
International Electronic Journal of Algebra

Volume 15 (2014) 196-207

CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL

RINGS

Johan Richter and Sergei Silvestrov

Received: 28 October 2013; Revised: 16 December 2013

Communicated by Pınar Aydoğdu
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Abstract. In this paper, we consider centralizers of single elements in certain

Ore extensions, with a non-invertible endomorphism, of the ring of polynomials

in one variable over a field. We show that they are commutative and finitely

generated as algebras. We also show that for certain classes of elements their

centralizer is singly generated as an algebra.
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1. Introduction

This article is concerned with centralizers of elements in Ore extensions of the

form K[y][x;σ, δ], where K is a field, σ is an K-algebra endomorphism such that

deg(σ(y)) > 1 and δ is a K-linear σ-derivation.

We now remind the reader what an Ore extension is. An Ore extension of a ring

R is the additive group of polynomials R[x], equipped with a new multiplication,

such that xr = σ(r)x+ δ(r) for all r ∈ R, for some functions σ and δ, on R. This is

well-defined if and only if σ is an endomorphism and δ is an additive function such

that

δ(ab) = σ(a)δ(b) + δ(a)b

for all a and b in R. We denote the Ore extension by R[x;σ, δ]. The elements, r ∈ R,

satisfying σ(r) = r and δ(r) = 0 are called the constants of the Ore extension. In

our cases R is an algebra over a field K and we assume that σ and δ are K-linear.

See e.g. [8] for the definition and basic properties of Ore extensions.

There is a series of results concerning centralizers in rings of the form R[x; idR, δ]

in the literature, that has inspired this article. The method of proof we use goes

back to an article by Amitsur [1], where he proves the following theorem.
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Theorem 1.1. Let K be a field of characteristic zero with a derivation δ. Let F

denote the subfield of constants. Form the differential operator ring S = k[x; id, δ],

and let P be an element of S of degree n > 0. Set F [P ] = {
∑m

j=0 bjP
j | bj ∈ F },

the ring of polynomials in P with constant coefficients. Then the centralizer of P

is a commutative subring of S and a free F [P ]-module of rank at most n.

Generalizations of this result can be found in an article by Goodearl and Carlson

[5] and in an article by Goodearl alone [7]. Both articles deal with the case that

σ = id, however. Makar-Limanov, in [10], studies centralizer in the quantum plane,

ie the ring K[y][x;σ, 0], with σ(y) = qy. The results in [10] also follow from results

in [4]. This article, by Bell and Small, describes centralizers of elements in domains

of Gelfand-Kirillov dimension 2. Some of our results are similar to theirs but are

logically independent, since the algebras in this article have infinite Gelfand-Kirillov

dimension.

The paper that comes closest in approach to our paper, that we have been able

to find, is an unpublished preprint by Tang [12]. Tang also studies Ore extensions

over K[y], but with σ an automorphism. Like us, Tang describes the structure of

maximal commutative subalgebras of the algebras he studies. He cites [2,3,6] by

Arnal and Pinczon, Bavula respectively Dixmier, as previous articles obtaining sim-

ilar results on maximal commutative subalgebras. The article by Dixmier contains

many results, including similar descriptions of centralizers to the one we give, but it

deals exclusively with the Weyl algebra. Bavula’s article studies Generalized Weyl

algebras and obtains many results, a few of which have analogues in this article.

The class of Generalized Weyl algebras does not include our class of Ore extension

however. We have not had access to Arnal’s and Pinczon’s article, but it appears

to deal with a completely different class of algebras from those we study.

In [9], Hellström and the second author generalizes Amitsur’s method of proof.

Among other results, they show that Amitsur’s argument works in a large class

of graded algebras, provided a condition on the dimension of certain subsets of

centralizers is met. We have not found a way to apply their results to the algebras

in this article, however.

This article is a continuation of the article [11], by the first author. Theorem 3.1

can be found in that paper. The arrangement of the proof is somewhat different

however. Theorem 3.1 complements our other results that describe the centralizer.

