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1. Introduction

Suppose W is a Coxeter group, and let R be a set of fundamental reflections for

W (see, for example, [6] for a detailed introduction to finite Coxeter groups and their

root systems). Then W = 〈R : (rs)mrs = 1, r, s ∈ R〉 where mrs ∈ Z+ ∪ {∞},
mrr = 1 and mrs = msr ≥ 2 for r, s ∈ R with r 6= s. For J a subset of R,

WJ = 〈r : r ∈ J〉 is called a standard parabolic subgroup of W . A subgroup of W

which is conjugate to a standard parabolic subgroup is referred to as a parabolic

subgroup of W . Parabolic subgroups frequently make important guest appearances

in other areas of mathematics – see for example [1], [3] and [4].

For w ∈ W we define l(w), the length of w, to be

l(w) = min{l : w = r1 · · · rl for some ri ∈ R}

if w 6= 1, setting l(1) = 0. The length function has long been of fundamental impor-

tance in the study of Coxeter groups. In [7] the notion of length was extended to

assign lengths to subsets of Coxeter groups. The aim of this paper is to determine

the possible lengths of parabolic subgroups in finite Coxeter groups. In [5] various

results were given about lengths of particular subsets, such as conjugacy classes,

cosets and subgroups. In the discussion of subgroups in [5], some results of the

current paper were referred to but not proved or even explicitly stated and one,
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Theorem 1.2, was stated (but not proved) as Theorem 3.3 of [5].

In order to describe the way in which the length function for elements of a

Coxeter group W is extended to a length function for subsets of W , we need to

work with the root system Φ of W . To define Φ we start with a real vector space

V which has basis Π = {αr : r ∈ R} (Π is the set of fundamental roots of W ).

Then we define a symmetric bilinear form 〈 , 〉 on V by setting, for r, s ∈ R,

〈αr, αs〉 =

{
− cos(π/mrs) if mrs 6= ∞;

−1 otherwise.

Now, for r, s ∈ R the action of r on αs, written r · αs, is given by

r · αs = αs − 2〈αr, αs〉αr.

This extends in a natural way to an action of W on V which is both faithful and

respects the bilinear form 〈 · , · 〉. The root system Φ of W is the following subset

of V :

Φ := {w · αr : w ∈ W, r ∈ R}.
Additionally we have

Φ+ := {
∑

r∈R

λrαr ∈ Φ : λr ≥ 0 for each r ∈ R},

the set of positive roots, and Φ− := −Φ+, the set of negative roots. It turns out

(Section 5.4 of [6]) that Φ is the disjoint union of Φ+ and Φ−. For w ∈ W , let

N(w) = {α ∈ Φ+ : w · α ∈ Φ−}. The set N(w) is often called the inversion set

of w. A well known, and frequently used, fact is that l(w) = |N(w)| (Proposition

5.6(b) of [6]).

Following [7], for X ⊆ W set

N(X) = {α ∈ Φ+ : x · α ∈ Φ− for some x ∈ X}.

Observe that N(X) = ∪x∈XN(x). We define the length of X to be

l(X) = |N(X)|.

If X consists of the single element w, then the length of X is just l(w). It was

shown in Proposition 1.1 of [7] that for a finite standard parabolic subgroup X of

W l(X) ≤ l(Xw) for each w ∈ W , with equality if and only if Xw is also a standard

parabolic subgroup of W . Here we delve more deeply into the question of possible

lengths of conjugates of standard parabolic subgroups of W . From now on W is
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assumed to be a finite Coxeter group and X a standard parabolic subgroup of W .

We define the ‘length polynomial’ (of the conjugacy class of X), ΛX,W (t), to be

ΛX,W (t) =
∑

λlt
l,

where λl is the number of conjugates of X having length l. In some of our formulae

for the length polynomial we shall encounter [q] where q ∈ Q, by which we mean the

integer part of q. The following lemma shows that in order to determine ΛX,W (t)

we need only consider the case of irreducible Coxeter groups:

Lemma 1.1. Let W1, . . . ,Wm be the irreducible components of W and, for i =

1, . . . , m, set Xi = X ∩Wi. (So W = W1 × · · · ×Wm and X = X1 × · · · ×Xm.)

Then

ΛX,W (t) =
m∏

i=1

ΛXi,Wi
(t).

Proof. Write ΛXi,Wi =
∑

λi,lt
l for each i. Any conjugate Y of X is of the form

Y = Y1×· · ·×Ym, where each Yi is conjugate in Wi to Xi. Now l(Y ) =
∑m

i=1 l(Yi).

Set li = l(Yi) for each i. Then l(Y ) = l if and only if
∑m

i=1 li = l. The number of

conjugates of Xi having length li is λi,li . Hence the number of conjugates Y of X

with l(Y ) = l (that is, the coefficient of tl in ΛX,W ) is

∑

l1, . . . , lm :

l1 + · · ·+ lm = l

m∏

i=1

λi,li .

This is equal to the coefficient of tl in
∏m

i=1 ΛXi,Wi(t). Therefore ΛX,W (t) =∏m
i=1 ΛXi,Wi(t). ¤

Our first main result concerns the case when W is a classical Weyl group with

X and W of the same type. We will review the notation for the groups An, Bn and

Dn in Sections 3 – 5.

Theorem 1.2.(i) If W ∼= An and X ∼= Ai, then

ΛX,W (t) = ti(i+1)/2
n−i∑
ρ=0

(n + 1− i− ρ)

(
ρ + i− 1

i− 1

)
t(i+1)ρ.

(ii) If W ∼= Bn and X ∼= Bi, then

ΛX,W (t) = ti
2

n−i∑
ρ=0

(
ρ + i− 1

i− 1

)
t2iρ.
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(iii) If W ∼= Dn and X ∼= Di, then

ΛX,W (t) = ti(i−1)
n−i∑
ρ=0

(
ρ + i− 1

i− 1

)
t2iρ.

Theorem 1.2 is an immediate consequence of Propositions 3.2, 4.1 and 5.1.

As an example, letting W ∼= A3, we have

ΛA1,A3 = 3t + 2t3 + t5; ΛA2,A3 = 2t3 + 2t6.

When X is of a different type from W we have Theorem 1.3 below. The signed

cycle notation appearing in the theorem will be explained in Section 4.

Theorem 1.3.(i) If W ∼= Bn, and X ∼= A1, then

ΛX,W =
n∑

k=1

t2k−1 if X = 〈(−1)〉;

and

ΛX,W =
n−1∑

k=1

(n− k)t2k−1 +
2n−3∑

k=1

t2k+1
([

k+1
2

]−max{k + 1− n, 0}) if X = 〈(12)〉.

(ii) If W ∼= Bn, and X ∼= Ai, i > 1, then

ΛX,W (t) = ti(i+1)/2
n−i−1∑

ρ=0

t(i+1)ρ(n− i− ρ)
(
i+ρ−1

ρ

)

+ t(i+1)(i+2)/2

2(n−i−1)∑
ρ=0

t(i+1)ρ

[ρ/2]+1∑

y=max{ρ−n+i+2,1}

(
ρ+i+1−2y

i−1

)

+ t(i+1)2
2(n−i−1)∑

ρ=0

t(i+1)ρ
i−1∑
r=1

2r

[ρ/2]∑

s=max{ρ−n+i+1,0}

(
s+r

r

)(
ρ−2s+i−r−1

i−r−1

)
.

(iii) If W ∼= Dn and X ∼= Ai, then

ΛX,W =





n−3∑
ρ=0

(
ρ+2
2

)
t6(1+ρ) if i = 3 and X = 〈(12), (23), (

−
1
−
2)〉;

tn(n−1)/2 + (2n−2 − 1)tn(n−1) if n is even and i = n− 1.
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In all other cases the length polynomial for W ∼= Dn and X ∼= Ai is given by

ΛX,Dn
(t) = ti(i+1)/2

n−i−1∑
ρ=0

t(i+1)ρ(n− i− ρ)
(
i+ρ−1

ρ

)

+ ti(i+1)/2

2(n−i−1)∑
ρ=0

t(i+1)ρ

[ρ/2]+1∑

y=max{ρ−n+i+2,1}

(
ρ+i+1−2y

i−1

)

+ ti(i+1)

2(n−i−1)∑
ρ=0

t(i+1)ρ
i−1∑
r=1

2r

[ρ/2]∑

s=max{ρ−n+i+1,0}

(
s+r

r

)(
ρ−2s+i−r−1

i−r−1

)
.

Theorem 1.3 will follow from Lemmas 4.2, 5.2 and 5.3 and Theorems 4.11 and 5.7.

If X is not an irreducible parabolic subgroup, the calculations appear to become

much harder. As an indication of this in Section 6 we look at the simplest reducible

parabolic subgroups of W ∼= An, namely those of the type Ai ×Aj , and obtain, in

Propositions 6.2 and 6.3, formulae for the number of minimal and maximal length

conjugates of X. Finally, in Section 7 we give tables showing the distribution of

lengths of irreducible parabolic subgroups in the exceptional groups.

