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Abstract. We give some criteria for recognizing local rings that allow us to

show that indecomposable AB5∗ modules over commutative rings and couni-

form modules over noetherian commutative rings have a local endomorphism

ring. We also develop some theory on methods to construct modules with

a prescribed direct-sum decomposition. As an application we realize an in-

teresting class of commutative monoids as monoids of direct summands of a

direct sum of a countable number of copies of a suitable artinian cyclic mod-

ule, showing that there may appear a rich supply of direct summands that are

not a direct sum of artinian modules. An important gadget for proving our

realization result is a variation of a method for realizing a given ring as the

endomorphism ring of a cyclic (artinian) module due to Armendariz, Fisher

and Snider.
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1. Introduction

One of the fundamental tools to describe the direct sum decompositions of a

module is to study the projective modules over its endomorphism ring. A. Dress

was the first to state the existence of a category equivalence between the category

of modules that are isomorphic to direct summands of Mn, for some n and a fixed

right module M over a ring R, and the category of finitely generated projective right

modules over EndR(M), cf. Proposition 6.1. Therefore, knowing the endomorphism

ring of a module M and the behavior of its finitely generated projective modules

is equivalent to knowing the behavior of the direct sum decomposition of Mn for

any n. Hence, in order to construct examples and counterexamples in the setting
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of direct sum decompositions it is extremely useful to be able to construct modules

with a prescribed endomorphism ring.

Armendariz, Fisher and Snider were studying in [1] when every injective/onto

endomorphism of a finitely generated module over a PI ring is bijective. They

constructed in [1, Example 3.2] an example that was quite interesting for their

context, but having a closer look people realized that their idea was giving a method

to construct cyclic modules with a prescribed endomorphism ring. The further

developments of Armendariz, Fisher and Snider’s method have had an impact in

the theory of direct sum decomposition of modules in general, and of direct sum

decompositions of artinian modules in particular. We explain the pattern of their

idea.

Let R ⊆ S ⊆ A be ring extensions. Let T = (A H
0 R ) where AHR is the bimodule

H = HomS(SA, SA/S).

Set L = {f ∈ H | (S)f = 0}. Then I = ( 0 L
0 R ) is a right ideal of T with idealizer

I = ( S L
0 R ). So that T/I is a cyclic right T -module with endomorphism isomorphic

to S.

This formulation is due to Camps and Menal [4], they also realized that if A/S

is an artinian right S-module and AA is artinian then (T/I)T is artinian. Camps

and Menal used this to give some interesting and non-trivial examples of artinian

modules. Later Camps and Facchini [3] developed a more sophisticated statement,

which is the one we give in Lemma 6.3, that allowed any finitely generated algebra

over a semilocal commutative noetherian ring to be realized as endomorphism ring

of a cyclic artinian module, cf. [8]. Since the Krull-Schmidt Theorem fails for finitely

generated projective modules over a finitely generated algebra over a semilocal

noetherian ring, one could conclude that artinian modules also fail to satisfy the

Krull-Schmidt Theorem. This answered in the negative a question posed by Krull

in 1932 [19].

In our main Theorem 6.11 we will give one further application of this tool to

construct artinian modules with a prescribed endomorphism ring. We show that

the category of direct summands of a direct sum of a countable number of copies

of a cyclic artinian module can have a rich supply of direct summands that are not

a direct sum of artinian modules, cf. Example 7.12.

The paper is divided into six sections. The first two are devoted to giving

new classes of indecomposable modules, over commutative rings, with local endo-

morphism ring. The first class is that of indecomposable AB-5∗ modules over a

commutative ring (Proposition 2.4) and the second one is the class of couniform

modules over a commutative noetherian ring (Corollary 3.4). Our proofs are quite

elementary and self-contained so we think that they are also interesting in the

known cases they cover. For example, as a further outcome, we get a new proof
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of the fact that over a commutative ring an indecomposable artinian module has a

local endomorphism ring.

Examples of the failure of the Krull-Schmidt Theorem for artinian modules were

also constructed by Pimenov and Yakovlev in [25] and by Ringel in [28]. Their

strategy was to give explicit equivalences between suitable and well understood

categories of modules and categories of artinian modules over triangular matrix

rings. In Section 3 we give a general setting for these constructions and we develop

further application in Section 4.

After the work of Facchini and Herbera [7] and the subsequent by Wiegand [31],

the direct sum behavior of artinian modules and, in general, of finite direct sums of

modules with a semilocal endomorphism ring is relatively well understood. The new

tool introduced for that are the monoids of isomorphism classes of finitely generated

projective modules and the monoids of isomorphism classes of direct summands of

a finite number of copies of a given module. Understanding the structure of these

monoids is equivalent to understanding the behavior, in direct sums, of the involved

modules. We recall this machinery and we explain the specific tools needed for the

case of a semilocal ring in Section 5.

Right now a very challenging question is to understand the behavior of infinite

direct sums of modules with a semilocal endomorphism ring. In [16], Herbera and

Př́ıhoda characterized the monoid of isomorphism classes of countably generated

projective modules over a semilocal noetherian ring. In the main result of this

paper (Theorem 6.11) we show that these monoids can be realized as the monoid

of isomorphism classes of direct summands of an infinite sum of copies of an ar-

tinian module. Section 6 is devoted to proving this result, our strategy is to use

the variations of Armendariz, Fisher and Snider method to show that the rings

constructed in [16] can be also realized as endomorphism rings of suitable cyclic

artinian modules. In order to do that and because the rings from [16] are con-

structed via pullbacks another important tool in the proof of Theorem 6.11 is the

characterization of injective modules over pullbacks due to Facchini and Vámos [9].

2. Criteria for recognizing a local ring. An application to AB-5∗

modules

All our rings are associative with 1, and ring morphism means unital ring mor-

phism.

We recall that a ring R is said to be semilocal if modulo its Jacobson radical

J(R) is semisimple artinian.

In this section we give a couple of (easy) criteria for proving that a ring is local

just by looking at certain families of commutative subrings.
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Our general philosophy to decide whether some classes of modules over com-

mutative rings have local endomorphism ring is to “enlarge the ring”. If M is

an R-module over a commutative ring then R/AnnR(M) embeds canonically in

EndR(M). In fact M can be viewed as a module over any ring T such that

R/AnnR(M) ⊆ T ⊆ EndR(M), and the endomorphism ring of M as T -module

will be a subring of EndR(M). Note that if T is a maximal commutative subring of

EndR(M) containing R/AnnR(M), then the endomorphism ring of M as T -module

is the same ring T .

Proposition 2.1. Let R ⊆ S be a ring extension, such that R is in the center of S.

Then S is local if and only if every maximal commutative subring of S containing

R is local.

Proof. Assume that S is local and that T is a maximal commutative subring of S

containing R. If t ∈ T then either t or 1 − t is invertible in S. The maximality of

T implies that the inverse of an element in T is also an element of T , so either t or

1− t is invertible in T . This implies that T is local.

Conversely, let s ∈ S. Consider a maximal commutative subring T of S contain-

ing s and R. Then 1− s ∈ T and since, by hypothesis, T is local either s or 1− s
is invertible in T , hence in S. �

Let R be a subring of the center of a ring T . Let t ∈ T and consider the ring

extension R ⊆ R[t] ⊆ T . Let Σ be the set of all elements in R[t] that are invertible

elements in T . Then Σ is a multiplicatively closed subset of R[t], and R[t]Σ can be

identified with a subring of T . In next proposition we shall denote this ring by Rt.

The following result and its proof is a variation of Proposition 2.1.

Proposition 2.2. Let R ⊆ T be a ring extension, such that R is in the center of

T . Then T is local if and only Rt is local for any t ∈ T .

Let R be a ring. A right R-module M satisfies the AB-5∗ property provided that

for any inverse system of submodules of M , {Mi}i∈I say, and for any submodule

N of M the following equality holds true:

N +
⋂
i∈I

Mi =
⋂
i∈I

(N +Mi) .

It is clear from the definition that the AB-5∗ property is inherited by submodules

and quotients. Also, as it is a lattice property, if R ⊆ T is a ring extension and MT

is a T -module that is AB-5∗ as an R-module then it is also AB-5∗ as a T -module.

Examples of modules satisfying the AB-5∗ property are Artinian modules and,

in general, modules that are linearly compact with the discrete topology. Uniserial

modules are also examples of AB-5∗ modules, and a semisimple module is AB-5∗ if

and only if all its isotypic components have finite length.
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It is well known that, over a commutative ring, indecomposable linearly compact

modules and uniserial modules have local endomorphism ring. We shall prove that

this is true also for indecomposable AB-5∗ modules.

A module M is said to be complemented if for each submodule X of M there is a

submodule Y , called the (addition) complement of X, minimal with respect to the

property Y +X = M . As it was observed by Lemonnier in [20], a trivial application

of Zorn’s Lemma shows that an AB5∗ module M is complemented. Kasch and

Mares’ proved that a ring is semiperfect if and only if RR is complemented if and

only if RR is complemented, hence left or right AB5∗ rings are semiperfect.