In the next section we will introduce some notation and lemmas that we will

use throughout this article. In the third section we prove that the centralizer of a

non-constant element, P , is a free module of finite rank over the ring of polynomials

in P with constant coefficients (Theorem 3.1). In the fourth section we prove that

centralizers of non-constant elements are commutative (Theorem 4.1) and describe

centralizers of any set (Proposition 4.2). In the fifth section we try to determine
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when centralizers are isomorphic to the ring of polynomials in one variable. We

manage to prove that this is true in many cases (Propositions 5.3 and 5.6), with the

sufficient conditions given depending only on the leading coefficient. In Propositions

5.9 and 5.10 we restrict the class of Ore extension we are considering and obtain

results showing that centralizers of certain elements are isomorphic to the ring of

polynomials in one variable.

2. Preliminaries

We will adopt the following standing conventions and notations in this article.

K is a field and R = K[y] is the polynomial ring in one variable over that field. By

σ we denote an K-algebra endomorphism of R such that degy(σ(y)) > 1. By δ we

denote a σ-derivation on R, i.e. a K-linear and additive function R→ R such that

δ(ab) = σ(a)δ(b) + δ(a)b,

for all a and b in R. Our object of study will be the Ore extension S = R[x;σ, δ].

We note that the constants are precisely the elements of K.

We define the notion of the degree of an element in S w.r.t. x in the obvious

way. We set deg(0) := −∞. As for the ordinary degree it is true that deg(ab) =

deg(a) + deg(b). It is important not to confuse this degree function with the degree

of an element of R as a polynomial in y. We will always mean degree w.r.t. x when

we write degree, unless we explicitly indicate otherwise.

If A is a subset of a ring B, then by CB(A) we denote the centralizer of A, the

set of all elements in B that commute with every element in A. If a is a single

element we write CB(a) instead of CB({a}).
We start with two lemmas that will be important in what follows.

Lemma 2.1. Suppose that P is any element in S, and that Q ∈ CS(P ) has degree

m. Let qm be the leading coefficient of Q. Then

pnσ
n(qm) = qmσ

m(pn). (1)

The solution space of this equation (as an equation for qm) is at most one-dimensional

as a K-sub vector space of K[y].

Proof. The equation follows by equating the highest order coefficients in PQ and

QP . To show that the solution space is one-dimensional we begin by noting that if

ρ = degy(pn), s = degy(σ(y)) and k = degy(qm) then

ρ+ snk = k + smρ.

Thus k is determined uniquely. Now suppose that a, b are two solutions of Equation

(1). Then we can find α ∈ K, such that degy(a − αb) < k. But since a − αb is

another solution of (1) it follows that a = αb. �
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Lemma 2.2. For any P ∈ S of degree larger than 0 it is true that

CS(P ) ∩R = K.

Proof. This follows from Lemma 2.1. �

3. Centralizers are free K[P ]-modules

Theorem 3.1. Let P be any element of S that is not constant. Then CS(P ) is a

is a free K[P ]-module of rank at most n := deg(P ).

The proof we give is similar to one in [1]. As noted above, the theorem can also

be found in [11].

Proof. Denote by M the subset of elements of {0, 1, . . . , n−1} such that an integer

0 ≤ i < n is in M if and only if CS(P ) contains an element of degree equivalent to i

modulo n. For i ∈M let pi be an element in CS(P ) such that deg(pi) ≡ i (mod n)

and pi has minimal degree for this property. Take p0 = 1.

We will show that {pi|i ∈M} is a basis for CS(P ) as a K[P ]-module.

We start by showing that the pi are linearly independent over K[P ]. Suppose∑
i∈M fipi = 0 for some fi ∈ K[P ]. If fi 6= 0, for a particular i, then deg(fi) is

divisible by n, in which case

deg(fipi) = deg(fi) + deg(pi) ≡ deg(pi) ≡ i (mod n). (2)

If
∑

i∈M fipi = 0 but not all fi are zero, we must have two nonzero terms, fipi

and fjpj , that have the same degree despite i, j ∈ M being distinct. But this is

impossible since i 6≡ j (mod n).

