
International Electronic Journal of Algebra

Volume 9 (2011) 38-60

A CLASS OF RINGS FOR WHICH THE LATTICE OF
PRERADICALS IS NOT A SET

Rogelio Fernández-Alonso, Silvia Gavito and Henry Chimal-Dzul

Received: 12 December 2009; Revised: 12 October 2010

Communicated by Dolors Herbera
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1. Introduction

A general problem in the theory of preradicals is to describe the big lattice R-pr

of preradicals over a ring R. This has been done in [7] for semisimple rings and

in [9] for local artinian uniserial rings (and as a consequence, for artinian principal

rings). In all these cases the lattice R-pr is a finite set. We can ask in general for

which rings R-pr is a (finite) set, or on the other hand, when R-pr is not a set.

In [6] Fay, Oxford and Walls presented some results of Mines (see [15]) that

derive in a construction of a sequence of abelian groups and a chain of radicals over

Z which is in one-to-one correspondence with the class of all ordinals. In particular,

this proves that the class of all preradicals, in fact the class of all radicals over the

ring of integers, is not a set. In this paper, in Section 4, we define a class of rings

R which satisfy the hypothesis from which such construction is derived, namely,

that there exists a radical σ 6= 1 over R and an R-module M such that R = σ(M).

We call those rings radical rings, and in Section 6 we prove that for these rings

the same construction can be done; we conclude that the class of preradicals R-pr

is not a set. We also find a class of rings which are radical rings. For this aim,

for an integral domain Z we define in Section 3 a right Z-coinitial ring, namely, a
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ring R which is not a division ring, has as a subring of its center a copy of Z, and

every non-zero right ideal contains an ideal of the form nR for some n ∈ Z\{0}.
We characterize commutative noetherian domains and discrete valuation domains

which are Z-coinital. In Section 5 we prove that every Z-coinitial right hereditary

countable ring R is a right radical ring. This result enables us to have a list of

examples which are right radical rings, so that R-pr is not a set, and we present

them in Section 7.

2. Preliminaries

In this paper all rings are associative and have identity. Let R be such a ring.

I(R), I(RR) and I(RR) will denote respectively the set of ideals, left ideals and

right ideals of R. Whenever we use the term ideal, instead of right ideal, we mean a

two-sided ideal. R-Mod and Mod-R denote respectively the categories of all unital

left R-modules and all unital right R-modules. In this paper we work mostly with

right R-modules.

As usual, for each M, N ∈Mod-R, we denote by HomR(M, N) the abelian group

of all R-homomorphisms f : M → N .

Also, as in [1], for M ∈ R-Mod, we denote by Endr(M) the ring of endomor-

phisms of M operating on the right; in that case we write (ax)f = a((x)f) for each

endomorphism f : M → M , for each x ∈ M and a ∈ R. Similarly, for N ∈ Mod-R

we denote by Endl(N) the ring of endomorphisms of N operating on the left; in

that case we write g(xa) = (g(x))a for each endomorphism g : N → N , for each

x ∈ N and a ∈ R. Let us denote by RR and RR the regular module R as a left

and right R-module, respectively. There are ring isomorphisms λ : R → Endl(RR)

such that (λ(a))(x) = ax and ρ : R → Endr(RR) such that (x)(ρ(a)) = xa.

Throughout this paper, when we refer to an integral domain we assume that it

is commutative. If R is a non-commutative domain we say that R has not zero

divisors (for example in Proposition 3.4).

2.1. Preradicals. The terminology and basic concepts used here about prerad-

icals can be found in [7], [8] and [21, VI.1]. A preradical over the ring R is a

subfunctor of the identity functor on Mod-R. Denote by R-pr the class of all

preradicals over R. There is a natural partial order in R-pr given by σ ¹ τ if

σ(M) ≤ τ(M) for every M ∈ Mod-R.

Proposition 2.1. [3, Proposition 1(ii)] For each σ ∈ R-pr, if M,N ∈ Mod-R are

such that N ≤ M , then (σ(M) + N)/N ≤ σ(M/N).
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There are four operations in R-pr, denoted respectively ‘∧’, ‘∨’, ‘·’ and ‘:’, which

are defined as follows, for σ, τ ∈ R-pr and M ∈ Mod-R.