This implies that if MR is an AB-5∗ R-module over a commutative ring R and T

is some commutative subring of EndR(M) then, for any m ∈ M , T/AnnT (x) is a

semiperfect ring because mT ∼= T/AnnT (x) is an AB5∗ T -module. This observation

will be the key ingredient in proving that, over a commutative ring, indecomposable

AB-5∗ modules have local endomorphism ring.

Before proving the result we recall the following facts from [18, Lemma 8]:

Remark 2.3. Let R be a commutative ring, and let V be a fixed simple R-module.

For any R-module M we consider the following subset of M

MV = {x ∈M | R/AnnR(x) is a local ring with simple module V } ∪ {0}.

First we show that MV is an R-submodule of M . If x ∈MV then, trivially, xr ∈MV

for any r ∈ R. Let x and y be nonzero elements of MV . Since AnnR(x)∩AnnR(y) ⊆
AnnR(x + y) then if M is a maximal ideal of R such that AnnR(x + y) ⊆ M
then either AnnR(x) ⊆ M or AnnR(y) ⊆ M; since x, y ∈ MV it follows that

M = AnnR(V ). Hence x+ y ∈MV .

Let {Vi}i∈I be a family of representatives of the isomorphism classes of simple

modules over R, and consider the family R-submodules of M , {MVi}i∈I . It is clear

that {MVi
}i∈I is a family of independent R-submodules. If the module M satisfies

that for any m ∈M , EndR(mR) ∼= R/AnnR(m) is a semiperfect ring (e.g. if M is

AB-5∗), then M = ⊕i∈IMVi
.

Proposition 2.4. Let R be a commutative ring and MR an indecomposable AB-5∗

module over R. Then EndR(M) is a local ring.

Proof. We shall prove that any maximal commutative subring of EndR(M) is

local, and then the result will follow from Proposition 2.1.

Let T be a maximal commutative subring of EndR(M), and note that MT is

AB-5∗. Let {Vi}i∈I be a set of representatives of the isomorphism classes of simple

modules over T . Then, by Remark 2.3, M = ⊕i∈IMVi
. As M is indecomposable

there exists i ∈ I such that M = MVi
. LetM = AnnT (Vi) and let t ∈ T \M. Since

for any 0 6= m ∈ M , T/AnnT (m) ∼= EndT (mT ) is a local ring with maximal ideal
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M/AnnT (m) then, for any m ∈M , the endomorphism of mT induced by multipli-

cation by t is bijective. Hence, multiplication by t is a bijective endomorphism of

M . As T is a maximal commutative subring of EndR(M), t−1 ∈ T . Therefore M
is the unique maximal ideal of T , and T is local. �

Theorem 2.5. Let M be an AB-5∗ module over a commutative ring R. Then the

following statements hold.

(1) M = ⊕i∈IMi with EndR(Mi) semiperfect, for any i ∈ I, and HomR(Mi,Mj) =

0 for i, j ∈ I, i 6= j.

(2) M = ⊕j∈JMj with EndR(Mj) local, for any j ∈ J , and EndR(M) is a

product of semiperfect rings.

(3) M satisfies the exchange property.

Proof. Let {Vi}i∈I be a family of representatives of the isomorphism classes of

simple R-modules. By Remark 2.3, M = ⊕i∈IMVi
; set Mi = MVi

. Let Mi =

AnnR(Vi), then each Mi is a module over the local ring RMi . Since any AB−5∗

module over a local ring has finite Goldie dimension [20, Lemme 2], each Mi has a

semiperfect endomorphism ring.

On the other hand, by the above argument, it also follows that, for i 6= j ∈ I,

HomR(Mi,Mj) = 0. This finishes the proof of (1).

To prove (2) recall that a module has a semiperfect endomorphism ring if and

only if it is a finite direct sum of submodules with local endomorphism ring. Hence,

by (1), M is a direct sum of modules with local endomorphism ring. Also from (1)

it follows that EndR(M) is a product of semiperfect rings.

As a product of semiperfect rings is a ring that is von Neumann regular modulo

the Jacobson radical and idempotents can be lifted modulo it, we deduce from

[29, Theorem 3] that EndR(M) is an exchange ring. Hence M satisfies the finite

exchange property, so it also satisfies the exchange property by [33, Corollary 6].

�

As linearly compact modules satisfy AB−5∗ and have finite Goldie dimension

we obtain the following well known corollary of Theorem 2.5.

Corollary 2.6. ([34]) Let M be a linearly compact module over a commutative ring

R, then EndR(M) is a semiperfect ring.

Remark 2.7. Linearly compact modules over a non-necessarily commutative ring

may not have a semiperfect endomorphism rings but they have a semilocal endomor-

phism ring [18]. However if R is a ring with right Morita duality then all linearly

compact right R-modules are pure injective, hence their endomorphism ring is also

semiperfect.
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We do not know whether the endomorphism ring of a linearly compact module

over a commutative ring is linearly compact. This question was considered in [10]

and it was proved to be true in a number of cases, e.g. for linearly compact modules

over commutative noetherian rings.

3. Couniform modules

A nonzero module M is said to be couniform if the sum of two proper submodule

of M is a proper submodule of M . A module that is uniform and couniform is called

biuniform.

We recall the following facts about couniform modules,

Lemma 3.1. Let R be a ring and let {0} 6= MR be a couniform module. Let

I = {f ∈ EndR(M) | f is not onto}.

Then:

(i) if f and g ∈ I, then f + g ∈ I.

(ii) gf ∈ I if and only if f ∈ I or g ∈ I.

In particular, I is an ideal of EndR(M).

Proof. See [6, Lemma 6.26]. �

Note that, by Lemma 3.1, if MR is a couniform module and S is a subring of

EndR(M), then S ∩ I is a completely prime ideal of S.

Proposition 3.2. Let R be a commutative ring, and let MR be a couniform module.

Let r be an element of R such that neither multiplication by r nor by 1 − r is a

bijective endomorphisms of M .

(i) If multiplication by r is not onto then there exists a biuniform R-module N

with essential socle such that the endomorphism ring of N is not local.

(ii) If multiplication by r and by 1 − r are onto endomorphisms that are not

injective, then there exists a couniform R-module N with two-generated

essential socle, the two simple modules in the socle are non-isomorphic,

and the endomorphism ring of N is not local.

Proof. (i) Since M = rM + (1− r)M and rM 6= M , being M couniform, it must

happen that (1 − r)M = M . Hence, as multiplication by 1 − r is not bijective,

there exists an element 0 6= m ∈M such that (1− r)m = 0. Let M be a maximal

ideal of R containing AnnR(m) and let g : mR→ R/M be the morphism such that

g(m) = 1 +M. Then g can be extended to a homomorphism g : M → E(R/M).

Let N = g(M). As N is a nonzero quotient of M it is couniform and, since it is

a submodule of E(R/M), it has simple essential socle. We have to prove that the

endomorphism ring of N is not local.
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Note that rN 6= 0 because (1− r)g(m) = 0 so g(m) ∈ rN and, by construction,

g(m) 6= 0. Moreover rN 6= N , because otherwise M = ker(g) + rM and, since

rM 6= M and M is couniform, we would get g = 0. Multiplication by 1 − r is a

non-injective homomorphism of N that is different from zero because rN 6= N . As

neither multiplication by r nor by 1− r are bijective endomorphisms of N , we can

conclude that the endomorphism ring of N is not local.

(ii) Let 0 6= m1 ∈ AnnM (r) and let 0 6= m2 ∈ AnnM (1 − r). For i = 1, 2, let

Mi be a maximal ideal of R containing AnnR(mi). Since m1R ∩m2R = 0 there

is an isomorphism g : m1R +m2R→ R/M1 ⊕ R/M2, such that g(m1) = 1 +M1

and g(m2) = 1 +M2. The homomorphism g can be extended to a homomorphism

g : M → E(M1) ⊕ E(M2). Let N = g(M). It is clear that N is a couniform

submodule with 2-generated essential socle and that the two simple modules in the

socle are non-isomorphic. Both, multiplication by r and by 1− r, induce a nonzero

homomorphism of N that is not injective. Hence the endomorphism ring of N is

not local. �

Proposition 3.3. Let R be a commutative ring and let MR be a couniform module

with a non local endomorphism ring. Let

I = {f ∈ EndR(M) | f is not onto}.

Then,

(i) If I " J(EndR(M)) then there exists a biuniform module N over R[x] with

simple essential socle such that the endomorphism ring of N is not local.

(ii) If I ⊆ J(EndR(M)) then there exists a couniform module N over R[x] with

2-generated essential socle such that the endomorphism ring of N is not

local.