We now proceed to show that the pi span CS(P ). Let W denote the submodule

they do span. We see that W contains all elements of degree 0 in CS(P ).

Now assume that W contains all elements in CS(P ) of degree less than j. Let Q

be an element in CS(P ) of degree j. There is some i in M such that j ≡ i (mod n).

Let m be the degree of pi. By the choice of pi we now that m ≡ j (mod n) and

m ≤ j. Thus j = m+ qn for some non-negative integer q. The element P qpi lies in

W and has degree j. By Lemma 2.1 the leading coefficient of Q equals the leading

coefficient of P qpi times some constant α. The element Q − αP qpi then lies in

CS(P ) and has degree less than j. By the induction hypothesis it also lies in W ,

and hence so does Q. �

4. Centralizers are commutative

We now prove that the centralizer of any non-constant element of S is com-

mutative. For the proof of this we once again follow closely the presentation in

[1].
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Theorem 4.1. Let P be an element of S that is not a constant. Then CS(P ) is

commutative.

Proof. If P is an element of R\K it follows that CS(P ) = R which is commutative.

Thus suppose that n = deg(P ) ≥ 1. LetD be the set of degrees of non-zero elements

of Cen(P ). Since CS(P ) is a subring, and deg(ab) = deg(a) + deg(b) for any non-

zero a, b, it follows that D is closed under addition. Map D into Zn in the natural

way and denote the image by Dn. Since Dn is finite, closed under addition and

contains 0 it is a subgroup of Zn. So it is a cyclic group.

Let Q ∈ CS(P ) be an element such that deg(Q) mod n generates Dn. Let J be

the set of elements of the form

H(P,Q) = φ0 + φ1Q+ . . . φlQ
l, φi ∈ K[P ], i = 0 . . . l

and let E = {deg(H(P,Q)) | H(P,Q) ∈ J}. Suppose that t ∈ N is such that if

m ≥ t and m ∈ D then m ∈ E. Such a t must clearly exist. Suppose now that U is

any element of CS(P ). If deg(U) ≥ t, then, by Lemma 2.1, there is a H1(P,Q) ∈ J
such that deg(U − H1) < deg(U). By repeating this process if necessary, we find

that we can write U = H(P,Q) + U0 where deg(U0) < t. We note that the set of

elements in CS(P ) of degree less than t form a finite-dimensional vector space over

K of dimension at most t.

If V is an element of CS(P ) we can write V P i = Hi(P,Q)+Vi, where deg(Vi) < t,

for i = 0, 1, . . . t. Then the Vi are linearly dependent so there are ci ∈ K such that∑t
i=0 ciVi = 0 which implies that

V

t∑
i=0

ciP
i =

t∑
i=0

ciHi.

So for any V ∈ CS(P ), there are non-zero f ∈ K[P ] and H(P,Q) ∈ J such that

V f(P ) = H(P,Q). The elements in J commute with each other and the elements

of K[P ] commutes with everything in CS(P ). Thus if V1, V2 are two elements in

CS(P ), with Vifi(P ) = Hi(P,Q), we get that

V1V2f1(P )f2(P ) = V1f1(P )V2f2(P ) = H1(P,Q)H2(P,Q) =

= H2(P,Q)H1(P,Q) = V2f2(P )V1f1(P ) = V2V1f1(P )f2(P ). (3)

Since S is a domain this implies that V1V2 = V2V1. �

It is clear that if A is any set containing a non-constant element then CS(A)

is commutative as well. But we can say more than that, as the next proposition

illustrates.

Proposition 4.2. Let A be any subset of S. Then CS(A) equals either S, K or

CS(P ), where P is a non-constant element in S.
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Proof. Suppose A contains two elements P and Q (necessarily non-constant), that

do not commute with each other. Then

CS(A) ⊆ CS(P ) ∩ CS(Q).