We would like to thank the referees for their helpful comments.

2. Preliminaries

In this section we establish various basic results which will be useful. We recall

that a left coset of X in W has a (unique) minimal length element, normally

referred to as the minimal left coset representative of that coset. For α ∈ Φ,

X · α = {x · α : x ∈ X} denotes the X-orbit of α and we use ΦX ,Φ+
X to denote,

respectively, the subroot system of X and ΦX ∩ Φ+. The next proposition brings

together some useful facts about the length function and the interaction between

N(w) and N(v) for elements w, v of W .

Proposition 2.1.(i) Let g ∈ W . Then g is a minimal left coset representative of

X in W precisely when l(gx) = l(g) + l(x) for each x ∈ X.

(ii) Let w, v ∈ W . Then

N(wv) = N(v)\ − v−1 ·N(w)∪̇v−1 · (N(w)\N(v−1)
)
.

Moreover, l(wv) = l(w) + l(v) if and only if N(wv) = N(v)∪̇v−1 ·N(w).

(iii) For all w ∈ W , N(w−1) = −w ·N(w).

(iv) Let w, v ∈ W . Then l(wv) = l(w) + l(v)− 2|N(w) ∩N(v−1)|.

Proof.(i) See Section 5.12 of [6].
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(ii) Let w, v ∈ W and α ∈ Φ+. Then α ∈ N(wv) if and only if either v · α ∈ Φ−

and w · (v · α) /∈ Φ+, or v · α ∈ Φ+ and w · (v · α) ∈ Φ−. In the first case, this

means α ∈ N(v) and v · α /∈ −N(w), so α ∈ N(v)\ − v−1 · N(w). In the second

case we have v · α ∈ N(w) and v−1 · (v · α) = α ∈ Φ+. Hence v · α /∈ N(v−1). Thus

α ∈ v−1 · (N(w)\N(v−1)). Therefore

N(wv) = N(v)\ − v−1 ·N(w)∪̇v−1 · (N(w)\N(v−1)
)
.

Now N(wv) ⊆ N(v)∪̇v−1N(w), so |N(wv)| ≤ |N(v)|+ |N(w)| with equality if and

only if N(wv) = N(v)∪̇ v−1 ·N(w). Therefore l(wv) = l(w) + l(v) if and only if

N(wv) = N(v) ∪̇ v−1 ·N(w).

(iii) Let w ∈ W and α ∈ Φ+. Then α ∈ N(w−1) if and only if w−1 · α ∈ Φ−, which

is if and only if α ∈ w ·Φ−, that is, α ∈ w · (−N(w)). Hence N(w−1) = −w ·N(w).

(iv) Let w, v ∈ W . Then by part (ii)

l(wv) = |N(wv)| = |N(v)\ − v−1 ·N(w)|+ |v−1 · (N(w)\N(v−1)
) |

= |N(v)| − |N(v) ∩ −v−1 ·N(w)|+ |N(w)\N(v−1)|
= |N(v)| − | − v ·N(v) ∩N(w)|+ |N(w)| − |N(w) ∩N(v−1)|
= |N(v)|+ N(w)| − 2|N(w) ∩N(v−1)|

since by part (iii), −v·N(v) = N(v−1). Thus l(wv) = l(w)+l(v)−2|N(w)∩N(v−1)|.
¤

Lemma 2.2. Let g ∈ W . Then g is a minimal left coset representative of X in W

if and only if N(g) ∩N(X) = ∅.

Proof. By Proposition 2.1 (i), g is a minimal left coset representative of X in W

if and only if l(gx) = l(g) + l(x) for each x ∈ X, and by (iv) this occurs if and only

if N(g) ∩N(x−1) = ∅ for all x ∈ X. This is if and only if N(g) ∩N(x) = ∅ for all

x ∈ X, which is if and only if N(g) ∩N(X) = ∅. ¤

Before we state Proposition 2.4, which underpins many of our later results, we

make the following definition. Let g be a minimal left coset representative of X in

W . Define O(g) to be the set of X-orbits Ω of Φ for which ∅ 6= Ω ∩N(g) 6= Ω.

Lemma 2.3. Let g be a minimal left coset representative of X in W . If Ω ∈ O(g),

then Ω ⊆ Φ+.

Proof. Let Ω ∈ O(g) and suppose that there exists β ∈ Φ+ with −β ∈ Ω. By

definition of O(g), there exist α ∈ N(g) ∩ Ω and x ∈ X for which x · α = −β.
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That is, α ∈ N(g) ∩ N(x), contradicting the fact that g is a minimal left coset

representative of X. Hence Ω ⊆ Φ+. ¤

Proposition 2.4. Let g be a minimal left coset representative of X in W . Then

N(gXg−1) = g ·N(X) ∪

Φ+ ∩ g ·

⋃

Ω∈O(g)

±Ω




and

l(gXg−1) = l(X) +
∑

Ω∈O(g)

|Ω|.

Proof. For all x ∈ X, Proposition 2.1 (i) and (ii) imply that N(gx) = N(x)∪̇x−1 ·
N(g) and (since x−1 ∈ X) N(xg−1) = N(g−1)∪̇g · N(x). Another application of

Proposition 2.1(ii) gives

N(gxg−1) = N(g(xg−1))

=
[
N(xg−1)\(−(xg−1)−1 ·N(g))

] ∪̇(xg−1)−1 · [N(g)\N((xg−1)−1)
]

=
[(

N(g−1)∪̇g ·N(x)
) \(−gx−1 ·N(g))

]

∪̇ gx−1 · [N(g)\ (
N(x−1)∪̇ x ·N(g)

)]

= g · [(−N(g)∪̇N(x)) \(−x−1 ·N(g))
]

∪̇ g · {(
x−1 ·N(g)

) \ [−N(x)∪̇N(g)]
}

.

Now

N(x) ∩ (−x−1 ·N(g)) = −x−1 · (N(x−1) ∩N(g)
)

= ∅

and x−1 ·N(g)\ −N(x) = x−1 · (N(g)\N(x−1)) = x−1 ·N(g). So we end up with

N(gxg−1) = g · [N(x)∪̇ − (
N(g)\x−1 ·N(g)

) ∪̇ (x−1 ·N(g))\N(g)
]
.

Therefore

N(gXg−1) = g ·
[
N(X) ∪

( ⋃

x∈X

− [N(g)\x ·N(g)]

)
∪ [X ·N(g)] \N(g)

]
.

Now α ∈
⋃

x∈X

[N(g)\x ·N(g)] precisely when α ∈ N(g) and there exist x ∈ X,

β ∈ Φ\N(g) for which α = x ·β. That is, α is in an X-orbit Ω with ∅ 6= N(g)∩Ω 6=
Ω. Recalling the definition of O(g), it now follows that

⋃

x∈X

− [N(g)\x ·N(g)] =
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−N(g)∩
⋃

Ω∈O(g)

−Ω. We also have [X ·N(g)] \N(g) =


 ⋃

Ω∈O(g)

Ω


 \N(g). Therefore

N(gXg−1) = g ·N(X) ∪

Φ+ ∩ g ·

⋃

Ω∈O(g)

±Ω


 .

Suppose Ω ∈ O(g). If g · N(X) ∩ g · Ω 6= ∅, then N(X) ∩ Ω 6= ∅, which implies

Ω 6⊆ Φ+, contradicting Lemma 2.3. If g ·N(X) ∩ g · (−Ω) 6= ∅, then N(X) 6⊆ Φ+,

which is impossible. Therefore N(gXg−1) is the disjoint union of g · N(X) and(
Φ+ ∩ g ·⋃Ω∈O(g)±Ω

)
. Now if α ∈ Ω for some Ω ∈ O(g), then g · α ∈ Φ− if and

only if g · (−α) ∈ Φ+. Therefore
∣∣∣∣∣∣
Φ+ ∩ g ·

∑

Ω∈O(g)

±Ω

∣∣∣∣∣∣
=

∑

Ω∈O(g)

|Ω|.

Hence

l(gXg−1) = l(X) +
∑

Ω∈O(g)

|Ω|,

so completing the proof. ¤

We make use of Proposition 2.4 repeatedly in the next three sections. The

general strategy for a given conjugacy class of parabolic subgroups of W , where

W is An, Bn or Dn, will be first to choose a suitable standard parabolic subgroup

X in the conjugacy class and to describe in detail the X-orbits of the root system

Φ. Then the minimal left coset representatives g of X in W will be examined, and

Proposition 2.4 will be used to determine the number of coset representatives g for

which gXg−1 has a given length. From this information the length polynomial can

then be calculated. We remark that Proposition 2.4 could also be used to calculate

the length of specific conjugates Y of a given standard parabolic subgroup X, as

long as the minimal left coset representative g for which Y = gXg−1 is known.

(The length of a standard parabolic subgroup X is simply the number of positive

roots in the root system of the Coxeter group to which it is isomorphic.)