Proof. If I " J(EndR(M)) then there exists an endomorphism f of M that is not

onto and 1− f is not bijective. Now we can view M as an R[x]-module by defining

xm = f(m) for any m ∈ M . Clearly M is couniform as R[x]-module. Now claim

(i) follows from Proposition 3.2(i). If I ⊆ J(EndR(M)), as the endomorphism ring

of m is not local, there exists an endomorphism f such that neither f nor 1− f is

bijective but both are onto. Again, we can view M as an R[x]-module by defining

xm = f(m) for any m ∈M , then claim (ii) follows from Proposition 3.2(ii). �

In [6, Proposition 9.23] it is proved that over a commutative noetherian ring all

biuniform modules have local endomorphism ring. Here we see that this is also true

for couniform modules over commutative noetherian rings.

Corollary 3.4. If M is a couniform module over a commutative noetherian ring,

then M has a local endomorphism ring.
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Proof. Let M be a couniform module over a commutative noetherian ring R. If the

endomorphism ring of M is not local then, by Proposition 3.3, we would construct

a couniform module N with essential socle over the noetherian ring R[x] with

non-local endomorphism ring. This is impossible because in this case N would be

artinian, and indecomposable artinian modules over commutative rings have local

endomorphism ring (recall, for example, Corollary 2.6). �

4. Category Equivalences

This section is based on the work by Pimenov and Yakovlev [25], that was further

developed by Ringel in [28, §1]. The aim of these works was to construct artinian

modules for which the Krull-Schmidt Theorem fails. The method was to construct

category equivalences between already known classes of (noetherian) modules where

the Krull-Schmidt theorem fails and classes of artinian modules. We give a general

framework to these equivalences.

Throughout this section we fix a ring embedding R ↪→ T , and we let S = ( T T
0 R ).

Let e1 = ( 1 0
0 0 ) ∈ S and e2 = ( 0 0

0 1 ) ∈ S.

For a right S-module AS set Aei = Ai, i = 1, 2. Then A1 is a right T -module,

A2 is a right R-module and A = A1 ⊕A2 is a direct sum decomposition of abelian

groups. Right multiplication by ( 0 1
0 0 ) induces a homomorphism of right R-modules

αA : A1 → A2. Moreover, if f : A→ B is a homomorphism of right S-modules then,

for i = 1, 2, there are induced homomorphisms fi : Ai → Bi such that αB ◦ f1 =

f2 ◦ αA, f1 : A1 → B1 is a homomorphism of right T -modules and f2 : A2 → B2 is

a homomorphism of right R-modules.

Let S be the category of triples A = (A1, A2;αA), where A1 is a right T -module,

A2 is a right R-module and αA : A1 → A2 is a homomorphism of right R-modules.

If A = (A1, A2;αA) and B = (B1, B2;αB) are objects of S a homomorphism f ∈
HomS(A,B) is a pair f = (f1, f2) such that f1 : A1 → B1 is a homomorphism

of right T -modules, f2 : A2 → B2 is a homomorphism of right R-modules and

αB ◦ f1 = f2 ◦ αA.

If A = (A1, A2;αA) is an object of S then A = A1⊕A2 is a right S-module with

the scalar product defined by the rule

(a1, a2)
(
t1 t2
0 r

)
= (a1t1, αA(a1t2) + a2r) for every (a1, a2) ∈ A and

(
t1 t2
0 r

)
∈ S.

This defines an equivalence between the category of right S-modules and the

category S. We freely use the identification between these categories.

Let R1
f→ R2 be a ring morphism. Recall that f is said to be local if, for any

r ∈ R1, f(r) is invertible if and only if r is invertible. We point out the following

observation.
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Lemma 4.1. Let A = (A1, A2;αA) be a right S-module. The ring homomorphism

EndS(A)→ EndT (A1)× EndR(A2), defined by f 7→ (f1, f2), is local.

Let A = (A1, A2;αA) be a right S-module. Considering ker(αA) and coker(αA)

we obtain two functors F and G, respectively, from the category of right S-modules

to the category of right R-modules. Now we describe a functor from the category

of right R-modules to the category of right S-modules.

Consider the exact sequence

0→ R→ T
π→ T/R→ 0,

where π denotes the canonical projection. Let M be a right R-module. Applying

the functor M ⊗R − we get the exact sequence

M →M ⊗R T
M ⊗R π→ M ⊗R T/R→ 0.

This allows us to define a functor H from right R-modules to right S-modules by

setting H(M) = (M ⊗R T,M ⊗R T/R;M ⊗ π). If f : M → N is a homomorphism

of right R-modules, then H(f) = (f ⊗R T, f ⊗R T/R).

Lemma 4.2. Let M be a right R-module such that TorR1 (M,T/R) = 0. Then the

induced ring homomorphism H(f) : EndR(M) → EndT (M ⊗R T ) × EndR(M ⊗R
T/R) is local.

Proof. Since TorR1 (M,T/R) = 0, there is an exact sequence

0→M →M ⊗R T
M ⊗R π→ M ⊗R T/R→ 0.

If f ∈ EndR(M) and H(f) = (f ⊗R T, f ⊗R T/R) is invertible, then f is invertible

by the 5-Lemma. �

The 5-Lemma ensures that for any right R-module M the ring homomorphism

EndR(M)→ EndS(H(M))×EndR(TorR1 (M,T/R))×EndT (TorR1 (M,T )) given by

f 7→ (f ⊗R T, f ⊗R T/R,TorR1 (f, T/R),TorR1 (f, T ))

is local.

The functor H has further properties.

Proposition 4.3. Let C be the category of right R-modules M such that that

TorR1 (M,T/R) = 0. Then

(1) F ◦H is a natural transformation of the category C.

(2) If T is a right Ore localization of R at a set of non-zero divisors, then H

is an equivalence between C and H(C) whose inverse is F .
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Proof. Statement (1) is clear because, by hypothesis, if M ∈ C then it fits into the

exact sequence

0→M →M ⊗R T
M ⊗R π→ M ⊗R T/R→ 0.

To see (2), we need to show that for any pair of modules M and N in C,
H(HomR(M,N)) = HomS(H(M), H(N)). By (1), the inclusionH(HomR(M,N)) ⊆
HomS(H(M), H(N)) is always true, the hypothesis is needed to prove the reverse

inclusion.

Let g = (g1, g2) ∈ HomS(H(M), H(N)). As M and N are in C, M ∼= Ker(M ⊗R
π), N ∼= Ker(N ⊗R π) and there is an induced f : M → N yielding a commutative

diagram

0 → M → M ⊗R T → M ⊗R T/R → 0

↓ f ↓ g1 ↓ g2

0 → N → N ⊗R T → N ⊗R T/R → 0

By the universal property of the right Ore localization, f uniquely determines g1,

so that g1 = f ⊗ T . The universal property of the cokernel determines g2 in a

unique way. �

Example 4.4. Let R be a right Ore domain with ring of quotients Q. We consider

the above situation for T = Q. Fix M to be a nonzero submodule of Q. Then

H(M) ∼= (Q,M ⊗R Q/R;α) where α : Q→M ⊗R Q/R is the composition

Q
∼=→M ⊗R Q

M⊗Rπ→ M ⊗R Q/R

Notice that any element of the form (q, x) ∈ (Q,M ⊗R Q/R;α) with q 6= 0 is a

generator of the whole module. This implies that H(M) is a couniform cyclic right

module (i.e. it is a local right module) over S =
(
Q Q
0 R

)
.

By Proposition 4.3, the category of torsion-free rank one modules over R is

equivalent to a subcategory of local modules over the ring S. Using this it is easy

to construct local modules with a pathological direct sum behavior, this makes a big

difference with the situation in the commutative case.

For example, let R = Z[
√
−5]. Then Q = Q[

√
−5] is the ring of quotients of R.

Recall that R is a Dedekind domain. Consider the ideal of R, P = (2, 1 +
√
−5). It

is well known that

P ⊕ P ∼= P 2 ⊕R ∼= R⊕R.

Then H(R) = M1 = (Q,Q/R) and H(P ) = M2 = (Q,Q/P ) are non-isomorphic

local modules over
(

Q[
√
−5] Q[

√
−5]

0 Z[
√
−5]

)
satisfying that

M1 ⊕M1
∼= M2 ⊕M2.
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5. Torsion free modules over noetherian rings

There is plenty of interesting literature on direct sum decompositions of torsion-

free abelian groups of finite rank. Some classes of these groups have a semilocal

endomorphism ring. Warfield in [30, Theorem 5.2] showed that, in general, torsion-

free modules of finite rank over commutative semilocal principal ideal domains

have a semilocal endomorphism ring. Our ideas allow us to extend these results

to one dimensional Cohen-Macaulay commutative noetherian rings and to the non-

commutative setting.

We recall that a commutative noetherian ring is one dimensional Cohen-Macaulay

provided R has Krull dimension 1 and each maximal ideal contains a nonzero divi-

sor.

In the following proposition we collect the properties of one dimensional Cohen-

Macaulay rings we need. As it is seen in the proof, the statement is just a direct

consequence of Matlis results on the subject.

Proposition 5.1. Let R be a semilocal commutative one dimensional Cohen-

Macaulay ring. Then R has an artinian classical ring of quotients Q and K = Q/R

is artinian as an R-module.