But if U is some non-constant element in CS(P ) ∩ CS(Q), then P,Q ∈ CS(U)

and by Theorem 4.1 it would follow that P and Q commute. Thus CS(A) = K.

Now suppose A contains a non-constant P and everything in A commutes with

P . Clearly CS(A) ⊆ CS(P ). But, since CS(P ) is commutative and A ⊆ CS(P ),

every element in CS(P ) commutes with every element in A. Thus CS(P ) = CS(A).

If, finally, A contains only constants, then CS(A) = S. �

Remark 4.3. We note that the maximal commutative subrings of S are K and the

sets of the form CS(P ), for nonconstant P .

5. Singly generated centralizers

We note that we can give a bound on the number of generators needed to generate

a centralizer as an algebra.

Corollary 5.1. Let P ∈ R[x;σ, δ] satisfy n = deg(P ) > 0. Then we can find n

elements that generate CS(P ) as a K-algebra.

Proof. Follows from Theorem 3.1 and its proof. �

In some cases we have been able to prove that the centralizer of an element is in

fact generated by a single element, not just a finite number of them. To do so we

have relied on the the equation stated in Lemma 2.1.

We begin with a lemma which we will use frequently.

Lemma 5.2. Let P be a non-constant element of S of degree n. Suppose all

elements of CS(P ) have degree divisible by n. Then

CS(P ) = K[P ] := {
∑

ciP
i | ci ∈ K}.

Proof. We know that K[P ] ⊆ CS(P ). We also know that all elements of degree

zero in CS(P ) lie in K[P ]. We give a proof by induction.

Suppose that elements in CS(P ) of degree less than k lie in K[P ]. We want to

show that all elements of degree k in CS(P ) also lie in K[P ]. If k is not divisible

by n this is vacuously true. So suppose k = pn for some integer p and let Q be any

element in CS(P ) of degree k. The element P p lies in CS(P ) and has degree k. By

Lemma 2.1 there is an α ∈ K such thatQ and αP p have the same leading coefficient.

Thus we have that deg(Q− αP p) < k which implies that Q− αP p ∈ K[P ], by the

induction assumption. Hence it follows that Q ∈ K[P ]. �

Our first result showing a centralizer to be singly generated is in the case when

our non-constant element has prime degree.
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Proposition 5.3. Let P be an element of S of degree n, where n is a prime. Let

pn be the leading coefficient of P and let ρ be the degree of pn as a polynomial in

y. Let s be the degree of σ(y), also as a polynomial in y. Then if
∑n−1

i=0 s
i does not

divide ρ it follows that CS(P ) = {
∑
ciP

i | ci ∈ K}.

We use the following lemma in our proof.

Lemma 5.4. Let m and n be positive integers and suppose that gcd(n,m) = 1. Let

s be a positive integer. Then gcd(
∑n−1

i=0 s
i,
∑m−1

j=0 sj) = 1.

Proof. This is clearly (vacuously) true for n = 1 and it is a simple exercise to

prove it is true for n = 2. We use induction on n to prove the lemma in general. So

suppose it is true if n < k and we want to show it is true for n = k. So let m > k

be such that gcd(k,m) = 1.

gcd(
k−1∑
i=0

si,

m−1∑
j=0

sj) = gcd(

k−1∑
i=0

si,

k−1∑
j=0

sj +

m−1∑
j=k

sj) = gcd(

k−1∑
i=0

si, sk
m−1−k∑

j=0

sj)

= gcd(

k−1∑
i=0

si,

m−1−k∑
j=0

sj).

Now it is clearly true that gcd(k,m−k) = 1. If m−k < k we can use the induction

assumption. Ifm−k > k setm′ = m−k and repeat the previous calculation. Sooner

or later we will reduce to a case where we can use the induction assumption. �

Proof of Proposition 5.3. Let Q be an element of S that commutes with P . Let

Q have degree m and suppose that gcd(m,n) = 1. Let qm be the leading coefficient

of Q. Equating the leading coefficients in PQ and QP we find that

pnσ
n(qm) = qmσ

m(pn).