3. W ∼= An and X ∼= Ai

In this section we assume W ∼= An
∼= Sym(n + 1) = 〈(12), . . . , (n n + 1)〉. We

will be working in some detail with the root system of W . Let V be an (n + 1)-

dimensional real vector space with orthonormal basis ε1, . . . , εn+1. Then W acts on

V by permuting the indices of the basis vectors. We may choose (12), . . . , (n n+1)

as the fundamental reflections of W . Now set the fundamental root corresponding
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to the fundamental reflection (i i + 1) to be εi − εi+1. The set of positive roots is

then

Φ+
W = {εx − εy : 1 ≤ x < y ≤ n + 1}.

The only irreducible parabolic subgroups of W are of type Ai. So we assume X ∼=
Ai for some i ≤ n. Without loss of generality we may suppose X = 〈(12), . . . , (i i+

1)〉. Then we have

Φ+
X = {εx − εy : 1 ≤ x ≤ y ≤ i + 1}.

Define, for i + 1 ≤ j ≤ n, Ωi,j := {ε1 − εj+1, . . . , εi+1 − εj+1}. It is straightforward

to check that the X-orbits of Φ are ΦX , ±Ωi,j (i + 1 ≤ j ≤ n) and the fixed points

±{εj−εk} (i+1 < j < k ≤ n+1). Let g be a minimal left coset representative of X

in W . It is clear that ΦX /∈ O(g) and {εj−εk} /∈ O(g) for each i+1 < j < k ≤ n+1.

We may modify Proposition 2.4 thus:

l(gXg−1) = l(X) +
∑

Ωi,j∈O(g)

(i + 1). (1)

Now we examine the action of g on {1, . . . , n + 1}. By Lemma 2.2, g must

satisfy N(g) ∩ N(X) = ∅. Now N(X) = Φ+
X and clearly N(g) ∩ Φ+

X is empty

exactly when g(x) < g(y) for all 1 ≤ x < y ≤ i + 1. That is, we must have

g(1) < g(2) < · · · < g(i + 1).

Let j ∈ {i + 2, . . . , n + 1}. Suppose g(j) < g(1). Then for each k ≤ i + 1,

g · (εk − εj) = εg(k) − εg(j) ∈ Φ−. Thus Ωi,j ⊆ N(g). If g(j) > g(i + 1), then for

each k ≤ i + 1, g(εk − εj) = εg(k) − εg(j) ∈ Φ+ and Ωi,j ∩N(g) = ∅. In both cases

Ωi,j /∈ O(g). However if g(1) < g(j) < g(i + 1), then εi+1 − εj ∈ N(g) ∩ Ωi,j but

ε1 − εj ∈ Ωi,j\N(g), and hence Ωi,j ∈ O(g).

Lemma 3.1. Let g be a minimal left coset representative of X in W . Then the

number ρ = ρ(g) of j ∈ {i + 2, . . . , n + 1} with Ωi,j ∈ O(g) is g(i + 1)− g(1)− i.

Proof. By the above, Ωi,j ∈ O(g) if and only if g(1) < g(j) < g(i + 1). So ρ is

given by the number of j > i + 1 for which g(j) lies between g(1) and g(i + 1).

Since g(k) must lie between g(1) and g(i + 1) for each 2 ≤ k ≤ i, we see that

ρ = g(i + 1)− g(1)− i. ¤

Proposition 3.2. Let Ai
∼= X ≤ W ∼= An. Then each conjugate of X has length

l(X)+ρ(i+1) for some ρ with 0 ≤ ρ ≤ n− i. Define F (Ai, An, ρ) to be the number
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of conjugates of X having length l(X) + ρ(i + 1), for 0 ≤ ρ ≤ n− i. Then

F (Ai, An, ρ) = (n + 1− i− ρ)

(
i + ρ− 1

i− 1

)
.

Proof. By (1) above, the length of any conjugate of X may differ from the length

of X only by a multiple of (i + 1), because |Ωi,j | = i + 1 for each j and these

are the only orbits that can contribute to O(g). So any conjugate has length

l(X) + ρ(i + 1) for some ρ between 0 and n − i. By Lemma 3.1, the number of

conjugates gXg−1 having length l(X)+ρ(i+1) is simply the number of g such that

ρ(g) = g(i + 1)− g(1)− i = ρ. Now g(1) < g(2) < . . . < g(i + 1), so once we have

chosen g(1), we have g(i + 1) = g(1) + i + ρ and then g(2), . . . , g(i) are uniquely

determined by choosing i − 1 of the i − 1 + ρ numbers between g(1) and g(i + 1).

Once g(1), . . . , g(i+1) have been chosen, there are ((n+1)−(i+1))! = (n−i)! ways

to assign the other g(j). Thus for each possible g(1) there are (n−i)!

(
i + ρ− 1

i− 1

)

possible g. Now g(1) ≥ 1 and g(1) + ρ + i = g(i + 1) ≤ n + 1. That is 1 ≤ g(1) ≤
n + 1− i− ρ. So the number of coset representatives g giving conjugates of length

l(X)+ ρ(i+1) is (n− i)! (n + 1− i− ρ)

(
i + ρ− 1

i− 1

)
. The normalizer NW (X) of

X in W has order (n− i)!(i+1)!. Hence |NW (X)|/|X| = (n− i)!, so each conjugate

arises from (n − i)! cosets. We must therefore divide by (n − i)! to arrive at the

formula given. ¤

4. W ∼= Bn

In this section we assume W ∼= Bn with X an irreducible standard parabolic

subgroup of W . We may think of Bn as the group of signed permutations of

n objects (see, for example, [6]). Define the ith ‘sign change’ to be the element

sending i to −i and fixing all other j. The set of such elements generates a group

of order 2n, isomorphic to (Z2)n, and Bn is just the semidirect product of this

group with Sym(n). For ease of notation, we will use the following concise way of

expressing elements of Bn. We write a permutation in Sym(n) (including 1-cycles),

and add a minus sign above the number i if the ith sign change is to be applied.

We adopt the convention of reading the sign first; that is, if w = (1
−
2 3)(4) ∈ B4

then w(1) = 2, w(2) = −3, w(3) = 1 and w(4) = 4.

Let V be an n-dimensional real vector space with orthonormal basis ε1, . . . , εn.

Then W acts on V as follows: for w ∈ W , w · εi = εw(i) if w(i) > 0 and −ε|w(i)|

otherwise. It can be shown that the reflections (
−
1), (12), . . . , (n− 1 n) generate W
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and satisfy the appropriate Coxeter relations, and we may take the vector ε1 along

with ε2 − ε1, . . . , εn − εn−1 as the set of fundamental roots. The set of positive

roots is then

Φ+ = {εy ± εx : 1 ≤ x < y ≤ n} ∪ {εx : 1 ≤ x ≤ n}.

Since X is an irreducible parabolic subgroup of W , either X ∼= Ai or X ∼= Bi,

some i. We deal with the latter case first, so X = 〈(−1), (12), . . . , (i− 1 i)〉. The set

of positive roots of X is

Φ+
X = {εy ± εx : 1 ≤ x < y ≤ i} ∪ {εx : 1 ≤ x ≤ i}.

with X having two orbits on ΦX . The remaining X-orbits of Φ are ±Ωi,j where

Ωi,j := {εj± ε1, . . . , εj± εi} for i < j ≤ n, and the fixed points ±{εj} for i < j ≤ n

and, for i < j < k ≤ n, ±{εk − εj}. Let g be a minimal left coset representative of

X in W . Then, using Proposition 2.4, we have

l(gXg−1) = l(X) +
∑

Ωi,j∈O(g)

2i. (2)

Since g is a minimal left coset representative, by Lemma 2.2 g(x) > 0 for each

1 ≤ x ≤ i (since εx ∈ Φ+
X = N(X)) and also that g(1) < g(2) < . . . < g(i). Now

suppose g(j) > 0, for some j > i. Then g ·(εj +ε1) ∈ Φ+, so Ωi,j is not contained in

N(g). But Ωi,j∩N(g) = ∅ when g(j) > g(i). Conversely when g(j) < 0, Ωi,j∩N(g)

is never empty, but Ωi,j ⊆ N(g) when −g(j) > g(i). In other words, Ωi,j ∈ O(g) if

and only if |g(j)| < g(i). We may now prove

Proposition 4.1. Let Bi
∼= X ≤ W ∼= Bn. Then each conjugate of X has length

l(X) + 2iρ for some 0 ≤ ρ ≤ n − i. Define F (Bi, Bn, ρ) to be the number of

conjugates of X having length l(X) + 2iρ, for 0 ≤ ρ ≤ n− i. Then

F (Bi, Bn, ρ) =

(
ρ + i− 1

i− 1

)
.

Proof. By (2) the length of any conjugate of X differs from l(X) by a multiple

of 2i, because |Ωi,j | = 2i for all j. Since there are n − i subsets Ωi,j , we get

l(gXg−1) = l(X)+2iρ for some ρ, 0 ≤ ρ ≤ n− i (g a minimal left coset representa-

tive for X in W ). By the previous paragraph, Ωi,j ∈ O(g) if and only if |g(j)| < g(i).