Proof. Let Q be the localization of R at the set Σ of nonzero divisor of R. The

bijective correspondence between the prime ideals of Q and the prime ideals of R

with no intersection with Σ implies that Q is 0-dimensional, so it is artinian.

LetK = Q/R. By [24, Theorem 4.1], K = ⊕M∈m-spec(R)KM (where m-spec(R)

denotes the maximal spectrum of R). By [24, Proof of Theorem 4.2], for each

M ∈ m-spec(R), KM = Q(RM)/RM where Q(RM) is the ring of quotients of

RM. By [24, Theorem 5.5], each KM is an artinian R-module. As m-spec(R) is

finite, K is artinian. �

In the next proposition we prove an analogous result in a non-commutative

setting.

By a noetherian hereditary ring we mean a two-sided noetherian ring, hereditary

on both sides.

Proposition 5.2. Let R be a semilocal hereditary noetherian ring. Then R has a

(two-sided) artinian classical ring of quotients Q and K = Q/R is (serial) artinian

as a right and as a left R-module.

Proof. By [23, Theorem 5.4.6], R is a finite product of artinian hereditary rings

and non-artinian semilocal hereditary noetherian prime rings. Thus, to prove our

claim, we may assume that R is a non-artinian HNP ring. In this situation, Goldie’s

Theorem implies that R has a simple artinian ring of quotients Q. Moreover, Q

is the injective hull of R, both as a right R-module and as a left R-module [15,
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Proposition 5.13]. Being R a ring of global dimension 1, we deduce that K = Q/R

in an injective R-module on both sides. We want to prove that K is artinian as a

right R-module.

As R is semilocal and not artinian J(R) 6= 0. Since R is prime, J(R) is essential

as a right (and as a left) ideal so that it contains a regular element. Because QR is

injective, we can describe the R-dual of J(R) as a right R-module as

J(R)∗ = HomR(J(R)R, RR) = {x ∈ Q | xJ(R) ⊆ R}.

Since J(R)∗ is the R-dual of a finitely generated projective right R-module, it is

finitely generated (and projective) as a left R-module. As J(R) 6= 0, all simple

right and left modules are unfaithful, hence R is bounded by [12, Theorem 4.10].

Thus we can apply [21, Lemma 2.1] to deduce that there exists a regular element

b ∈ R such that bJ(R)∗ ⊆ R. This implies that bJ(R)∗ and also its isomorphic

copy J(R)∗ are finitely generated right R-modules.

Let x ∈ Q. As Q is a right localization to the set of regular elements, I = {r ∈
R | xr ∈ R} contains a regular element and, hence, it is an essential right ideal of R.

By [23, Proposition 5.4.5], the cyclic right submodule of Q/R, (xR+R)/R ∼= R/I

has finite length. This implies that KR has essential right socle, Soc(KR) say. As

R is semilocal

Soc(KR) = {x+R | x ∈ Q and xJ(R) ⊆ R} = J(R)∗/R.

By our previous arguments, KR is an injective module that has finitely generated

essential right socle. Hence KR
∼= ⊕ni=1E(Vi), where, for i = 1, . . . , n, Vi denotes a

simple right R-module with injective hull E(Vi).

Finally, as all simple modules are unfaithful, we deduce from [14, Theorem 19]

that E(Vi) is an artinian uniserial right R-module for i = 1, . . . , n. Hence KR is a

serial artinian module, as we wanted to prove.

The statement on the structure of K as a left R-module follows by symmetry. �

Let R be a semilocal ring that is either a one dimensional Cohen-Macaulay

commutative noetherian ring or a hereditary noetherian ring. Let Q denote the

classical ring of quotients of R. A right R-module M is of finite rank if M ⊗R Q is

finitely generated as right Q-module, and it is torsion free if no non-zero element

of M is annihilated by a regular element of R (equivalently, if TorR1 (M,K) = 0).

Propositions 5.1 and 5.2 give us a nice setting where to apply Proposition 4.3.

Corollary 5.3. Let R be a semilocal ring that is either a one dimensional Cohen-

Macaulay commutative noetherian ring or a hereditary noetherian prime ring. Let

Q denote the classical ring of quotients of Q, and let C be the category of torsion-free
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right R-modules of finite rank. Then any element in C has a semilocal endomor-

phism ring and, in fact, C is equivalent to a category of finitely generated artinian

right modules over the ring S =
(
Q Q
0 R

)
.

Proof. Proposition 4.3, 5.1 and 5.2 allow us to conclude that the category C is

equivalent to the category of modules H(C) over the ring S =
(
Q Q
0 R

)
.

Set K = Q/R, and let M be an object of C. For any m ∈M , the right R-module

mR⊗RK is isomorphic to a quotient of K so it is artinian (either by Proposition 5.1

or by Proposition 5.2). As M⊗RQ is finitely generated, there exist m1, . . . ,mn ∈M
such that M ⊗R Q =

∑n
i=1miR⊗R Q. So that M ⊗R K =

∑n
i=1miR⊗R K is an

artinian module.

Recall that H(M) = (M ⊗R Q,M ⊗R K;M ⊗R π). As A = (0,M ⊗R K; 0)

is an S-submodule of H(M) that is artinian and H(M)/A ∼= (M ⊗R Q, 0; 0) is

also artinian, we deduce that H(M) is an artinian right S-module. The previous

argument also shows that the right S-module H(M) is generated by the elements

m1 ⊗R 1, . . . ,mn ⊗R 1 of M ⊗R Q.

As the endomorphism ring as S-module of H(M) is isomorphic to EndR(M) and

artinian modules have a semilocal endomorphism ring [2], we deduce that EndR(M)

is semilocal. �

6. Modules with a prescribed endomorphism ring and monoids of

modules.

Let R be a ring, and let M be a right R-module. We denote by add (M) the

full subcategory of right R-modules that are isomorphic to a direct summand of

a finite sum of copies of M . By Add (M) we denote the full subcategory of right

R-modules that are isomorphic to a direct summand of an arbitrary direct sum of

copies of M . We recall that, by a result of Kaplansky, if MR is countably generated

then any module in Add (M) is a direct sum of countably generated modules (cf.

[6, Theorem 2.47] for a general statement).

Let V (M) denote a set of representatives of the isomorphism classes of the mod-

ules in add (M). When M is countably generated, we also consider a set of represen-

tatives of the isomorphism classes of the countably generated modules in Add (M)

and we denote it by V ∗(M).

If N is a module in add (M) (Add (M)), we denote its representative in V (M)

(V ∗(M)) by 〈N〉. The sets V (M) and V ∗(M) are commutative monoids with the

addition defined by 〈N〉+ 〈L〉 = 〈N ⊕ L〉.

Proposition 6.1. ([6, Theorem 4.7]) Let R be a ring and let M be a right R-module.

Then the functor HomR(M,−) induces a category equivalence between add(MR)

and the category of finitely generated projective right modules over EndR(M). In
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particular, there is an isomorphism of monoids between V (M) and V (EndR(M))

that sends 〈M〉 to 〈EndR(M)〉.
Assume, in addition, that MR is finitely generated. Then the functor HomR(M,−)

induces a category equivalence between Add(MR) and the category of projective

right modules over EndR(M). In particular, there is an isomorphism of monoids

V ∗(MR) ∼= V ∗(EndR(M)).

Remark 6.2. We follow the notation of Proposition 6.1. Set S = EndR(M).

When HomR(M,−) defines an equivalence its inverse is the functor −⊗S M .

Notice that, with no restriction over M and because the tensor product commutes

with arbitrary direct sums, − ⊗S M defines a functor from the category of projec-

tive right S-modules to Add (MR). The hypothesis on M is needed to ensure the

equivalence between the two categories. The precise assumption that is needed is

that HomR(M,−) commutes with arbitrary direct sums of copies of M .

Lemma 6.3. ([6, Proposition 8.17]) Let S ↪→ A be an embedding of rings. Suppose

that there exist a ring R and an S-R-bimodule SNR such that SN cogenerates

S(A/S). Let T = (A H
0 R ) where AHR is the bimodule

AHR = HomS(SAA, SNR).

Then there exists a cyclic right T -module MT such that S ∼= EndT (M). In partic-

ular V (MT ) ∼= V (SS) and V ∗(MT ) ∼= V ∗(SS).

Moreover the dual Goldie dimension of MT coincides with the dual Goldie di-

mension of A. If AA and NR are artinian, then so is MT .

Remark 6.4. In the context of the statement of Lemma 6.3, set L = {f ∈ H |
(S)f = 0}. Then I = ( 0 L

0 R ) is a right ideal of T and M = T/I is the cyclic right

T -module claimed in the statement of Lemma 6.3.

As observed in [18], using Lemma 6.3 any ring that can be embedded in a local

ring can be realized as endomorphism ring of a local module. For example, any

domain that can be embedded in a field can be realized as endomorphism ring of a

local module. Again, as with Example 4.4, this shows the big difference between the

commutative and the noncommutative case.

We recall the following result from [26] which is crucial in the rest of our discus-

sion.