(1) (σ ∧ τ)(M) = σ(M) ∩ τ(M).

(2) (σ ∨ τ)(M) = σ(M) + τ(M).

(3) (σ · τ)(M) = σ(τ(M)).

(4) (σ : τ)(M) is such that (σ : τ)(M)/σ(M) = τ(M/σ(M)).

The first two operations can be defined for arbitrary classes of preradicals, as in

[7]. This makes sense because for any right R-module M , a sum (or an intersection)

of submodules of M which is indexed by a class can also be indexed by a set. With

the partial order described above, R-pr results a complete big lattice, that is, a class

(not necessarily a set) having joins and meets for arbitrary subclasses. The smallest

and largest elements of R-pr, which are the zero functor and the identity functor

on Mod-R, are denoted respectively by 0̂ and 1̂. The operation ‘·’ is called product;

we write στ for σ · τ . The operation ‘:’ is called coproduct. Some preradicals are

of particular interest, such as idempotent preradicals, radicals, left exact preradicals

and t-radicals. For basic definitions and results on these classes of preradicals, see

[3] or [7].

Let us denote by OR the class of all ordinals. For γ ∈ OR and σ ∈ R-pr,

the preradical σγ is defined recursively as follows: σ0 = 1̂, σγ+1 = σσγ , and

ση =
∧{σγ | γ ∈ OR, γ < η} if η is a limit ordinal. Notice that if γ and η are

ordinals such that γ < η, then ση ¹ σγ . It results that σ̂ =
∧{σγ | γ ∈ OR} is the

greatest idempotent preradical less than or equal to σ. Similarly we define σ(γ) as

follows. σ(0) = 0̂, σ(γ+1) = (σ(γ) : σ), and σ(η) =
∨{σ(γ) | γ ∈ OR, γ < η} if η is

a limit ordinal. It results that σ =
∨{σ(γ) | γ ∈ OR} is the least radical greater

than or equal to σ.

The following proposition describes the behavior of preradicals under direct sums

and products.

Proposition 2.2. [3, Proposition 2] Let σ ∈ R-pr and {Mα}α∈I ⊆ Mod-R, then:

(1) σ

( ⊕
α∈I

Mα

)
=

⊕
α∈I

σ(Mα).

(2) σ

( ∏
α∈I

Mα

)
≤ ∏

α∈I

σ(Mα).

A preradical σ is a radical if, and only if, σ(M/σ(M)) = 0 for each M ∈ Mod-R.

The following property of radicals is straightforward.

Proposition 2.3. [3, Proposition 7] Let σ ∈ R-pr be a radical and let N ∈ Mod-R

such that N ≤ σ(M). Then σ(M/N) = σ(M)/N .
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Remark 2.4. It follows from the previous proposition that if σ ∈ R-pr is a radical,

then σγ is also a radical for each ordinal γ.

As in [7], for any σ ∈ R-pr, let Tσ = {σ(M) | M ∈ Mod-R }.

Remark 2.5. Notice that Tσ is closed under isomorphisms. Also, by Proposition

2.2(1), Tσ is always closed under direct sums. Moreover, by Proposition 2.3, if σ

is a radical, Tσ is closed under quotients.

The following types of preradicals have special importance.

Definition 2.6. [7, Definition 4] Let N be a fully invariant submodule of M . The

preradicals αM
N and ωM

N are defined as follows. Let K ∈ Mod-R.

αM
N (K) =

∑{f(N) | f ∈ HomR(M,K)}.
ωM

N (K) =
⋂{f−1(N) | f ∈ HomR(K, M)}.

Any preradical of the form αM
N is called an alpha preradical, and any preradical

of the form ωM
N is called an omega preradical.

Remark 2.7. [7, Proposition 5] Let σ ∈ R-pr and M, N ∈ Mod-R. Then σ (M) =

N if, and only if, N is a fully invariant submodule of M and αM
N ¹ σ ¹ ωM

N .

The previous remark implies that, for a fully invariant submodule N of M , αM
N

is the least preradical (and ωM
N is the greatest preradical) that assigns N to M .