Thus the number ρ(g) of orbits Ωi,j with Ωi,j ∈ O(g) is ρ(g) = g(i) − i. For each

g with ρ(g) = ρ then, we have g(i) = ρ + i. Now, since g(1) < . . . < g(i), there are(
g(i)− 1

i− 1

)
=

(
ρ + i− 1

i− 1

)
choices for g(1), . . . , g(i − 1). Once g(1), . . . , g(i)
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are chosen, there are 2(n−i)(n− i)! choices for the other g(j) (each can have a ‘+’

or a ‘−’ above it).

Therefore, for each ρ, the number of coset representatives leading to conjugates

of length l(X) + 2iρ is 2(n−i)(n − i)!

(
ρ + i− 1

i− 1

)
. However |NW (X)|/|X| =

2(n−i)(n− i)! (where NW (X) is the normalizer of X in W ) so we obtain F (i, n, ρ) =(
ρ + i− 1

i− 1

)
. ¤

We now turn our attention to the case when X ∼= Ai, for some i. When i = 1

there are two (non-conjugate) possibilities for X, namely 〈(−1)〉 and 〈(12)〉. Clearly

for any involution w, l(〈w〉) = l(w), so we are in effect looking at the lengths of

reflections in a conjugacy class. We have

Lemma 4.2.(i) If X = 〈(−1)〉, then

ΛX,W =
n∑

k=1

t2k−1.

(ii) If X = 〈(12)〉, then

ΛX,W =
n−1∑

k=1

(n− k)t2k−1 +
2n−3∑

k=1

t2k+1
([

k+1
2

]−max{k + 1− n, 0}) .

Proof.(i) For 1 ≤ k ≤ n, N((
−
k)) = {ek ± ex : 1 ≤ x ≤ k − 1} ∪ {ek}. Hence

l((
−
k)) = 2k − 1, and part (i) follows immediately.

(ii) Let X = 〈(12)〉. Then the conjugacy class of X is {〈(ij)〉, 〈(
−
i
−
j )〉 : 1 ≤ i < j ≤

n}. For 1 ≤ i < j ≤ n, N((ij)) = {ey − ei : i < y < j} ∪ {ej − ex : i < x <

j}∪{ej − ei}. Thus l((ij)) = 2(j− i)− 1. For each k between 1 and n− 1 there are

n − k transpositions (ij) with (j − i) = k. Hence the contribution to ΛX,W from

subgroups 〈(ij)〉 is
∑n−1

k=1(n− k)t2k−1. We also note that

N((
−
i
−
j )) = {ei, ej} ∪ {ey + ei : 1 ≤ y ≤ j, y 6= i} ∪ {ei − ex : 1 ≤ x < i}

∪{ej + ex : 1 ≤ x < i} ∪ {ej − ex : 1 ≤ x < j, x 6= i},

so l((
−
i
−
j )) = 2(i+ j)−3 = 2(i+ j−2)+1. For 1 ≤ k ≤ 2n−3, the number of pairs

i, j with 1 ≤ i < j ≤ n for which k = i+ j−2 is the number of pairs i, k+2− i with

1 ≤ i < k+2− i ≤ n. This is just the number of positive integers i with k+2−n ≤
i ≤ k+1

2 , which is given by bk+1
2 c − max{k + 1 − n, 0}. Hence the contribution
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to ΛX,W from subgroups 〈(
−
i
−
j )〉 is

∑2n−3
k=1 t2k+1

([
k+1
2

]−max{k + 1− n, 0}). This

completes the proof of part (ii).

¤

For the rest of this section we assume X ∼= Ai with i > 1. So we may suppose

X = 〈(12), . . . , (i i + 1)〉. The X-orbits of Φ are ΦX , ±∆1, ±∆2,±Ωi,j(i + 1 < j ≤
n),±Θi,j(i + 1 < j ≤ n),±{εj}(i + 1 < j ≤ n) and ±{εj ± εk} (i + 1 < k < j ≤ n).

Here

Φ+
X = {εy − εx : 1 ≤ x < y ≤ i + 1};

∆1 = {εy + εx : 1 ≤ x < y ≤ i + 1};
∆2 = {εx : 1 ≤ x ≤ i + 1};
Ωi,j = {εj − ε1, . . . , εj − εi+1} (where i + 1 < j ≤ n); and

Θi,j = {εj + ε1, . . . , εj + εi+1} (where i + 1 < j ≤ n).

Let Y = 〈(−1), (12), . . . , (i i + 1)〉. Then every minimal left coset representative g

of X in W may be written g = gY gX where gX is a minimal left coset representative

of X in Y and gY is a minimal left coset representative of Y in W . Furthermore,

by Proposition 2.1, N(g) = g−1
X ·N(gY )∪̇N(gX).

Now gX · α ∈ Φ+ for each α = εy − εx ∈ Φ+
X . It follows that if gX(y) < 0,

then gX(x) < 0 and |gX(y)| < |gX(x)|, whereas if gX(x) > 0 then gX(y) > 0 and

|gX(x)| < |gX(y)|. We may now state the following lemma:

Lemma 4.3. The set of minimal left coset representatives of X in Y consists of

those gX for which there exists a J ∈ {0, 1, . . . , i + 1} such that

(i) for 1 ≤ x < y ≤ J , gX(x) < 0, gX(y) < 0 and |gX(y)| < |gX(x)|; and

(ii) for J < x < y ≤ i + 1, gX(x) > 0, gX(y) > 0 and |gX(x)| < |gX(y)|.
The set of minimal left coset representatives of Y in W consists of all those gY for

which both gY (k) > 0 for each 1 ≤ k ≤ i + 1 and gY (1) < . . . < gY (i + 1).

Definition 4.4. Let g = gY gX be a minimal left coset representative of X in W .

We define u(g) = min{|gX(1)|, |gX(i + 1)|}.

Note that for any minimal left coset representative g of X in W we have

max{|gX(1)|, |gX(i + 1)|} = i + 1.

Lemma 4.5. For g a minimal left coset representative of X in W , ∆1 /∈ O(g) if

and only if u(g) = 1, and ∆2 /∈ O(g) if and only if J = 0 or J = i + 1.
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Proof. Recall that ∆1 = {εy + εx : 1 ≤ x < y ≤ i + 1}. Now ∆1 /∈ O(g) when

either ∆1 ⊆ N(g) or ∆1 ∩ N(g) = ∅. Suppose ∆1 ⊆ N(g). Then at least one

of g(x) < 0, g(y) < 0 holds for each pair 1 ≤ x < y ≤ i + 1. In addition, if

g(y) > 0, then |g(x)| > |g(y)|. By Lemma 4.3, gY (k) > 0 for all 1 ≤ k ≤ i + 1, and

gY (1) < · · · < gY (i + 1). Therefore at least one of gX(x) < 0, gX(y) < 0 holds, and

if gX(y) > 0, then |gX(x)| > |gX(y)|. Now parts (i) and (ii) of Lemma 4.3 imply

that either J = i + 1 (and then |gX(i + 1)| = 1 is automatic), or that both J = i

and |gX(i + 1)| = 1. Likewise ∆1 ∩N(g) = ∅ if and only if either J = 0 or J = 1

and |gX(1)| = 1. Similar arguments apply to ∆2. ¤

Proposition 4.6. Let F1(Ai, Bn, ρ), for 0 ≤ ρ ≤ n − i − 1, be the number of

conjugates of X arising from minimal left coset representatives g with J ∈ {0, i+1}
and length l(X) + (i + 1)ρ. Then

F1(Ai, Bn, ρ) = (n− i− ρ)

(
i + ρ− 1

ρ

)
.

Proof. If g is a minimal left coset representative with J ∈ {0, i+1} then gXXg−1
X =

X. Without loss of generality then, assume gX = 1. Then g = gY , so g(x) > 0

and g(x) < g(y) for each x < y in {1, . . . , i + 1}. Suppose g(j) < 0 for some

j > i + 1. Then Ωi,j ⊆ N(g), but Θi,j ⊆ N(g) if and only if |g(j)| > g(i + 1), and

Θi,j ∩ N(g) = ∅ if and only if |g(j)| < g(1). If, on the other hand, g(j) > 0 then

Θi,j ∩N(g) = ∅, and Ωi,j /∈ O(g) if and only if either g(j) < g(1) or g(i+1) < g(j).