Theorem 6.5. ([26]) Let R be a ring with Jacobson radical J(R). Let P and Q be

projective right R-modules. Then P ∼= Q if and only if P/PJ(R) ∼= Q/QJ(R).
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6.1. The dimension monoids for semilocal rings. In this subsection, and un-

less otherwise is stated, R denotes a semilocal ring such that R/J(R) ∼= Mn1
(D1)×

· · · ×Mnk
(Dk) for suitable division rings D1, . . . , Dk. We fix an onto ring homo-

morphism ϕ : R→Mn1(D1)× · · · ×Mnk
(Dk) such that Kerϕ = J(R).

Let V1, . . . , Vk denote a fixed ordered set of representatives of the isomorphism

classes of simple right R-modules such that EndR(Vi) ∼= Di for i = 1, . . . , k.

If PR is a countably generated projective right R-module then P/PJ(R) ∼=
V

(I1)
1 ⊕ · · · ⊕ V (Ik)

k and the cardinality of the sets I1, . . . , Ik determines the isomor-

phism class of P/PJ(R). By Theorem 6.5, projective modules are determined, up

to isomorphism, by its quotient modulo the Jacobson radical. So that, to describe

V ∗(R) we only need to record the cardinalities of the sets Ii for i = 1, . . . , k. Now

we explain how we do that in a precise way.

Let N = {1, 2, . . . } and N0 = N∪{0}. Consider also the monoid N∗0 = N0 ∪{∞}
with the addition determined by the addition on N0 extended by the rule n+∞ =

∞+ n =∞ for any n ∈ N∗0.

If P is a countably generated projective right R-module such that P/PJ(R) ∼=
V

(I1)
1 ⊕· · ·⊕V (Ik)

k we set dimϕ(〈P 〉)) = (m1, . . . ,mk) ∈ (N∗0)k where, for i = 1, . . . , k,

mi = |Ii| if Ii is finite and mi =∞ if Ii is infinite. Therefore dimϕ : V ∗(R)→ (N∗0)k

is a monoid morphism which is injective by Theorem 6.5.

Observe that dimϕ(〈R〉) = (n1, . . . , nk) ∈ Nk. By restriction, there is also a

monoid monomorphism dimϕ : V (R)→ Nk0 and its image is in a particular class of

submonoids of Nk0 that we introduce in the next definition.

Definition 6.6. A submonoid A of Nk0 is said to be full affine if whenever a, b ∈ A
are such that a = b+ c for some c ∈ Nk0 then c ∈ A.

The class of full affine submonoids of Nk0 containing an element (n1, . . . , nk) ∈ Nk

is the precise class of monoids that can be realized as dimϕ(V (R)) for a semilocal

ring R such that dimϕ(〈R〉) = (n1, . . . , nk), cf. [7].

An interesting problem is to determine which submonoids of (N∗0)k can be realized

as dimension monoids, that is, as dimϕ(V ∗(R)) for a suitable semilocal ring R.

Right now it seems we are still far to be able to give an answer to this question.

After [16] the answer is known in the case of noetherian rings, in the next definition

we introduce the class of monoids that appears in the noetherian case.

Definition 6.7. Let k ≥ 1. A submonoid B of (N∗0)k is said to be a monoid defined

by a system of equations if it is the set of solutions in (N∗0)k of a system of the form

D


t1
...

tk

 ∈


m1N∗0
...

mnN∗0

 and E1


t1
...

tk

 = E2


t1
...

tk

 (1)
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where D ∈ Mn×k(N0), E1, E2 ∈ M`×k(N0), m1, . . . ,mn ∈ N, mi ≥ 2 for any

i ∈ {1, . . . , n} and `, n ≥ 0.

Remarks 6.8. 1) It is important to notice that N∗0 is no longer a cancellative

monoid. So that, for example, the set of solutions in (N∗0)2 of the equation x = y

is not the same as the set of solutions of 2x = y + x.

2) Let A be a submonoid of Nk0 . It was observed by Hochster that A is full affine

if and only if it is the set of solutions in Nk0 of a system of the form (1), cf. [16,

§6]. In this case, the monoid B = A+∞ ·A is a submonoid of (N∗0)k defined by a

system of equations, cf. [16, Corollary 7.9].

For further quoting we recall the main result in [16] which characterized the

monoids M that can be realized as V ∗(R) for a semilocal noetherian ring R.

Theorem 6.9. Let k ∈ N. Let B be a submonoid of (N∗0)k containing (n1, . . . , nk) ∈
Nk. Then the following statements are equivalent:

(1) B is a monoid defined by a system of equations.

(2) There exist a noetherian semilocal ring R, a semisimple ring S = Mn1(D1)×
· · ·×Mnk

(Dk), where D1, . . . , Dk are division rings, and an onto ring mor-

phism ϕ : R→ S with Kerϕ = J(R) such that dimϕ V
∗(R) = B. Therefore,

dimϕ V (R) = B ∩ Nk0 .

In the above statement, if F denotes a field, R can be constructed to be an F -algebra

such that D1 = · · · = Dk = E is a field extension of F .

Let R be a semilocal ring such that R/J(R) ∼= Mn1(D1) × · · · ×Mnk
(Dk) for

suitable division rings D1, . . . , Dk, and let ϕ : R → Mn1(D1) × · · · ×Mnk
(Dk) be

an onto ring homomorphism such that Kerϕ = J(R). It is not true, in general,

that dimϕ(V ∗(R)) is a monoid defined by a system of equations. The first problem

that appears is that in the nonnoetherian setting there may be projective modules

that are finitely generated modulo the Jacobson radical but that they are not

finitely generated. The first example of this kind was constructed by Gerasimov

and Sakhaev in [13]. A detailed study of this phenomena was done in [17].

6.2. Application to artinian modules. It is not difficult to show that a finitely

generated module over a commutative noetherian local ring S has a semilocal endo-

morphism ring that is a finitely generated S-algebra. Wiegand in [31] showed that

if M is such a module then V (M) can be any full affine submonoid of Nk0 having an

element (n1, . . . , nk) ∈ Nk. This gives a nice an alternative proof of the fact that

full affine monoids are the precise class of monoids that can be realized as V (R)

for a semilocal ring R. It also shows that R can be taken to be a finitely generated

algebra over a commutative noetherian ring. Then, using Proposition 6.1 combined

with Lemma 6.3 he also proved that if N is a (cyclic) artinian module then V (N)
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can be any full affine submonoid of Nk0 having an element (n1, . . . , nk) ∈ Nk. An

alternative proof of this fact was also obtained by Yakovlev in [32].

Wiegand has two constructions of finitely generated modules, one for one di-

mensional rings and another for two dimensional ones. The one dimensional case

fits very well in the context of Proposition 4.3 to give an alternative approach of a

realization result for artinian modules.

Proposition 6.10. Let A be a submonoid of Nk0 consisting on the set of solutions of

a system of diophantine linear equations, and containing an element (n1, . . . , nk) ∈
Nk. Then there exists a one dimensional commutative local noetherian domain R

with field of fractions Q such that the ring S =
(
Q Q
0 R

)
has an artinian module N

such that V (N) ∼= A and this isomorphism takes 〈N〉 to (n1, . . . , nk).

Proof. In [31] (or see also [22]), there are constructed a one dimensional local

noetherian domain R and a finitely generated torsion free module M such that

V (M) ∼= A and the isomorphism takes 〈M〉 to (n1, . . . , nk). By Proposition 4.3,

N = H(M) has the same endomorphism as M ; so that, by Proposition 6.1, V (N) ∼=
A and the isomorphism has the required property. SinceR is one-dimensional Cohen

Macaulay, NS is artinian, cf. Corollary 5.3. �

Puninski in [27] was the first to observe that Add (N), for N an artinian module,

can have modules that are not direct sum of artinian ones. Again, Puninski’s result

is an application of Proposition 6.1 combined with Lemma 6.3. We give a more

systematic approach to this phenomena by proving the following theorem,

Theorem 6.11. Let k ∈ N. Let A be a submonoid of (N∗0)k containing (n1, . . . , nk) ∈
Nk. If A is a monoid defined by a system of equations then there exist a ring T and

an artinian cyclic right T -module M such that V ∗(M) ∼= A.

The rest of the paper is devoted to proving Theorem 6.11 . Our strategy will

be to show that we can apply Lemma 6.3 to the rings constructed to show that

(1)⇒ (2) in the proof Theorem 6.9. To do that we will need to do quite an amount

of work.

We do not know whether the converse of Theorem 6.11 should be true. Endo-

morphism rings of artinian modules are semilocal rings satisfying the ACC on left

annihilators [11]. This implies that if R is the endomorphism ring of an artinian

module then any projective right R-module that is finitely generated modulo its

Jacobson radical is finitely generated. That is, the situation studied in [17] cannot

occur, but still we have no idea whether the monoids that could appear as V ∗(M)

for a cyclic artinian module M should be defined by a system of equations.
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7. Particular classes of ring pull-backs

We examine three constructions of rings appearing in the proof of Theorem 6.9.