We have also that if K ≤ N ≤ M , with K and N fully invariant in M , then

αM
K ¹ αM

N and ωM
K ¹ ωM

N .

Some types of preradicals can be described in terms of alpha and omega prerad-

icals, as follows.

Proposition 2.8. [8, Proposition 2.1] Let σ ∈ R-pr. Then:

(1) αM
M is idempotent for each M ∈ Mod-R. Moreover, σ is idempotent if, and

only if, σ =
∨{αM

M | M ∈ Mod-R and σ(M) = M}.
(2) ωM

0 is a radical for each M ∈ Mod-R. Moreover, σ is radical if, and only

if, σ =
∧{ωM

0 | M ∈ Mod-R and σ(M) = 0}.

The following property characterizes the identity functor in Mod-R as a prerad-

ical.

Proposition 2.9. Let σ ∈ R-pr. Then σ(R) = R if, and only if, σ = 1̂.

Proof. Suppose that σ(R) = R and let M ∈ Mod-R. Notice that αR
σ(R)(M) =∑{f(σ(R)) | f ∈ HomR(R, M)} = Mσ(R). Then, by Remark 2.7, M = MR =
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Mσ(R) = αR
σ(R)(M) ≤ σ(M). On the other hand, we always have σ(M) ≤ M .

Therefore σ(M) = M , i.e., σ = 1̂. The converse is clear. ¤

Let R be a ring which is the direct product of a finite number of rings Ri. The

following result states the relation between the lattices R-pr and Ri-pr.

Theorem 2.10. [4, Proposition I.9.1] Let R =
∏n

i=1 Ri. Then R-pr is lattice iso-

morphic to the product of the lattices Ri-pr.

The following result states that two rings which are Morita equivalent have the

same lattice of preradicals.

Theorem 2.11. [4, Proposition I.9.2] Let R and S be Morita equivalent rings.

Then R-pr and S-pr are lattice isomorphic.

Corollary 2.12. Let R be a ring and for n > 1 let S =Mn(R) be the ring of n×n

matrices with entries in R. Then R-pr and S-pr are lattice isomorphic.

Theorem 2.13. [4, Exercise I.8.E7] Let S → R be a surjective ring homomor-

phism. Then there is an injective order morphism R-pr → S-pr.

2.2. Ext functor for hereditary rings. The following terminology for Hom and

Ext functors can be found in [14, I.6, III.1, III.2]. As usual, for M ∈ Mod-R we

denote by HomR(M, ) : Mod-R → Mod-Z the covariant Hom functor that sends

each N ∈ Mod-R to HomR(M, N), and each f ∈ HomR(N, N ′) to the induced

homomorphism f∗ = HomR(M, f) : HomR(M,N) → HomR(M, N ′), such that

for each h ∈ HomR(M, N), f∗(h) = fh. Here composition is denoted in the

usual way; in this case h acts first. Similarly, for M ∈ Mod-R we denote by

HomR( , M) : Mod-R → Mod-Z the contravariant Hom functor that sends each

N ∈ Mod-R to HomR(N, M), and each f ∈ HomR(N, N ′) to f∗ = HomR(f, M) :

HomR(N ′,M) → HomR(N, M), such that for each h ∈ HomR(N ′,M), f∗(h) =

hf .

For each M, N ∈ Mod-R we will denote by ExtR(M, N) the abelian group of

all equivalence classes of extensions of N by M , with the Baer sum. If E is such

an extension we write [E] for its equivalence class. If α ∈ HomR(N,N ′), then

for each K ∈ Mod-R, (α)∗ : ExtR(K, N) → ExtR(K, N ′) will denote the induced

Z-homomorphism such that (α)∗([E]) = [αE] for each [E] ∈ ExtR(K, N), where

αE is the extension that results by adjoining by the left α to E. Similarly, if

γ ∈ HomR(M ′,M), then for each K ∈Mod-R, (γ)∗ : ExtR(M,K) → ExtR(M ′,K)

will denote the induced Z-homomorphism such that (γ)∗([E]) = [Eγ] for each
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[E] ∈ ExtR(M,K), where Eγ is the extension that results by adjoining by the

right γ to E. Recall that Ext functors, usually denoted by ExtnR(M, ) for the

covariant, or ExtnR( , N) for the contravariant, can be defined for each n ≥ 1 as

right derived functors of the covariant (respectively contravariant) Hom functor,

and that Ext1R(M,N) ∼= ExtR(M, N) (see [19, VI, VII and IX]).

