l.DP -dim(R) ≤ 1 and

every DP-projective left R-module is projective.

Proof. If R is left hereditary, then every submodule of projective modules is pro-

jective. By Corollary 4.8, DP -dim(R) ≤ 1. So it suffices to show that every DP-

projective left R-module is projective. Let M be a DP-projective left R-module.

For any left R-module N , consider the exact sequence 0 // K // P // N // 0

with P projective, we have the following exact sequence

Ext1R(M,P ) // Ext1R(M,N) // Ext2R(M,K) .

Since R is left hereditary, Ext2R(M,K) = 0 and since P is DP-projective, clearly,

Ext1R(M,P ) = 0. Thus Ext1R(M,N) = 0, and hence M is projective, as desired.

Conversely, for any left R-module M , consider a short exact sequence

0 // K // P // M // 0

with P projective. By Corollary 4.8, K is DP-projective, and so K is projective

by the hypothesis. Thus pdR(M) ≤ 1 and hence R is hereditary. �

Theorem 4.10. Let R be a commutative noetherian ring and n a non-negative

integer. Then the following are equivalent:

(1) l.DP -dim(R) ≤ n;

(2) For any Ding projective R-module D and any flat R-module F , idR(D ⊗R

F ) ≤ n.

Proof. (1)⇒(2) For any Ding projective R-module D, since l.DP -dim(R) ≤ n,

then idR(D) ≤ n by Proposition 4.7. So we have an exact sequence

0 // D // E1 // · · · // En−1 // En // 0

with each Ei injective. Then for any flat module F , we have the following exact

sequence

0 // D ⊗R F // E1 ⊗R F // · · · // En−1 ⊗R F // En ⊗R F // 0 .

Note that each Ei⊗RF is injective by [9, Theorem 1.3], which induces that idR(D⊗
F ) ≤ n.

(2)⇒(1) It is trivial by setting F = R and by Proposition 4.7. �

Corollary 4.11. Let R be a commutative noetherian ring. Then R is a semisimple

ring if and only if D⊗RF is injective for any Ding projective R-module D and any

flat R-module F .

We conclude this paper with the following results. Let R be a ring. Let

l.P ID(R) = sup{idR(M) |M is a projective left R-module}.
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Proposition 4.12. Let R be any ring. Then

l.P ID(R) ≤ l.DP -dim(R) ≤ l.gldim(R).

Proof. By Proposition 4.7, l.DP -dim(R) ≤ l.gldim(R). So it suffices to prove

l.P ID(R) ≤ l.DP -dim(R). Assume that l.DP -dim(R) = n < ∞. Let M be a

projective left R-module with idR(M) = m <∞. We claim that m ≤ n. Otherwise,

let m > n. Let N be any left R-module, then there exists a short exact sequence

0 // K // P // N // 0 with P projective, which induces the following exact

sequence

ExtmR (P,M) // ExtmR (K,M) // Extm+1
R (N,M) .

Note that ExtmR (P,M) = 0 since P is projective and Extm+1
R (N,M) = 0 since

idR(M) = m. So ExtmR (K,M) = 0, which induces idR(M) < m. This is a contra-

diction. So m ≤ n and hence l.P ID(R) ≤ l.DP -dim(R). �

Recall from [2] that the left finitistic projective dimension of a ring R is defined

as

l.FPD(R) = sup{pdR(M) |M is a left R-module with pdR(M) <∞}.

Next we give the relations between l.FPD(R), l.DP -dim(R) and l.gldim(R).

Proposition 4.13. Let R be a ring. Then we have

l.FPD(R) ≤ l.DP -dim(R) ≤ l.gldim(R)

with equality if w.gldim(R) <∞.

Proof. Clearly, it only need to show l.FPD(R) ≤ l.DP -dim(R). Assume that

l.DP -dim(R) = n < ∞. Let Q be a left R-module with pdR(Q) = m < ∞. We

claim that m ≤ n. Otherwise, let m > n. For any left R-module N , we have an

exact sequence 0 // K // P // N // 0 with P projective, which induces the

following exact sequence

ExtmR (Q,P ) // ExtmR (Q,N) // Extm+1
R (Q,K) .

Note that ExtmR (Q,P ) = 0 since m > n, and Extm+1
R (Q,K) = 0 since pdR(Q) = m.

Thus ExtmR (Q,N) = 0, which induces pdR(Q) < m. This is a contradiction. Thus

m ≤ n, as desired.

By [10, Corollary 4], if R is a ring for which w.gldim(R) <∞, then l.FPD(R) =

l.gldim(R). �
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