In order to prove Theorem 6.11 we need to show that they fulfill the hypothesis of

Lemma 6.3. The first one is to construct semilocal rings such that their monoid

of countably generated projective modules is isomorphic to the set of solutions of

a single congruence. The second one will be to construct semilocal rings such that

their monoid of countably generated projective modules is isomorphic to the set of

solutions of a single linear equation. The third one will show how to glue together

several congruences and several equations.

All these constructions are particular classes of ring pullbacks and they come

from [16, Section 5]. We first note the following easy fact.

Lemma 7.1. If R is a pullback of two rings R1 and R2 that can be embedded in

artinian rings then also R embeds in an artinian ring.

Proof. If for i = 1, 2, Ri embeds in the artinian ring Si then R embeds in S1 × S2

which is an artinian ring. �

Next construction does some preliminary work needed to construct the bimodule

required in the statement of Lemma 6.3.

Construction 7.2. Let F be a field. Let R = Mn1(F ) × · · · ×Mnk
(F ) and S =

Mm(F ). Assume that (a1, . . . , ak) ∈ Nk0 is such that a1n1 + · · · + aknk = m. Let

α : R→ S be the ring homomorphism given by

α(r1, . . . , rk) =



r1 . . . 0
...

. . .
...

0 . . . r1︸ ︷︷ ︸
a1 times

. . .

rk . . . 0
...

. . .
...

0 . . . rk︸ ︷︷ ︸
ak times


So that α induces an R-R-bimodule structure over S.

Let X ∈Mm(F ). Fix ` ∈ 1, . . . , k, for i ≤ a` and 1 ≤ i, let X`
i be the submatrix

of X determined by the entries that are in the intersection of the n` rows ranging

from a1n1 + · · ·+ a`−1n`−1 + (i− 1)n` + 1 and a1n1 + · · ·+ a`−1n`−1 + (i)n` and

the n` columns ranging from a1n1 + · · ·+ a`−1n`−1 + (i− 1)n` + 1 and a1n1 + · · ·+
a`−1n`−1 + (i)n`.



CONSTRUCTION OF MODULES 237

Consider the map α∗ : S → R given by α∗(X) = (
∑a1
i=1X

1
i , . . . ,

∑ak
i=1X

k
i ).

Fix A ∈ S = Mm(F ), and consider the maps α∗A : S → R given by α∗A(X) =

α∗(AX) and βA : S → R given by (X)βA = α∗(XA).

Lemma 7.3. With the notation above, α∗ is a morphism of R-R-bimodules, α∗A is

a morphism of right R-modules and βA is a morphism of left R-modules.

Proof. Let r = (r1, . . . , rk) ∈ R, and X ∈ S. Then

α∗(X · r) = α∗ (Xα(r1, . . . , rk)) = (

a1∑
i=1

X1
i r1, . . . ,

ak∑
i=1

Xk
i rk) = α∗(X)r

Similarly, α∗(rX) = rα∗(X).

The same argument yields that α∗A is a morphism of right R-modules. �

In view of Lemma 7.3, there are maps Φ: S → HomR(SR, RR) and Φ′ : S →
HomR(RS,RR) given by Φ(A) = α∗A and Φ′(A) = βA for any A ∈Mm(F ).

Lemma 7.4. Φ is an isomorphism of right S-modules and Φ′ is an isomorphism

of left S-modules.

Let γ : HomR(SR, R)→ R be given by γ(f) = f(1), and let γ′ : HomR(RS,R)→
R be given by γ(g) = g(1). Then γ ◦ Φ = γ′ ◦ Φ′ = α∗.

Proof. Let A, B ∈ S. Then Φ(A+ B) = α∗A+B = α∗A + α∗B = Φ(A) + Φ(B). The

associativity of the product of matrices yields that

Φ(AB) = α∗AB = (α∗A)B = Φ(A)B.

Therefore Φ is a morphism of right S-modules.

Since dimF (S) = dimF (HomR(SR, R)), to conclude that Φ is an isomorphism it

is enough to show that it is injective. Let 0 6= A ∈ S, let 1 ≤ i, j ≤ m be such that

the i-j-entry of A is different from zero. Let Eji ∈ S be such that all its entries

are zero except from the j-i-entry which is one, then α∗A(Eji) = α∗(AEji) 6= 0 so

that Φ(A) 6= 0. This shows that Φ(A) = 0 if and only if A = 0 and, hence, Φ is

injective. An easy computation shows that γ ◦ Φ = α∗.

The statements for Φ′ are proved in a similar way. �

7.1. Realizing solutions of congruences. In this subsection we work with the

following family of examples.

Construction 7.5. ([16, Example 5.1]) Let k,m ∈ N, and let a1, . . . , ak ∈ N0.

Assume (n1, . . . , nk) ∈ Nk is such that a1n1 + · · · + aknk = m` ∈ N. Let F be

a field. Assume that there exists a semilocal principal ideal domain R1 such that

R1/J(R1) ∼= Mm(F ) and that J(R1) is generated by a central element of R1.

Fix an onto ring homomorphism j : M`(R1)→Mm`(F ) with kernel J(M`(R1)) =

M`(J(R1)).
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Set R2 = Mn1
(F )× · · · ×Mnk

(F ), and consider the morphism

α : R2 −→ Mm`(F )

(r1, . . . , rk) 7→



r1 . . . 0
...

. . .
...

0 . . . r1︸ ︷︷ ︸
a1 times

. . .

rk . . . 0
...

. . .
...

0 . . . rk︸ ︷︷ ︸
ak times


Let R be the ring defined by the pullback diagram

M`(R1)
j−−−−→ Mm`(F )

i

x xα
R −−−−→

ϕ
Mn1

(F )× · · · ×Mnk
(F )

(2)

Then R is noetherian semilocal, it embeds into an artinian ring, Kerϕ = J(R) and

ϕ is onto. Hence, ϕ induces an isomorphism R/J(R) ∼= Mn1(F )× · · · ×Mnk
(F ).

Moreover, dimϕ V
∗(R) is exactly the set of solutions in (N∗0)k of the congruence

a1t1 + · · ·+ aktk ∈ mN∗0.

Lemma 7.6. In the situation and notation of Construction 7.5, assume that X is

a right module over M`(R1). Then

(i) If XM`(R1) is of finite length, then XR is also a module of finite length.

(ii) If X is an artinian M`(R1)-module, then it is also artinian as R-module.

Proof. (i). Let V be the simple right module over M`(R1). Since VM`(J(R1)) = 0,

V is a simple Mm`(F )-module, and hence a module of finite length over α(R2).

Therefore, it is also a module of finite length over R2.

Since J(R) = M`(J(R1)) × {0}, V J(R) = 0. So that the structure of V as

R-module is the same as the structure of V as R2-module. Hence, V is a module

of finite length over R.

The statement for a general module over M`(R1) of finite length follows easily

by induction on the composition length.

(ii). Let

X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊇ · · · (3)

be a descending chain of right R-submodules of X. Since i(J(R)) = J(M`(R1))

X1J(R) ⊇ X2J(R) ⊇ · · · ⊇ XnJ(R) ⊇ · · · (4)
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is a descending chain of right M`(R1)-submodules of X; therefore there exists n0

such that Xn0
J(R) = Xn0+kJ(R) for any k ≥ 0.

Consider now the descending chain

Xn0

Xn0J(R)
⊇ Xn0+1

Xn0J(R)
⊇ · · · ⊇ Xn0+k

Xn0J(R)
⊇ · · · (5)

of submodules of Y = Xn0/Xn0J(R). Since Y is an artinian module over

M`(R1)/M`(J(R1)) it is of finite length. By (i), Y is an R-module of finite length.

Therefore there exists n1 ≥ n0 such that

Xn1

Xn0
J(R)

=
Xn1+k

Xn0
J(R)

for any k ≥ 0.

Then it follows that Xn1 = Xn1+k for any k ≥ 0. This proves that XR is artinian.

�

Following the notation of Construction 7.5, let Q denote the field of fractions of

R1. Then Q/J(R1) ∼= Q/R1 is an R1-R1-bimodule which is an injective cogenerator

and artinian on both sides (apply, for example, Proposition 5.2). The hypothesis on

the PID R1 ensure that the right and left socle of Q/J(R1) coincide with the R1-R1-

subbimodule R1/J(R1). Therefore M`(Q/J(R1)) is an M`(R1)-M`(R1)-bimodule

which is an artinian injective cogenerator on both sides, and its right and left

(essential) socle coincide with M`(R1/J(R1)). Let ̃ : M`(R1/J(R1))→Mm`(F ) be

the isomorphism induced by the homomorphism j. Consider the following push-out

of abelian groups

M`(Q/J(R1))
̃−1

←−−−− Mm`(F )

π

y yα∗

N ←−−−−
ε

Mn1
(F )× · · · ×Mnk

(F )

(6)

where α∗ denotes the map from Construction 7.2 associated to the map α in the

pull-back diagram (2) defining R.