Let Z(R) denote the center of R. For each z ∈ Z(R) and M ∈ Mod-R we

will denote by µM
z : M → M the R-endomorphism of M such that for each x ∈

M, µM
z (x) = xz, and we will refer to it as multiplication by z. If S is any subring

of Z(R), then ExtR(M, N) is an S-module as follows. If [E] ∈ ExtR(M,N) and

z ∈ S, then [E]z is the equivalence class of µN
z E ≡ EµM

z . In other words, [E]z =

(µN
z )∗([E]) = (µM

z )∗([E]). See [19, VII] for details.

Recall that a ring R is right hereditary if each J ∈ I(RR) is projective. The

following theorem describes the behavior of Ext functors on this kind of rings. As in

[19], for M ∈Mod-R we will denote by pd(M) the projective dimension of M , and by

rpD(R) the right projective global dimension of R, i.e., rpD(R) = sup{pd(M) | M ∈
Mod-R}.

Theorem 2.14. [19, Exercise 9.3, Theorem 9.5, Corollary 9.6] For any ring R the

following conditions are equivalent:

(a) R is right hereditary.

(b) rpD(R) ≤ 1.

(c) ExtnR(M, N) = 0 for all M,N ∈ Mod-R and all n ≥ 2.

As a consequence of Theorem 2.14 we have the following result.

Corollary 2.15. Let R be a right hereditary ring. Let M ∈ Mod-R, S a subring

of Z(R) and z ∈ S. If µM
z : M → M is a monomorphism, then for each N ∈

Mod-R, (µM
z )∗ : ExtR(M, N) → ExtR(M, N) is an epimorphism of S-modules. In

particular, if S is an integral domain and µM
z : M → M is a monomorphism for

each z ∈ S (i.e., M is torsionfree as an S-module), then ExtR(M, N) is a divisible

S-module for any N ∈ Mod-R.

2.3. Dedekind domains. In this subsection we assume that R is a commutative

ring. More detailed information about the basic concepts included in this subsection

is contained in [2,13]. Let P be a prime ideal of R and let RP be the localization

of R at P . Recall that the elements of RP can be written as r/s, where r ∈ R

and s ∈ S = R \ P ; in particular, the element 1/1 is the identity of RP . Recall

also that RP is a local ring with maximal ideal m = PS−1 = {r/s | r ∈ P, s ∈ S}.
The quotient ring RP /m, which is a field, is called the residue field of RP . We
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have a natural ring homomorphism fP : R → RP defined by fP (r) = r/1. Clearly,

I = f−1
P (m) is a prime ideal of R such that P ⊆ I. Therefore, if R has Krull

dimension one then I = P .

An integral domain D is called a discrete valuation ring if it is a noetherian local

ring of Krull dimension one and the maximal ideal m is principal. In a discrete

valuation ring D with maximal ideal m = (t), every proper non-zero ideal of D

is equal to mn = (tn) for some integer n ≥ 1. The following are two examples of

discrete valuation rings.

Example 2.16. Let p be a prime element of the ring of integers Z. Then (p) is a

prime ideal and the localization Z(p) is a discrete valuation domain with maximal

ideal m = (p/1). The residue field of Z(p) is the finite field with p elements.

Example 2.17. [2, VII] Let R = F [x] be the polynomial ring in the variable x

over an algebraically closed field F of zero characteristic. Let p(x) be an irreducible

polynomial over F . Then P = (p(x)) is a prime ideal of R and RP is a discrete

valuation ring with maximal ideal m = (p(x)/1) and residue field isomorphic to F .

Recall that a noetherian integral domain D of Krull dimension one is a Dedekind

domain if for every non-zero prime ideal P of D the localization DP is a discrete

valuation ring. Recall also that in a Dedekind domain every non-zero ideal of D

can be uniquely expressed as a product of prime ideals of D.