Thus for each j with g(1) < g(j) < g(i + 1) we add exactly one orbit of size i + 1

to O(g). Hence F1(Ai, Bn, ρ) is simply the number of g such that ρ(g) = ρ =

g(i+1)−g(1)− i. Using an argument analogous to that in the proof of Proposition

3.2, bearing in mind that |NW (Y )|/|Y | = 2n−i−1(n− i− 1)!, we obtain the formula

F1(Ai, Bn, ρ) = (n− i− ρ)

(
i + ρ− 1

ρ

)
, as required. ¤

We assume for the moment that g = gXgY is a minimal left coset representative of

X in W for which 1 ≤ J ≤ i. Now define

Ω′i,j := gX(Ωi,j) = {εj +ε|gX(1)|, . . . , εj +ε|gX(J)|, εj−ε|gX(J+1)|, . . . , εj−ε|gX(i+1)|}

and Θ′i,j := gX(Θi,j); that is,

Θ′i,j = {εj − ε|gX(1)|, . . . , εj − ε|gX(J)|, εj + ε|gX(J+1)|, . . . , g(εj) + ε|gX(i+1)|}.

Observe that N(g) ∩ Ωi,j =
(
g−1

X N(gY )∪̇N(gX)
) ∩ Ωi,j . But N(gX) ⊆ Φ+

Y and

Ωi,j ⊆ Φ+\Φ+
Y . Thus N(g) ∩ Ωi,j = g−1

X

(
N(gY ) ∩ Ω′i,j

)
. Similarly N(g) ∩ Θi,j =

g−1
X

(
N(gY ) ∩Θ′i,j

)
. Hence Ωi,j ∈ O(g) unless N(gY ) ∩ Ω′i,j = ∅ or Ω′i,j ⊆ N(gY ),
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and similarly for Θi,j .

By Lemma 4.3, gY (k) > 0 for each k ∈ {1, 2, . . . , i + 1} and gY preserves the

order of these numbers. So if gY (j) > 0 then Ωi,j ∈ O(g) unless Ω′i,j ∩N(gY ) = ∅,
which happens if and only if gY (j) > gY (|gX(i+1)|). If gY (j) < 0 then Ωi,j ∈ O(g)

unless Ω′i,j ⊆ N(gY ), which occurs if and only if gY (j) > gY (|gX(1)|). Simi-

larly, if gY (j) > 0 then Θi,j ∈ O(g) unless Θi,j ∩ N(g) = ∅, if and only if

gY (j) > gY (|gX(1)|). If gY (j) < 0 then Θi,j ∈ O(g) unless Θ′i,j ⊆ N(gY ), which is

if and only if gY (j) > gY (|gX(i + 1)|).

Recalling definition 4.4, it is now easily seen that for each j we add two orbits

(of size i+1) to O(g) if gY (j) < gY (u(g)), one orbit if gY (u(g)) < gY (j) < gY (i+1)

and none if gY (i + 1) < gY (j). The following lemma therefore is immediate.

Lemma 4.7. Let g be a minimal left coset representative of X in W , for which

1 ≤ J ≤ i. Let ρ(g) be the total number of Ωi,j and Θi,j in O(g). Then ρ(g) =

gY (u(g))− u(g) + gY (i + 1)− (i + 1).

Proposition 4.8. Let 0 ≤ ρ ≤ 2(n − i). The number of minimal left coset repre-

sentatives g with 1 ≤ J ≤ i, ρ(g) = ρ and u(g) = u is

2u−1

u+[ρ/2]∑

y=max{ρ−n+i+1+u,u}

(
y − 1

u− 1

) (
ρ + u + i− 2y

i− u

)
.

Proof. We begin by counting all gY with ρ(g) = ρ and u(g) = min{|gX(1)|, |gX(i+

1)|} = u for fixed u and ρ. By Lemma 4.7 gY (u) + gY (i + 1) = ρ + u + i + 1. Now

u ≤ gY (u) and i + 1 ≤ gY (i + 1) ≤ n, so gY (u) + n ≥ ρ + u + i + 1 and therefore

gY (u) ≥ max{ρ− n + i + 1 + u, u}. Also we have

ρ + u + i + 1 = gY (u) + gY (i + 1)

= 2gY (u) + (gY (i + 1)− gY (u))

≥ 2gY (u) + (i + 1− u).

Therefore ρ ≥ 2gY (u). In summary, gY (u) may take all integer values between

max{ρ− n + i + 1 + u, u} and u + [ρ/2]. For gY (u) = y, there are

(
y − 1

u− 1

)
ways

to assign the set gY (|gX(k)|) for |gX(k)| < u,

(
ρ + u + i− 2y

i− u

)
ways to assign

the set gY (|gX(k)|) for u < |gX(k)| < i + 1 and finally 2n−i−1(n − i − 1)! ways to
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assign gY (j) for all other j. Thus, for each u there are

2n−i−1(n− i− 1)!
u+[ρ/2]∑

y=max{ρ−n+i+1+u,u}

(
y − 1

u− 1

)(
ρ + u + i− 2y

i− u

)

choices for gY . For a fixed u and ρ we must now calculate the number of possible

gX . Suppose u = |gX(1)|. Then by Lemma 4.3, once we have allocated the numbers

|gX(2)|, . . . , |gX(J)|, gX will have been uniquely determined. The number of gX for

which |gX(1)| = u is therefore

u∑

J=1

(
u− 1

J − 1

)
=

u−1∑

l=0

(
u− 1

l

)
= 2u−1.

A symmetrical calculation shows that the number of gX for which |gX(i + 1)| =

u is also 2u−1; the total number of appropriate gX is then 2u. Combining the

calculations for gX and gY and noting that |NW (X)|/|X| = 2n−i(n− i− 1)! gives

the formula in the statement of Proposition 4.8. ¤

At this point we must use Lemma 4.5 to split the coset representatives g up

according to whether or not ∆1, ∆2 ∈ O(g). Suppose u(g) = 1 (we are still

assuming that 1 ≤ J ≤ i). Then ∆1 /∈ O(g) but ∆2 ∈ O(g).

Proposition 4.9. Let F2(Ai, Bn, ρ) be the number of conjugates of X arising from

minimal left coset representatives g with 1 ≤ J ≤ i, u(g) = 1 and ρ(g) = ρ. Then

F2(Ai, Bn, ρ) =
[ρ/2]+1∑

y=max{ρ−n+i+2,1}

(
ρ + i + 1− 2y

i− 1

)
.

Moreover if u(g) = 1 and ρ(g) = ρ, then l(gXg−1) = l(X) + (ρ + 1)(i + 1).

Proof. The result is immediate upon substitution of u(g) = 1 into the formula

derived in Proposition 4.8. ¤

By Lemma 4.5, if u(g) > 1 then both ∆1 and ∆2 are in O(g).

Proposition 4.10. Let F3(Ai, Bn, ρ) be the number of conjugates of X arising

from minimal left coset representatives g with 1 ≤ J ≤ i, u(g) > 1 and ρ(g) = ρ.

Then

F3(Ai, Bn, ρ) =
i−1∑
r=1

2r

[ρ/2]∑

s=max{ρ−n+i+1,0}

(
s + r

r

)(
ρ− 2s + i− r − 1

i− r − 1

)
.

and if ρ(g) = ρ then l(gXg−1) = 2l(X) + (ρ + 1)(i + 1).
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Proof. By Proposition 4.8, we have

F3(Ai, Bn, ρ) =
i∑

u=2

2u−1

[ρ/2]+u∑

y=max{ρ−n+i+1+u,u}

(
y−1
u−1

)(
ρ+u+i−2y

i−u

)

=
i−1∑
r=1

2r

[ρ/2]+r+1∑

y=max{ρ−n+i+2+r,r+1}

(
y−1

r

)(
ρ+r+1+i−2y

i−r−1

)

=
i−1∑
r=1

2r

[ρ/2]∑

s=max{ρ−n+i+1,0}

(
s+r

r

)(
ρ+i−r−1−2s

i−r−1

)

¤

Combining Propositions 4.6, 4.9 and 4.10 we obtain

Theorem 4.11. Suppose Ai
∼= X ≤ W ∼= Bn with i > 1. Then the length

polynomial is

ΛAi,Bn(t) = ti(i+1)/2
n−i−1∑

ρ=0

t(i+1)ρ(n− i− ρ)
(
i+ρ−1

ρ

)

+ t(i+1)(i+2)/2

2(n−i−1)∑
ρ=0

t(i+1)ρ

[ρ/2]+1∑

y=max{ρ−n+i+2,1}

(
ρ+i+1−2y

i−1

)

+ t(i+1)2
2(n−i−1)∑

ρ=0

t(i+1)ρ
i−1∑
r=1

2r

[ρ/2]∑

s=max{ρ−n+i+1,0}

(
s+r

r

)(
ρ−2s+i−r−1

i−r−1

)
.

5. W ∼= Dn

Now we assume W ∼= Dn, n ≥ 4, and X is a standard irreducible parabolic

subgroup of W . Then X is of type Ai for some 1 ≤ i < n or type Di for some

4 ≤ i ≤ n. It is useful to think of Dn as the subgroup (of index 2) of Bn generated

by Sym(n) and the elements of (Z2)n involving an even number of sign changes.

We use the same notation for elements of Dn as for elements of Bn. For example

(
−
1
−
2)(3 4) is an element of D4 because it has two (an even number) of sign changes,

indicated by minus signs above the numbers 1 and 2. However (
−
1
−
2)(

−
3 4) has three

sign changes so is not an element of D4.