Proposition 7.7. With the notation above, the following statements hold:

(i) N is an R-R-bimodule.

(ii) The map ε is injective.

(iii) Soc(RN) = Soc(NR) = ε(Mn1(F )× · · · ×Mnk
(F )).

(iv) N is an injective R-cogenerator on both sides.

(v) N is an artinian R-module on both sides.

Proof. Recall that N = (M`(Q/J(R1))× (Mn1
(F )× · · · ×Mnk

(F ))) /L where

L = {(̃−1(X),−α∗(X)) | X ∈Mm`(F )}.
As remarked before, the M`(R1)-bimodule M`(Q/J(R1)) is injective on both

sides and serial artinian on both sides by Proposition 5.2. By the way the ring R1
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is chosen the right and left socle of M`(Q/J(R1)) is M`(R1/J(R1)) which coincides

with ̃−1(Mm`(F )).

(i). To prove that N is an R-R bimodule we must see that L is invariant, on

both sides, by the action of R. Let A ∈ R1 and B ∈ R2 be such that (A,B) ∈ R,

that is, j(A) = α(B). Let X ∈ Mm`(F ). Then (̃−1(X),−α∗(X))(A,B) =

(̃−1(X)A,−α∗(X)B) = (̃−1(Xj(A)),−α∗(X)B). Now α∗(Xj(A)) = α∗(Xα(B)) =

α∗(X)B. This proves that L is a right R-module. Similarly, it also follows that L

is a left R-module.

(ii). Since ̃−1 is injective, ε : R2 → N is injective.

(iii). Clearly, ε(R2) is an R-R-submodule of N which is semisimple on both

sides. Therefore it is contained in the right socle of N and in the left socle of N .

To prove that it coincides with both socles we shall see that ε(R2) is essential in N

as a right and as a left R-module.

Let 0 6= (A,B) + L ∈ N be such that A = ̃−1(X) for some X ∈Mm`(F ). Then

(A,B) = (̃−1(X),−α∗(X)) + (0, α∗(X) +B). (7)

So that (A,B) + L = (0, α∗(X) +B) + L ∈ ε(R2).

Let 0 6= (A,B) + L ∈ N be such that A 6∈ ̃−1(Mm`(F )). Since M`(Q/J(R1))

has essential socle ̃−1(Mm`(F )) there exists C ∈ M`(J(R1)) such that 0 6= AC =

̃−1(X) for some X ∈ Mm`(F ). Notice that (C, 0) ∈ R, and that (A,B)(C, 0) =

(AC, 0). We claim that C can be chosen such that (AC, 0) 6∈ L, so that, by our

previous argument, (AC, 0) + L will be a non-zero element of ε(R2).

Indeed, A = (aij + J(R1)) with aij ∈ Q for any i, j ∈ {1, . . . , `}. Choose i0, j0

such that ai0j0 ∈ Q \R1. Then, since Q/J(R1) has essential socle R1/J(R1), there

exists x ∈ J(R1) such that ai0j0x ∈ R1 \J(R1). Let D be the matrix of M`(J(R1))

with all its entries zero except for the entry j0-i0 which is x. Then in the matrix

AD ∈ M`(Q/J(R1)) only the i0 column is non-zero and the i0-i0 entry of AD is

0 6= ai0j0x. If all the entries of AD are in R1 + J(R1) we set C = D otherwise

we repeat the above process with an entry of AD which is not in R1 + J(R1). At

the end we get a matrix 0 6= AD1 · · ·Dr ∈ M`(R/J(R1)) with only one non-zero

column and a nonzero entry in the diagonal. Moreover D1 · · ·Dr ∈ M`(J(R1)), so

that j(D1 · · ·Dr) = 0 and, hence, (D1 · · ·Dr, 0) ∈ R.

There exists X ∈ Mm`(F ) such that AD1 · · ·Dr = ̃−1(X). Notice that such X

will have only one non-zero column and a nonzero entry in the diagonal. Therefore

α∗(X) 6= 0. We finish the proof of the claim setting C = D1 · · ·Dr.

A symmetric argument shows that ε(R2) is also an essential left submodule of

N , hence it also coincides with the left socle of N .

(iv). The injectivity of N , on both sides, follows from [9, Theorem 1]. We briefly

explain how we apply this result.
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SinceR2 is semisimple it is injective asR2-module on both sides, alsoM`(Q/J(R1))

is an M`(R1)-M`(R1)-bimodule which is injective on both sides and its socle is iso-

morphic via ̃ to Mm`(F ). By Lemma 7.4, there are isomorphisms Mm`(F ) →
HomR2(Mm`(F ), R2) of right and of left Mm`(F )-modules and both isomorphisms

composed with the evaluation at the identity give the map α∗. Therefore the push-

out in (6) is of the type in [9, p. 427] so it gives an R-bimodule that is injective on

both sides.

By (iii), N is the injective hull of R/J(R) on both sides. Since R is semilocal,

it is an injective cogenerator on both sides.

(v). In view of the identity (7), N/ε(R2) ∼= M`(Q)/M`(R1). So that there is an

exact sequence

0→ R2
ε→ N →M`(Q)/M`(R1)→ 0

Since R2
∼= R/J(R) is semisimple artinian as a left and as a right R-module it

suffices to show that M`(Q)/M`(R1) is artinian both as a right and as a left R-

module. Recall that, by Proposition 5.2, X = M`(Q)/M`(R1) is artinian, on both

sides, as R1-module, and, by Lemma 7.6, it is also artinian, on both sides, as R-

module. This allows us to conclude that N is artinian, on both sides, as R-module.

�

7.2. Realizing solutions of linear equations.

Construction 7.8. ([16, Example 5.2]) Let k ∈ N, and let a1, . . . , ak, b1, . . . , bk ∈
N0. Let (n1, . . . , nk) ∈ Nk be such that a1n1+· · ·+aknk = b1n1+· · ·+bknk = m ∈ N.

Let F be a field. Let R1 = F [x]Σ with Σ = (F [x])\ (xF [x] ∪ (x− 1)F [x]) . Then R1

is a semilocal PID such that R1/J(R1) ∼= F × F .

Let j1 : Mm(R1)→Mm(F )×Mm(F ) be an onto ring homomorphism with kernel

J(Mm(R1)). Set R2 = Mn1
(F )×· · ·×Mnk

(F ). Consider the morphism j2 : R2 −→
Mm(F )×Mm(F ) defined by

j2(r1, . . . , rk) = (α1(r1, . . . , rk), α2(r1, . . . , rk)) =

=





r1 . . . 0
...

. . .
...

0 . . . r1︸ ︷︷ ︸
a1 times

. . .

rk . . . 0
...

. . .
...

0 . . . rk︸ ︷︷ ︸
ak times



,



r1 . . . 0
...

. . .
...

0 . . . r1︸ ︷︷ ︸
b1 times

. . .

rk . . . 0
...

. . .
...

0 . . . rk︸ ︷︷ ︸
bk times




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Let R be the ring defined by the pullback diagram

Mm(R1)
j1−−−−→ Mm(F )×Mm(F )

i

x xj2
R −−−−→

ϕ
Mn1(F )× · · · ×Mnk

(F )

Then R is a noetherian semilocal F -algebra, it embeds into an artinian ring and

ϕ is an onto ring homomorphism with kernel J(R). Moreover, dimϕ V
∗(R) is the

set of solutions in (N∗0)k of the equation a1t1 + · · ·+ aktk = b1t1 + · · ·+ bktk.

Following the notation of Construction 7.8. Let Q denote the field of fractions

of R1. Then Q/J(R1) ∼= Q/R1 is an R1-R1-bimodule which is an artinian injective

cogenerator on both sides by Proposition 5.2. The right and left socle of Q/J(R1)

coincide with the R1-R1-subbimodule R1/J(R1). Therefore Mm(Q/J(R1)) is an

Mm(R1)-Mm(R1)-bimodule which is injective and artinian on both sides, and its

right socle and left socle coincide with Mm(R1/J(R1)). Let ̃1 : Mm(R1/J(R1))→
Mm(F )×Mm(F ) be the isomorphism induced by the homomorphism j1. Consider

the following push-out of abelian groups

Mm(Q/J(R1))
̃−1
1←−−−− Mm(F )×Mm(F )

π

y yδ
N ←−−−−

ε
Mn1

(F )× · · · ×Mnk
(F )

(8)

where δ(X,Y ) = α∗1(X) + α∗2(Y ) for any (X,Y ) ∈ Mm(F ) ×Mm(F ). Here, for

i = 1, 2, α∗i denotes the map associated to αi in Construction 7.2.

Following the same ideas as in the proof of Proposition 7.7 we have the following

properties for N .

Proposition 7.9. With the notation above, the following statements hold:

(i) N is an R-R-bimodule.

(ii) The map ε is injective.

(iii) Soc(RN) = Soc(NR) = ε(Mn1
(F )× · · · ×Mnk

(F )).

(iv) RNR is an injective cogenerator on both sides.

(v) RNR is artinian on both sides.