The hereditary integral domains are precisely the Dedekind domains, as is stated

in the following result.

Theorem 2.18. [13, Theorem 8.3.4] Let D be an integral domain. Then D is a

Dedekind domain if, and only if, D is an hereditary ring.

2.4. Slender modules. Suppose in this subsection that Z is an integral domain.

For each n ∈ N, let en = (r1, r2, . . .) ∈ ZN be such that rn = 1 and ri = 0 if i 6= n.

As in [5], we call a torsionfree Z-module M slender if, for every Z-homomorphism

η : ZN → M we have η(en) 6= 0 for only a finite number of n ∈ N.

The following proposition provides an equivalent condition for a module to be

slender.

Proposition 2.19. A torsionfree Z-module M is slender if, and only if, for each

countable family of Z-modules {Ni}∞i=1 and each Z-homomorphism η :
∏∞

i=1 Ni →
M there exists j ≥ 1 such that η(

∏∞
i=j Ni) = 0.

Proof. We follow the proof of a similar result for abelian groups due to Rychkov

and Thome (see [20, Proposition 1.1]). Assume that M is slender and suppose that
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there exist a family of Z-modules {Ni}∞i=1 and a Z-homomorphism η :
∏∞

i=1 Ni →
M such that η(

∏∞
i=j Ni) 6= 0 for all j ≥ 1. Thus there is a sequence {yj}j≥1

of pairwise different elements such that yj ∈
∏∞

i=j Ni and η(yj) 6= 0 for all j ≥
1. Notice that each yj can be viewed as an element of

∏∞
i=1 Ni by setting yj =

(y(1)
j , y

(2)
j , . . .) with y

(k)
j = 0 if k < j. Define a Z-homomorphism ϕ : ZN → ∏∞

i=1 Ni

such that ϕ(r1, r2, . . .) = (
∑∞

i=1 riy
(1)
i ,

∑∞
i=1 riy

(2)
i , . . . ) for each (r1, r2, . . .) ∈ ZN.

Being M slender, it follows that η(yj) = (ηϕ)(ej) = 0 for all but a finite number

of j ∈ N, which contradicts the choice of the elements yj . The other implication is

clear. ¤

Observe that submodules of slender modules are slender. Observe also that

injective modules are not slender, hence slender modules are reduced. See also [11,

XIV.7]. The following result states that for countable torsionfree modules the other

implication is also true.

Proposition 2.20. A countable torsionfree Z-module is slender if, and only if, it

is reduced.

Proof. The only if part is stated in the previous observations. For the if part,

we follow the proof of the analogous result in abelian groups, due to Sasiada (see

[10, Proposition 94.2]). Let M be reduced and countable Z-module, and suppose

that M is not slender. We can assume that η : ZN → M is a homomorphism such

that η(en) 6= 0 for all n ∈ N. Since M is reduced, we have
⋂

r∈Z\{0} rM = 0.

Let k1 = 1. Since η(e1) 6= 0, there exists k2 ∈ Z such that η(k1e1) /∈ k2M . Now

k1k2η(e2) 6= 0, since M is torsionfree. Therefore there exists k3 ∈ Z such that

η(k1k2e2) /∈ k3M . In this way we can construct a sequence k1, k2, . . . of elements

in Z such that η(k1k2 · · · knen) 6∈ kn+1M , for each n ∈ N. Let A be the set of

elements (r1, r2, . . .) ∈ ZN such that for each n ∈ N, rn = 0 or rn = k1k2 · · · kn.

Then |A| = 2ℵ0 , so there are a1, a2 ∈ A such that a1 6= a2 and η(a1) = η(a2). Let

a = a1 − a2. Then a 6= 0 and if a = (s1, s2, . . .), then for each n ∈ N we have

sn = 0 or sn = ±k1k2 · · · kn. Let n0 be the first index such that sn0 6= 0. Then

η(sn0en0) 6∈ kn0+1M . On the other hand, η(sn0en0) = η(a)− η(0, . . . , sn0+1, . . .) =