Let V be an n-dimensional real vector space with orthonormal basis ε1, . . . , εn.

Then W acts on V in the same way as Bn does, as follows: for w ∈ W , w ·εi = εw(i)

if w(i) > 0 and −ε|w(i)| otherwise. The elements (12), . . . , (n − 1 n) and (
−
1
−
2) can

be shown to generate W and obey all the relations in the Coxeter graph for W .

The fundamental root corresponding to (i i+1) (for 1 ≤ i < n) is εi+1− εi and the
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fundamental root corresponding to (
−
1
−
2) is ε2 + ε1. The set of positive roots for W

is

Φ+ = {εy ± εx : 1 ≤ x < y ≤ n}.
We begin our analysis with the case where X ∼= Di, some i. Hence

X = 〈(−1−2), (12), . . . , (i− 1 i)〉

with

Φ+
X = {εy ± εx : 1 ≤ x < y ≤ i}.

For i < j ≤ n define Ωi,j := {εj ± ε1, . . . , εj ± εi}. Since the X-orbits of Φ are ΦX ,

±Ωi,j (for i < j ≤ n) and the fixed points ±{εk − εj} (for i < j < k ≤ n), we have,

analogously to (2),

l(gXg−1) = l(X) +
∑

Ωi,j∈O(g)

2i. (3)

Let g be a minimal left coset representative of X in W . By considering |g(j)|
and using the same reasoning as in the previous section we deduce that Ωi,j ∈ O(g)

if and only if |g(j)| < g(i). We write ρ(g) for the number of Ωi,j with Ωi,j ∈ O(g).

Proposition 5.1. Let Di
∼= X ≤ W ∼= Dn. Each conjugate of X has length

l(X) + 2iρ for some 0 ≤ ρ ≤ n − i. Define F (Di, Dn, ρ) to be the number of

conjugates of X having length l(X) + 2iρ (for 0 ≤ ρ ≤ n− i). Then

F (Di, Dn, ρ) =

(
ρ + i− 1

i− 1

)
.

Proof. For each appropriate ρ we first calculate the number of minimal left coset

representatives g of X in W for which ρ(g) = ρ. If ρ(g) = ρ then we show, by iden-

tical reasoning to that employed in Proposition 4.1, that there are

(
ρ + i− 1

i− 1

)

choices for g(1), . . . g(i−1). Once g(1), . . . , g(i) are chosen, there are 2(n−i−1)(n−i)!

choices for the other g(j) (the sign above each g(j) in the signed permutation ex-

pression for g can be ‘+’ or ‘−’, but there must be an even number of ‘−’ signs,

so we have a factor of 2(n−i−1) rather than 2(n−i)). However each conjugate arises

from 2(n−i−1)(n − i)! coset representatives. Thus F (Di, Dn, ρ) =

(
ρ + i− 1

i− 1

)
,

so completing the proof. ¤

It remains to consider the situation where X is a standard parabolic subgroup

of W with X ∼= Ai, for some i. There are three possibilities here: either X is
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conjugate to 〈(12), . . . , (i i + 1)〉 or X is conjugate to 〈(−1−2), (23), . . . , (i i + 1)〉, or

i = 3 and X = 〈(12), (23), (
−
1
−
2)〉. However 〈(−1−2), (23), . . . , (i i+1)〉 can be mapped

to 〈(12), . . . , (i i + 1)〉 via a length-preserving automorphism (induced from a non-

trivial automorphism of the Coxeter graph). Therefore, unless i = 3 and X is

conjugate to 〈(12), (23), (
−
1
−
2)〉 (which we deal with in Lemma 5.2) we may assume

without loss of generality that X = 〈(12), . . . , (i i + 1)〉.

Lemma 5.2. Suppose A3
∼= X < W ∼= Dn, and that X = 〈(12), (23), (

−
1
−
2)〉. Then

the length polynomial is

ΛX,Dn(t) =
n−3∑
ρ=0

(
ρ + 2

2

)
t6(1+ρ)

Proof. The normalizer of X has order 2·4!·2n−4(n−3)!. Thus X has
(
n
3

)
conjugates.

For 4 ≤ j ≤ n define Ψj = {ej ± e1, ej ± e2, ej ± e3}. The orbits of X are

ΦX = {e2± e1, e3± e2, e3± e1}, ±Ψj for 4 ≤ j ≤ n and the fixed points ±{ej ± ek}
for 4 ≤ k < j ≤ n. Let g be a minimal left coset representative of X in W . The

only orbits that can contribute to O(g) are the Ψj . So we may modify Proposition

2.4 thus:

l(gXg−1) = 6 + 6|{j ∈ {4, . . . , n} : Ψj ∈ O(g)}|. (4)

Now N(g) ∩ ΦX = ∅. If g(x) < 0 and g(y) < 0 for 1 ≤ x < y ≤ 3, then

g(ex + ey) ∈ Φ−, which is impossible. So if g(2) < 0 or g(3) < 0, then g(1) > 0,

which implies either e2 − e1 or e3 − e1 is in N(g). Hence g(2) > 0 and g(3) > 0.

Similar observations show that the condition 0 < |g(1)| < g(2) < g(3) is necessary

and sufficient for g to be a minimal left coset representative. We next consider which

Ψj lie in O(g). If |g(j)| > g(3), then either Ψj ⊆ N(g) or Ψj ∩N(g) = ∅. However

if |g(j)| < g(3), then Ψj ∈ O(g). Therefore the number ρ(g) of Ψj with Ψj ∈ O(g)

is g(3) − 3. We now fix ρ and determine the number of possible g with ρ(g) = ρ.

Now g(3) = 3 + ρ, so there are now
(
2+ρ
2

)
choices for |g(1)| and g(2), and there are

then (n−3)! ways to assign the other |g(k)|, meaning that (since we know g(2) > 0

and an even number of k have g(k) < 0), there are 2n−3
(
2+ρ
2

)
(n − 3)! possible

coset representatives g giving conjugates of X with length 6 + 6ρ (by Equation 4).

However each conjugate arises from 2n−3(n−3)! cosets. We must therefore divide by

2n−3(n−3)! to get that there are
(
2+ρ
2

)
conjugates of X with length 6+6ρ = 6(1+ρ).

Therefore the length polynomial is ΛX,Dn(t) =
∑n−3

ρ=0

(
ρ+2
2

)
t6(1+ρ). ¤

Note that the length polynomial for A3 in D4 is given by either of Lemma 5.2

and Lemma 5.3 below. We also remark that the situation of Lemma 5.2 does not
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arise in Bn because 〈(12), (23), (
−
1
−
2)〉 is not a parabolic subgroup of Bn.

For the rest of this section, we assume that X is not conjugate to 〈(12), (23), (
−
1
−
2)〉.

Then without loss of generality we may set X = 〈(12), . . . , (i i + 1)〉. The coset

representatives are the same as in the case X ∼= Ai and W ∼= Bn, with the proviso

that the each representative must of course be an element of Dn. That is, it must

have an even number of ‘-’ signs in its expression as a signed permutation. So there

are half as many coset representatives; but in nearly all cases there are the same

number of conjugates. To see this, note that if i < n− 1 and g is an element of Bn

conjugating X to X1, then the product g(
−
n) also conjugates X to X1 and exactly

one of g and g(
−
n) is an element of Dn. If i = n − 1 and n is odd, then for any

g ∈ Bn, g and g(
−
1) · · · (−n) conjugate X to the same subgroup and again, exactly

one of these elements lies in Dn. Therefore if n is odd or i < n− 1, then X has the

same number of conjugates in Dn as it does in Bn. The case where n is even and

i = n− 1 is dealt with in the next lemma.

Lemma 5.3. Suppose n is even and An−1
∼= X < W ∼= Dn. Then the length

polynomial is

ΛAn−1,Dn(t) = tn(n−1)/2 + (2n−2 − 1)tn(n−1).