7.3. Adding equations and congruences. Finally, we need the following con-

struction.

Construction 7.10. Let (n1, . . . , nk) ∈ Nk. Let F be a field. Assume that there

exist semilocal notherian rings R1 and R2 with fixed onto morphisms ϕi : Ri →
Mn1(F ) × · · · ×Mnk

(F ) such that Kerϕi = J(Ri) for i = 1, 2. Assume that, for
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i = 1, 2, dimϕi
(V ∗(Ri)) is the set of solutions in (N∗0)k of a system of the form

Di


t1
...

tk

 ∈


mi
1N∗0
...

mi
ni
N∗0

 and Ei1


t1
...

tk

 = Ei2


t1
...

tk

 (Si)

where Di ∈ Mni×k(N0), Ei1, E
i
2 ∈ M`i×k(N0), mi

1, . . . ,m
i
ni
∈ N, mi

j ≥ 2 for any

j ∈ {1, . . . , ni} and `i, ni ≥ 0. Consider the pullback

R1
ϕ1−−−−→ Mn1(F )× · · · ×Mnk

(F )

i1

x xϕ2

R −−−−→
i2

R2

Then R is a semilocal noetherian ring. The morphism ϕ = ϕ1i1 = ϕ2i2 is onto,

Kerϕ = J(R), and dimϕ(V ∗(R)) is the set of solutions in (N∗0)k of the system

S1

⋃
S2.

Proposition 7.11. We follow the notation of Construction 7.10. For i = 1, 2, let

Ni be a right Ri-module with a fixed embedding of right Ri-modules εi : Mn1(F ) ×
· · · ×Mnk

(F )→ Ni. Consider the push-out of abelian groups

N1
ε1←−−−− Mn1(F )× · · · ×Mnk

(F )

π1

y yε2
N ←−−−−

π2

N2

(9)

Then:

(i) N is a right R-module and ε = π1ε1 = π2ε2 is injective.

(ii) If Im εi = Soc((Ni)Ri) then Soc(NR) = Im ε

(iii) If (N1)R1
and (N2)R2

are artinian then so is NR.

(iv) If (N1)R1
and (N2)R2

are injective then so is NR.
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Proof. Recall that the push-out (9) yields the following commutative diagram with

exact rows and columns,

0 0y y
0 −−−−→ Mn1

(F )× · · · ×Mnk
(F )

ε1−−−−→ N1 −−−−→ N1/Im ε1 −−−−→ 0

ε2

y yπ1

∥∥∥
0 −−−−→ N2 −−−−→

π2

N −−−−→ N1/Im ε1 −−−−→ 0y y
N2/Im ε2 N2/Im ε2y y

0 0
(10)

(i). By construction, N = N1 ×N2/L where

L = {(ε1(x),−ε2(x)) | x ∈Mn1
(F )× · · · ×Mnk

(F )}.

By definition, R = {(r1, r2) ∈ R1 × R2 | ϕ1(r1) = ϕ(r2)}. To see that N is an

R-module we must see that Lr ⊆ L for any r = (r1, r2) ∈ R. Indeed, since for

i = 1, 2, εi is a morphism of right Ri-modules, εi(x)ri = εi(x · ri) = εi(xϕi(ri))

for any x ∈ Mn1
(F ) × · · · × Mnk

(F ). Since ϕ1(r1) = ϕ2(r2) = y, for any x ∈
Mn1

(F )× · · · ×Mnk
(F ), (ε1(x),−ε2(x))r = (ε1(xy),−ε2(xy)) ∈ L.

The exactness of diagram (10) yields that ε = π1ε1 = π2ε2 is injective.

(ii). It is clear that Soc(NR) ⊇ Im ε. Notice that J(R) = J(R1)×J(R2). For i =

1, 2, fix ni ∈ Ni such that (n1, n2) + L ∈ Soc(NR). In particular, (n1, n2)(J(R1)×
{0}) ∈ L, but this happens if and only if n1J(R1) = {0} or, equivalently, if and

only if n1 ∈ Im ε1. Similarly, n2 ∈ Im ε2. We conclude the proof by observing that

(Im ε1 × Im ε2)/L = Im ε.

(iii). Since, for j = 1, 2, the morphism ij in Construction 7.10 is onto, if M is

an Ri-module then its lattice of R-submodules is exactly the same as its lattice of

Ri-submodules. Then the claim follows easily from diagram (10) because N fits

into the exact sequence of R-modules

0→ N1 → N → N2/Im ε2 → 0.

(iv). As with the other constructions, it follows from the results in [9] that N is

an injective right R-module. An alternative proof can be done following word by

word the argument of [5, Theorem 3.1(3)] to conclude the injectivity of N . �

Now we are ready to prove Theorem 6.11.
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Proof Theorem 6.11. Let A be a submonoid of (N∗0)k that is the set of solutions

in (N∗0)k of the system

D


t1
...

tk

 ∈


m1N∗0
...

mnN∗0

 and E1


t1
...

tk

 = E2


t1
...

tk



where D ∈ Mn×k(N0), E1, E2 ∈ M`×k(N0), m1, . . . ,mn ∈ N, mi ≥ 2 for any

i ∈ {1, . . . , n} and `, n ≥ 0. We may assume that either ` of n is > 0

By [16, Example 3.3(i)], for any t ∈ N, we can construct a semilocal PID R such

that R/J(R) ∼= Mt(Q) and J(R) is generated by a central element. Therefore,

using Construction 7.5, by i = 1, . . . n we can construct noetherian semilocal rings

Ri with an onto ring homomorphism ϕi : Ri → Mn1
(Q)× · · · ×Mnk

(Q) such that

Kerϕi = J(Ri), and satisfying that dimϕi(V
∗(Ri)) is the set of solutions of the

i-th congruence in the system defining A.

Using Construction 7.8, for j = 1, . . . , ` we can construct noetherian semilocal

rings Rn+j with an onto ring homomorphism ϕn+j : Rn+j →Mn1
(Q)×· · ·×Mnk

(Q)

such that Kerϕn+j = J(Rn+j) satisfying that dimϕn+j
(V ∗(Rn+j)) is the set of

solutions of the j-th linear equation in the system defining A.

By construction, all these rings can be embedded in suitable artinian rings. In

view of Proposition 7.7 and Proposition 7.9, for i = 1, . . . , n+ `, there exists an Ri-

Ri-bimoduleNi and an embedding ofRi bimodules εi : Mn1
(Q)×· · ·×Mnk

(Q)→ Ni

such that

(i) Ni is artinian on both sides as Ri-module.

(ii) Ni is an injective Ri-module on both sides and its socle, on both sides, is

Im εi.

(iii) Ri
(Ni)Ri

is a cogenerator on both sides.

A successive application of Construction 7.10 with the homomorphisms ϕ1, . . . , ϕn+`

yields a semilocal noetherian ring R that can be embedded in an artinian ring, an

onto homomorphism ϕ : R → Mn1
(Q) × · · · × Mnk

(Q) such that Kerϕ = J(R)

and such that dimϕ(V ∗(R)) = A. By Proposition 7.11 and its left handed ver-

sion, taking the corresponding successive pushouts of ε1, . . . , εn+` we obtain an

R-R-bimodule N and an embedding ε : Mn1(Q)× · · · ×Mnk
(Q)→ N such that

(i’) N is artinian on both sides as R-module.

(ii’) N is an injective R-module on both sides and its socle, on both sides, is

Im ε.

(iii’) RNR is a cogenerator on both sides.
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By Lemma 6.3, R can be realized as the endomorphism ring of an artinian cyclic

module M such that V ∗(M) ∼= A. This concludes the proof of the theorem. �

Now we discuss some examples to illustrate Theorem 6.11.

Example 7.12. In view of Theorem 6.11, there exists a cyclic artinian module

M1 such that V ∗(M1) ∼= A1 = {(x, y) ∈ (N∗0)2 | x = y}. Since A1 = (1, 1)N∗0 it

follows that Add(M1) contains, up to isomorphism, a single indecomposable module

and that any module in Add(M1) is isomorphic to a direct sum of copies of this

indecomposable module.

There also exists a cyclic artinian module M2 such that V ∗(M2) ∼= A2 = {(x, y) ∈
(N∗0)2 | 2x = x + y}. Since A2 ∩ N2

0 = (1, 1)N0 the category add(M2) has a sin-

gle indecomposable object and every module in this category is a finite direct sum

of copies of such indecomposable object. But A2 = (1, 1)N∗0 + (∞, 0)N∗0, so that

in Add(M2) the module corresponding to (∞, 0) is not a direct sum of artinian

modules.

Finally, there also exists a cyclic artinian module M3 such that V ∗(M3) ∼= A3 =

{(x, y) ∈ (N∗0)2 | 2x+ y = x+ 2y}. Now A3 = (1, 1)N∗0 + (∞, 0)N∗0 + (0,∞)N∗0, and

hence the two modules of Add(M3) corresponding to (∞, 0) and (0,∞), respectively,

are not a direct sum of artinian modules.
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