−η(0, . . . , sn0+1, . . .) ∈ kn0+1M , which is a contradiction. We conclude that M is

slender. ¤

Proposition 2.21. Let R be a ring and Z a subring of Z(R). If M is a slender

Z-module and η : RN → M is a Z-homomorphism such that η(R(N)) = 0, then

η = 0. In other words, HomZ(RN/R(N),M) = 0.
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Proof. Following the proof of Lemma 2 in [5], suppose that η 6= 0. Let x =

(xn)n≥1 ∈ RN such that η(x) 6= 0. Define ϕ : RN → RN by ϕ((yn)n≥1) =

(xi

∑i
k=1 yk)i≥1. Then ϕ is a Z-homomorphism. For each n ∈ N, let εn denote the

element of RN whose n-th coordinate is 1 and whose other coordinates are 0. Then

ηϕ : RN → M is a Z-homomorphism such that ηϕ(εn) = η(0, . . . , 0, xn, xn+1, . . . ) 6=
0 for each n ≥ 1. Letting Ri = R for all i ≥ 1, it follows that η(

∏∞
i=n Ri) 6= 0 for

each n ≥ 1, which contradicts Proposition 2.19. ¤

3. Z-coinitial rings

3.1. Definition and basic properties. Let Z be an integral domain and let

χ : Z → Z(R) be an injective ring homomorphism. To simplify notation, for each

n ∈ Z we will write n instead of χ(n). For each n ∈ Z, nR = {nr | r ∈ R} is a

principal ideal of R generated by the element n. Let N = {nR | n ∈ Z}.
Recall that if 〈P,≤〉 is a poset, a subset Q of P is said to be coinitial if for each

x ∈ P there exists y ∈ Q such that y ≤ x.

Definition 3.1. Let Z be an integral domain which is not a division ring. Let R

be a ring which is not a division ring. R is left (right) Z-coinitial if there exists an

injective ring homomorphism χ : Z → Z(R) such that the set N\{0} is coinitial

in the poset I(RR)\{0} (I(RR)\{0}). We say that R is Z-coinitial if it is left and

right Z-coinitial.

The following are obvious equivalent conditions to the previous definition.

Proposition 3.2. For a ring R and an integral domain Z which is a subring of

Z(R) the following conditions are equivalent:

(a) R is right Z-coinitial.

(b) For each 0 6= IR ≤ R we have Z ∩ I 6= 0.

(c) For each x ∈ R\{0} there exist a ∈ R and n ∈ Z\{0} such that xa = n.

(d) For each 0 6= IR ≤ R, R/I is a Z-torsion module.

Remark 3.3. Every integral domain Z which is not a division ring is Z-coinitial.

Now we prove some properties of right Z-coinitial rings.

Proposition 3.4. Let Z be an integral domain and let R be a right Z-coinitial

ring. Then:

(1) R is a right uniform R-module.

(2) R has not zero divisors.
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(3) If R is a subring of the ring B such that the nonzero elements of Z are

invertible in B, then all nonzero elements of R are invertible in B. In

particular, Z has a nonzero element which is not invertible in R.

(4) R is a torsionfree Z-module.

(5)
⋂

n∈Z\{0} nR = 0. In particular, R is reduced as a Z-module.

(6) If R is countable then R is a slender Z-module.

Properties (2)− (6) also hold if R is a left Z-coinitial ring.

Proof. (1). Let 0 6= IR, JR ≤ R. Being R right Z-coinitial, there exist n,m ∈
Z\{0} such that nR ≤ I and mR ≤ J . Therefore 0 6= nmR ≤ nR ∩mR ≤ I ∩ J .

(2). Let x, y ∈ R\{0}. Then there exist a, b ∈ R and n,m ∈ Z\{0} such that

xa = n and yb = m. Therefore (xy)(ba) = x(yb)a = xma = mxa = mn 6= 0, so

that xy 6= 0.

(3). Let x ∈ R\{0}. Then there exist a ∈ R and n ∈ Z\{0} such that xa = n.

Being n invertible in B, it follows that x is right invertible in B, that is, there is

b = an−1 ∈ B\{0} such that xb = 1. Thus (bx − 1)b = 0, which implies that

(ax− n)a = 0. Therefore x is invertible in B, since R has not zero divisors, by (2).

For the second part of the statement, take B = R.