Proof. The normalizer of X = 〈(12), . . . , (n−1 n)〉 is generated by X and (
−
1) · · · (−n)

and has order 2n!. Hence X has |Dn|
2n! = 2n−2 conjugates. The X-orbits of Φ

are ΦX and ±∆ where ∆ = {εx + εy : 1 ≤ x < y ≤ n}. Clearly ∆ ∈ O(g)

for any non-trivial minimal coset representative g. Thus, by Proposition 2.4,

l(gXg−1) = |Φ+| = n(n−1). Hence ΛAn−1,Dn(t) = tn(n−1)/2+(2n−2−1)tn(n−1). ¤

For the rest of this section we will assume that either i < n− 1 or n is odd (or

both), and that X is not conjugate to 〈(12), (23), (
−
1
−
2)〉. So we can assume that

X = 〈(12), (23), . . . , (i i + 1)〉. Put ∆1 = {εx + εy : 1 ≤ x < y ≤ i + 1} and, for

i + 1 < j ≤ n, Ωi,j = {εj − ε1, . . . , εj − εi+1} and Θi,j = {εj + ε1, . . . , εj + εi+1}.
Then the X-orbits of Φ are ΦX , ±∆1, ±Ωi,j (i + 1 < j ≤ n), ±Θi,j and the fixed

points ±{εj ± εk} (i+1 < k < j ≤ n). Since X has the same number of conjugates

in Dn as it does in Bn, the formulae of Propositions 4.6, 4.9 and 4.10 will therefore

still apply. However the lengths of the conjugates will be different, because of the

absence of ∆2. Using the notation of Section 4, for a coset representative g, if J = 0

or J = i + 1 then ∆1 /∈ O(g). Therefore the length l(gXg−1) differs from l(X) by

(i + 1)ρ(g) where ρ(g) is defined to be the total number of Ωi,j and Θi,j belonging

to O(g). As before at most one of Θi,j ∈ O(g), Ωi,j ∈ O(g) holds. So we have
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Proposition 5.4. For 0 ≤ ρ ≤ n − i − 1, let F1(Ai, Dn, ρ) be the number of

conjugates of X arising from minimal left coset representatives g with J ∈ {0, i+1}
and length l(X) + (i + 1)ρ. Then

F1(Ai, Dn, ρ) = (n− i− ρ)

(
i + ρ− 1

ρ

)
.

Now if u(g) = 1, where u(g) is defined as in Definition 4.4, we again have

∆1 /∈ O(g), so if ρ(g) = ρ, l(gXg−1) = l(X) + (i + 1)ρ. Thus

Proposition 5.5. Let F2(Ai, Dn, ρ) be the number of conjugates of X arising from

minimal left coset representatives g with u(g) = 1 and ρ(g) = ρ. Then

F2(Ai, Dn, ρ) =
[ρ/2]+1∑

y=max{ρ−n+i+2,1}

(
ρ + i + 1− 2y

i− 1

)

and l(gXg−1) = l(X) + (i + 1)ρ.

Finally if u(g) > 1 then ∆1 ∈ O(g), so we get

Proposition 5.6. Let F3(Ai, Dn, ρ) be the number of conjugates of X arising from

minimal left coset representatives g with u(g) > 1 and ρ(g) = ρ. Then

F3(Ai, Dn, ρ) =
i−1∑
r=1

2r

[ρ/2]∑

s=max{ρ−n+i+1,0}

(
s + r

r

)(
ρ− 2s + i− r − 1

i− r − 1

)
.

and if ρ(g) = ρ then l(gXg−1) = 2l(X) + (i + 1)ρ.

Combining these three results we get:

Theorem 5.7. Let Ai
∼= X < W ∼= Dn, where either n is odd or i < n− 1. If X

is not conjugate to 〈(12), (23), (
−
1
−
2)〉, then the length polynomial is

ΛAi,Dn(t) = ti(i+1)/2
n−i−1∑

ρ=0

t(i+1)ρ(n− i− ρ)
(
i+ρ−1

ρ

)

+ ti(i+1)/2

2(n−i−1)∑
ρ=0

t(i+1)ρ

[ρ/2]+1∑

y=max{ρ−n+i+2,1}

(
ρ+i+1−2y

i−1

)

+ ti(i+1)

2(n−i−1)∑
ρ=0

t(i+1)ρ
i−1∑
r=1

2r

[ρ/2]∑

s=max{ρ−n+i+1,0}

(
s+r

r

)(
ρ−2s+i−r−1

i−r−1

)
.
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6. W ∼= An and X ∼= Ai ×Aj

Conjugates of parabolic subgroups which are not irreducible have a much more

complicated distribution of lengths. In this section we obtain formulas for the num-

ber of conjugates with minimal and maximal lengths in the case Ai × Aj
∼= X <

W ∼= An, to give a flavour of the calculations required.

Let X1 = 〈(12), . . . , (i i + 1)〉 ∼= Ai, X2 = 〈(i + 2 i + 3), . . . , (l l + 1)〉 ∼= Aj (so

l = i + j + 1) and X = X1 ×X2 < W = 〈(12) . . . , (n n + 1)〉 ∼= An.

Define ∆ = {εx − εy : 1 ≤ x < i + 2 ≤ y ≤ l + 1}, and, for l + 2 ≤ k ≤ n + 1,

Ωi,k = {εx − εk : 1 ≤ x ≤ i + 1} and Θi,k = {εx − εk : i + 2 ≤ x ≤ l + 1}. Then the

X-orbits on Φ are ΦX1 , ΦX2 , ±∆, ±Ωi,k, ±Θi,k (l + 2 ≤ k ≤ n + 1) and the fixed

points ±{εx − εy} (l + 2 ≤ x < y ≤ n + 1).

By Lemma 2.2, we quickly see that g is a minimal left coset representative of

X in W if and only if g(x) < g(y) for all x, y with 1 ≤ x < y ≤ i + 1 or

i + 2 ≤ x < y ≤ l + 1.

Now l(X) = 1
2 (i(i + 1) + j(j + 1)). The maximal length of any conjugate would

occur when as many orbits as possible are in O(g), that is all except fixed points

and ΦX . Thus the maximum length, by Proposition 2.4, is

|Φ+| −
(

n− i− j − 1

2

)
=

(
n + 1

2

)
−

(
n− i− j − 1

2

)
.

The next lemma is a consequence of the definitions of ∆, Ωi,k and Θi,k, and the

requirements on minimal left coset representatives stated above.

Lemma 6.1. Let g be a minimal left coset representative of X in W , and l + 2 ≤
k ≤ n + 1.

(i) ∆ ∩N(g) = ∅ if and only if g(i + 1) < g(i + 2).

(ii) ∆ ⊆ N(g) if and only if g(l + 1) < g(1).

(iii) Ωi,k ∈ O(g) if and only if g(1) < g(k) < g(i + 1).

(iv) Θi,k ∈ O(g) if and only if g(i + 2) < g(k) < g(l + 1).

Proposition 6.2. The number of conjugates of X with length l(X) is
{

(n + 1− i− j)(n− i− j) if i 6= j;
1
2 (n + 1− i− j)(n− i− j) if i = j.

Proof. Suppose l(gXg−1) = l(X). Then by Lemma 6.1 (i) and (ii), either g(1) <

· · · < g(i+1) < g(i+2) < · · · g(l+1) or g(i+2) < · · · < g(l+1) < g(1) < · · · g(i+1).
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Now (iii) and (iv) imply that g(x + 1) = g(1) + x for 1 ≤ x ≤ i, and g(x + i + 2) =

g(i+2)+x for 1 ≤ x ≤ j (recall that l = i+ j +1). If g(i+1) < g(i+2), then there

are (n− l)!
∑n+1−l

r=1 (n+2− l−r) = (n− l)!(n+1− l)(n+2− l)/2 choices for g, where

r = g(1), and there are the same number of choices when g(l + 1) < g(1), yielding

a total number (n − l)!(n + 1 − l)(n + 2 − l) of coset representatives g for which

l(gXg−1) = l(X). To obtain the number of minimal length conjugates we must

divide by |NW (X)|/|X|, which is (n− l)! when i 6= j and 2(n− l)! otherwise. ¤

Proposition 6.3. The number of conjugates of X having (maximal) length(
n + 1

2

)
−

(
n− i− j − 1

2

)
is

2−δij

i+j−2∑
s=0

(
s + n− i− j − 1

s

)
·


2

j−1∑

r=max{0,s+1−i}

(
s

r

)
+ (i + j − 1− s)

((
s

j − 1

)
+

(
s

i− 1

))


where δij is defined to be 1 if i = j and 0 otherwise.

Proof. Suppose gXg−1 has maximal length. By Lemma 6.1 (i) and (ii), we

have g(i + 2) < g(i + 1) and g(1) < g(l + 1). Set λ = max{g(1), g(i + 2)} and

µ = min{g(i + 1), g(l + 1)}. Then m := µ − λ > 0. Now by Lemma 6.1 (iii) and

(iv), for each k > l + 1 we have λ < g(k) < µ. So there are (m+n−l−1)!
(m−1)! ways to

assign the set {g(k) : k > l + 1}. To calculate the number of different g once the

g(k) have been decided we need to consider separately the four possibilities for the

ordering of g(1), g(i + 1), g(i + 2) and g(l + 1).

Firstly, suppose g(1) < g(i + 2) < g(i + 1) < g(l + 1). We have i + 2 < µ < l

because g(1) < · · · < g(i + 1) = µ and g(i + 2) < µ. But also λ ≥ 2, so µ ≥ 2 + m.

Once we have specified g(i + 3), . . . , g(l), g will be uniquely determined (we have

already dealt with g(k) for k > l + 1). The first µ− 1− (i + 1) of these will be less

than g(i + 1). So there are
l∑

µ=max{i+2,2+m}

(
m− 1

µ− i− 2

)
=

l−i−2∑

r=max{0,m−i}

(
m− 1

r

)

choices for g(i + 3), . . . , g(l).