If k denotes the degree of qm, we find that

k = ρ
sm − 1

sn − 1
= ρ

∑m−1
i=0 si∑n−1
i=0 s

i
.

Now it would follow from the lemma that k is a non-integer which is impossible.

Thus gcd(m,n) = n, since n is prime, and the result follows by Lemma 5.2. �

We can generalize Lemma 5.4 to the following lemma.

Lemma 5.5. Let m and n be positive integers. Let s be a positive integer greater

than 1. If r = gcd(m,n) then

gcd(

m−1∑
i=0

si,

n−1∑
j=0

sj) =

r−1∑
i=0

si.
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Proof. If n = qm+ r then

gcd(

m−1∑
i=0

si,

n−1∑
j=0

sj) = gcd(

m−1∑
i=0

si,

qm−1∑
j=0

sj + sqm
r−1∑
j=0

sj) = (4)

= gcd(

m−1∑
i=0

si,

r−1∑
j=0

sj) =

r−1∑
i=0

si. (5)

�

We use this lemma in the next proposition.

Proposition 5.6. Let P be an element of S of degree n > 0 in x and suppose that

pn (the leading coefficient of P ) has degree greater than zero but not greater than n

as a polynomial in y. Then CS(P ) = K[P ].

Proof. When n = 1 this is true by Corollary 5.1. When n = 2 or n = 3 this is

true by Proposition 5.3. So suppose that n ≥ 4.

It will be enough to prove that the degrees of all elements of CS(P ) are divisible

by n by Lemma 5.2.

Let Q be an element of CS(P ). Suppose that Q has degree m. Let qm be the

leading coefficient of Q. By comparing the leading coefficient of PQ and QP we

get the equation

pnσ
n(qm) = qmσ

m(pn).

Let k denote the degree of qm and ρ the degree of pn. (Both degrees are measured

as polynomials in y.) We get the following equation for k.

k = ρ

∑m−1
i=0 si∑n−1
i=0 s

i
.

Set r = gcd(m,n). What we want to prove is that r = n. So suppose that it

does not equal n. Then r ≤ n
2 . Write n = rn′. Then

n−1∑
i=0

si =

(
r−1∑
i=0

si

)n′−1∑
i=0

sri

 .

From Lemma 5.5 we conclude that
∑n′−1

i=0 sri must divide ρ if k is to be an

integer. However,

n′−1∑
i=0

sri > sr(n
′−1) ≥ 2r(n

′−1) =
2n

2r
.

Since r ≤ n
2 we find that

2n

2r
≥ 2

n
2 .
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Since 2
n
2 ≥ n for all n ≥ 4 we find, to summarize our calculations, that

n′−1∑
i=0

sri > 2
n
2 ≥ n ≥ ρ.

But this is a contradiction to the fact that the sum had to divide ρ. �

Corollary 5.7. Let n be any positive integer. Then CS(ynxn) = K[ynxn].

Proposition 5.8. Let n be any positive integer. Then CS(xnyn) = K[xnyn].

Proof. Set P = xnyn. P has degree n as an element of S and its leading coefficient

is σn(yn). The degree of the leading coefficient as a polynomial in y is nsn.

The proposition is true when n = 1 by Corollary 5.1. It is true when n = 2 and

when n = 3 by Proposition 5.3.

So suppose that n ≥ 4. Let Q be an element of degree m. As before it suffices to

prove that gcd(m,n) = n. We will use a proof by contradiction, so set r = gcd(m,n)

and suppose that r < n. Letting k denote the degree in y of the leading coefficient

of Q we get, as before,

k = nsn
∑m−1

i=0 si∑n−1
i=0 s

i
.

We cancel common factors in the fraction, and by Lemma 5.5 we get

k = nsn
A∑n′−1

i=0 sri
,

where n′ = n
r . Since gcd(Asn,

∑n′−1
i=0 sri) = 1 we see that we must have that∑n′−1

i=0 sri|n. But, as in the proof of Proposition 5.6, this is not the case. �

For the next proposition we consider only special σ.

Proposition 5.9. Let R = K[y] and suppose that σ(y) = yk for some positive

integer k > 1. Let P be an element of S = R[x;σ, δ] of degree n and let pn be its

leading coefficient. Suppose that pn has the following property: there does not exist

an a ∈ K̄ and distinct positive integers i, j, such that ai and aj both are roots of

pn. (Here K̄ is the algebraic closure of K.) Then CS(P ) = K[P ].

Proof. Let Q be an element of CS(P ). As before it suffices to prove that deg(Q)

is divisible by n. So suppose m = deg(Q) is not. Let qm be the leading coefficient

of Q. We get the following equation

pnσ
n(qm) = qmσ

m(pn).

Due to the special form of σ this can be written

pn(y)qm(yk
n

) = qm(y)pn(yk
m

).
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Consider gcd(pn(y), pn(yk
m

)). If this equals a nonzero polynomial h, then h has a

root, a, in K̄. But then both a and ak
m

would be roots of pn, contradicting the

assumption we made. Thus gcd(pn(y), pn(yk
m

)) = 1. So pn(y) must divide qm(y).

Set qm(y) = pn(y)q̂(y) and simplify.

The simplified equation becomes

pn(yk
n

)q̂(yk
n

) = q̂(y)pn(yk
m

).

Now we have that gcd(pn(yk
n

), pn(yk
m

)) = 1. Thus q̂ = q′(y)pn(yk
n

) for some q′.

Inserting this into our equation and simplifying we get

pn(yk
2n

)q′(yk
n

) = q′(y)pn(yk
m

).

Since n does not divide m we must have that 2n 6= m. Thus

gcd(pn(yk
2n

), pn(yk
m

)) = 1.

We trust that the pattern is obvious now. It is clear that we can continue this

process for ever and conclude that qm(y) is divisible by an infinite sequence of

polynomials with strictly increasing degrees. Thus our assumption that m was not

divisible by n leads to a contradiction. �

Specialising the definition of S even further we get the following proposition.

Proposition 5.10. Let σ(y) = ys and δ(y) = 0. Set P = yixj, where i + j > 0.

Then CS(P ) is singly generated.

Proof. The result is clear when j = 0, i > 0 so suppose that j > 0.

Suppose that Q belongs to CS(P ). Write Q =
∑
al,ky

lxk. We can compute that

yixjylxk = yi+lsjxj+k.

Since CS(P ) is graded by the powers of x it follows that
∑

l al,ky
lxk ∈ CS(P ) for

every k. Since the product of monomials is a new monomial it follows, by induction

downwards on the degree in y, that every term al,ky
lxk must commute with P .

Suppose al,k 6= 0. Then we must have that

yixjylxk = ylxkyixj ,

which implies that i+ l · sj = l + i · sk. This means that

l =
sk − 1

sj − 1
i.

We can write this as

l =

∑k−1
m=0 s

m∑j−1
m=0 s

m
i.

For every choice of i, j, s, k this determines l. However the formula might give

non-integer values for l, which does not correspond to an element of S. Let k0 be
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the least non-negative integer for which the RHS is an integer when we substitute

k0 for k.

Let k1 be the next least non-negative integer such that the RHS of the formula

is an integer. We compute∑k1−1
m=0 s

m∑j−1
m=0 s

m
i =

∑k0−1
m=0 s

m + sk0
∑k1−k0−1

m=0 sm∑j−1
m=0 s

m
i.

We see that (by the definition of k0 and since gcd(sk0 ,
∑j−1

m=0 s
m) = 1) that∑k1−k0−1

m=0 sm∑j−1
m=0 s

m
i

is an integer. This implies that k1 = 2k0, by the definition of k0. Similarly, all k

that give an integer value for l must be multiples of k0. The result is now clear. �

Note that the proof of Proposition 5.10 establishes that the generator of CS(P )

is ylxk where k is the least non-negative integer such that∑k−1
m=0 s

m∑j−1
m=0 s

m
i

is an integer and l is the value of that integer.
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