Next, let g(1) < g(i + 2) < g(l + 1) < g(i + 1). Then λ = g(i + 2), µ = l + 1 and

2 ≤ λ ≤ l −m. This time g(i + 3), . . . , g(l) must all lie between λ and µ, so the
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number of choices for them is

(
m− 1

j − 1

)
; there are l −m − 1 possible λ, giving

(l −m− 1)

(
m− 1

j − 1

)
choices for g(i + 3), . . . , g(l) (which determines g).

If g(i + 2) < g(1) < g(i + 1) < g(l + 1) then by symmetry there are (l −m −

1)

(
m− 1

i− 1

)
choices for g(2), . . . , g(i).

Finally, let g(i + 2) < g(1) < g(l + 1) < g(i + 1). Calculations similar to those

used in the first case show that there are
∑l−i−2

r=max{0,m−i}

(
m− 1

r

)
choices for

g(2), . . . , g(i).

Once we have chosen m therefore, the number of choices for g (replacing l by

i + j + 1 in the above formulae where it occurs) is

(m+n−i−j−2)!
(m−1)!


2

j−1∑

r=max{0,m−i}

(
m−1

r

)
+ (i + j −m)

((
m−1
j−1

)
+

(
m−1
i−1

))

 .

Now m can range from 1 to i + j − 1, so the total possible number of g for which

l(gXg−1) is maximal is

i+j−1∑
m=1

(m+n−i−j−2)!
(m−1)!


2

j−1∑

r=max{0,m−i}

(
m−1

r

)
+ (i + j −m)

((
m−1
j−1

)
+

(
m−1
i−1

))

 .

Substituting s = m− 1 and dividing by |NW (X)|/|X| gives the result. ¤

7. Parabolic Subgroups of the Exceptional Groups

In this section we give the length distributions for conjugates of irreducible stan-

dard parabolic subgroups of the exceptional Coxeter groups. The calculations were

carried out using the computer algebra package Magma [2]. For each conjugacy

class of parabolic subgroups of the given Coxeter group, the type of an element

X of the class is given in the first column, the size of the conjugacy class in the

second column and the distribution of lengths in the conjugacy class in the third

column, where ‘lk’ means k subgroups of length l. So for example in Table 1, we

see that the conjugacy class of parabolic subgroups of type D4 has 45 subgroups,

one of length 12, 8 of length 20, 8 of length 28 and 28 of length 36. In other words

the length polynomial is t12 + 8t20 + 8t28 + 28t36. Note that Table 1 appeared as
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Table 1 of [5] but is included here for completeness. Note also that in F4 (Table 4),

there are two conjugacy classes of parabolic subgroups of type B3. Each has the

same length distribution, namely 91 · 172 · 239 as given in the table.

Type of X [W : NW (X)] Lengths of conjugates of X

A1 36 16 · 35 · 55 · 75 · 94 · 113 · 133 · 152 · 171 · 191 · 211

A2 120 35 · 610 · 915 · 1216 · 1515 · 1818 · 2114 · 248 · 279 · 3010

A3 270 65 · 1012 · 129 · 148 · 1616 · 1814 · 2038 · 2214 · 2416·
2623 · 282 · 3046 · 3467

A4 216 104 · 154 · 2028 · 2510 · 3040 · 35130

A5 36 151 · 3535

D4 45 121 · 208 · 288 · 3628

D5 27 202 · 3625

Table 1. Parabolic subgroups of E6

Type of X [W : NW (X)] Lengths of conjugates of X

A1 63 17 · 36 · 56 · 76 · 96 · 115 · 135 · 154 · 174 · 193 · 213·
232 · 252 · 271 · 291 · 311 · 331

A2 336 36 · 612 · 918 · 1224 · 1525 · 1830 · 2128 · 2432 · 2727 · 3030·
3322 · 3624 · 3913 · 4214 · 4515 · 4816

A3 1260 66 · 1015 · 129 · 1420 · 1616 · 1827 · 2048 · 2219 · 2454·
2632 · 2861 · 3062 · 3232 · 34124 · 3623 · 3873·
4066 · 4251 · 4468 · 469 · 48128 · 503 · 52134 · 56180

A4 2016 105 · 1512 · 2039 · 2533 · 30104 · 35171 · 40162 · 45154·
50221 · 55468 · 60647

A5 1008 152 · 215 · 3015 · 355 · 366 · 4120 · 471 · 5056 · 56329 · 62539

A6 288 211 · 5671 · 63216

D4 315 121 · 208 · 2818 · 3643 · 4439 · 5253 · 60153

D5 378 202 · 305 · 3625 · 4617 · 5236 · 62293

D6 63 301 · 6262

E6 28 361 · 6327

Table 2. Parabolic subgroups of E7
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Type of X [W : NW (X)] Lengths of conjugates of X

A1 120 18 · 37 · 57 · 77 · 97 · 117 · 137 · 156 · 176 · 196 · 216·
235 · 255 · 274 · 294 · 314 · 334 · 353 · 373 · 392 · 412·
432 · 452 · 471 · 491 · 511 · 531 · 551 · 571

A2 1120 37 · 614 · 921 · 1228 · 1535 · 1842 · 2142 · 2448 · 2754·
3060 · 3355 · 3660 · 3952 · 4256 · 4560 · 4864·
5151 · 5454 · 5738 · 6040 · 6342 · 6644 · 6923·
7224 · 7525 · 7826 · 8127 · 8428

A3 7560 67 · 1018 · 129 · 1426 · 1616 · 1847 · 2048 · 2240 · 2466·
2642 · 2895 · 3090 · 3288 · 34162 · 3691 · 38160 · 4098·
42178 · 44101 · 46158 · 48183 · 50153 · 52254 · 54172·
56340 · 58170 · 60205 · 62319 · 64121 · 66280·
6867 · 70340 · 7285 · 74303 · 76189 · 78205 · 80253·
8250 · 84474 · 8630 · 88348 · 9015 · 92407·
945 · 96476 · 100576

A4 24192 106 · 1516 · 2059 · 2557 · 30141 · 35264 · 40330 · 45335·
50469 · 55816 · 601264 · 651062 · 701114 · 751331 · 801284·
851112 · 901894 · 953249 · 1002345 · 1052926 · 1104118

A5 40320 154 · 2115 · 2716 · 3030 · 331 · 3535 · 3658 · 4120 · 42143·
4530 · 4727 · 4819 · 5056 · 5150 · 531 · 56358 · 5791 · 591·
60290 · 62849 · 6361 · 6561 · 66189 · 68252 · 71210 · 72104·
7435 · 771201 · 7819 · 80171 · 831531 · 86367 · 89347 · 921340·
9515 · 985348 · 1013 · 1046990 · 1107182 · 11612800

A6 34560 213 · 286 · 4262 · 497 · 5671 · 63313 · 7036 · 77132 · 841006·
91177 · 981612 · 1054605 · 1128157 · 11918373

A7 8640 281 · 84133 · 921 · 1121786 · 1206719

D4 3150 121 · 208 · 2818 · 3663 · 4465 · 52107 · 60223 · 68269·
76212 · 84265 · 92347 · 100424 · 1081148

D5 7560 202 · 305 · 3625 · 4015 · 4617 · 5236 · 5632 · 62293·
6871 · 72152 · 78265 · 825 · 841 · 88498 · 9495 · 98124·
1041328 · 1144596

D6 3780 301 · 426 · 6262 · 7443 · 861 · 9472 · 106761 · 1182834

D7 1080 421 · 106134 · 120945

E6 1120 361 · 6327 · 9063 · 1171029

E7 120 631 · 119119

Table 3. Parabolic subgroups of E8
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Type of X [W : NW (X)] Lengths of conjugates of X

A1 12 12 · 32 · 52 · 72 · 91 · 111 · 131 · 151

A2 16 31 · 61 · 93 · 122 · 152 · 183 · 214

B2 18 41 · 84 · 123 · 162 · 208

B3 12 91 · 172 · 239

Table 4. Parabolic subgroups of F4

Type of X [W : NW (X)] Lengths of conjugates of X

A1 15 13 · 33 · 53 · 72 · 92 · 111 · 131

A2 10 31 · 61 · 125 · 153

I5 6 51 · 102 · 153

Table 5. Parabolic subgroups of H3

Type of X [W : NW (X)] Lengths of conjugates of X

A1 60 14 · 34 · 54 · 74 · 94 · 114 · 134 · 153 · 173 · 193 · 213 · 233·
253 · 272 · 292 · 312 · 332 · 351 · 371 · 391 · 411 · 431 · 451

A2 200 32 · 63 · 92 · 126 · 159 · 1810 · 218 · 243 · 278 · 3017 · 3623·
3915 · 4222 · 4514 · 4813 · 5110 · 5417 · 5718

A3 300 61 · 101 · 227 · 3425 · 4640 · 501 · 5245 · 5672 · 60108

H3 60 151 · 273 · 4716 · 5940

I5 72 51 · 102 · 156 · 204 · 255 · 303 · 357 · 4015 · 457 · 504 · 5518

Table 6. Parabolic subgroups of H4
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