(4). This is a consequence of (2).

(5). Let I =
⋂

n∈Z\{0} nR and suppose that I 6= 0. Then there is n0 ∈ Z\{0}
such that n0R ≤ I, so that n0R = I. Let m ∈ Z\{0}. Then n0mR = n0R, and

so n0 = n0mx for some x ∈ R. Therefore n0(mx − 1) = 0 and since, by (2), R

has not zero divisors we conclude that m is invertible in R, which contradicts (3).

Therefore
⋂

n∈Z\{0} nR = 0.

(6). It follows from Proposition 2.20 and the fact that R is reduced, by (5). ¤

Corollary 3.5. If R is a right Z-coinitial ring for some integral domain Z, then

R has not minimal right ideals. In particular, R is not right artinian.

Proof. If I is a minimal right ideal of R, then, being right uniform, I ≤ J for every

nonzero right ideal J . Therefore I ⊆ ⋂
n∈Z\{0} nR, which contradicts Proposition

3.4.5. ¤

3.2. Commutative noetherian rings and discrete valuation domains. The

following two results characterize commutative noetherian domains which are Z-

coinitial.

Theorem 3.6. Let D be a commutative noetherian domain. Let Z be a domain

which is a subring of D. The following conditions are equivalent:
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(a) D is Z-coinitial.

(b) For each nonzero prime ideal P of D the localization DP is a Z-coinitial

ring.

(c) For each nonzero prime ideal P of D there exists a nonzero prime ideal p

of Z such that p ⊆ P .

Proof. (a) ⇒ (b). Let P 6= 0 be a prime ideal of D and S = D\P . Then DP is a

local ring with maximal ideal PS−1. Let I ′ 6= 0 be an ideal of DP . Then I ′ = IS−1

for some nonzero ideal I of D. Therefore nD ⊆ I for some n ∈ Z\{0}, so that

nDP ⊆ I ′.

(b) ⇒ (c). Let P be a nonzero prime ideal of D. Since DP is Z-coinitial, there

exists n ∈ Z\{0} such that nDP ⊆ PS−1. Therefore p = P ∩Z is a nonzero prime

ideal of Z, with p ⊆ P .

(c) ⇒ (a). Let I be a non-zero proper ideal of D. If I is a prime ideal, by

hypothesis, there exist a prime ideal p 6= 0 of Z such that p ⊆ I. If I is not a

prime ideal, then D/I is a noetherian ring, which therefore has (see [12, Theorem

3.4]) a finite number of minimal prime ideals P̄1, . . . , P̄n such that P̄1 · · · P̄n = 0,

where for each i = 1, . . . n, P̄i is the image of the prime ideal Pi of D under the

natural projection. By hypothesis, there exist nonzero prime ideals p1, . . . , pn of Z

such that p1 ⊆ P1, . . . , pn ⊆ Pn. Therefore p1 · · · pn ⊆ I and we conclude that D is

Z-coinitial. ¤

Corollary 3.7. Let D be a discrete valuation domain. Let Z be a domain which

is a subring of D and let m be the maximal ideal of D. The following conditions

are equivalent:

(a) D is Z-coinitial.

(b) There exists a nonzero prime ideal p of Z such that p ⊆ m.

(c) Z ∩m 6= 0.

(d) The residue field of D is a torsion Z-module.

3.3. Z-orders. Here we present some additional examples of Z-coinitial rings. In

particular, we shall give an example of a noncommutative one. Throughout this

subsection, let Z be a Dedekind domain with field of fractions K and let A be a

finite dimensional K-algebra. Following [18], a subring R of A is a Z-order in A if

R is a finitely generated Z-module such that KR = A. A maximal Z-order in A is

a Z-order which is not properly contained in any other Z-order in A.

Let R be a Z-coinitial ring which is also a Z-order in A. By Proposition 3.4.3

and since KR = A, A has to be a division ring (observe that every element of A
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is of the form an−1 for a ∈ R and n ∈ Z). Therefore, for our purposes in this

subsection, when we refer to a Z-order in A we will always assume that A is a

division ring with center K such that A is finite dimensional over K.

Remark 3.8. Notice that Z-orders are both left and right noetherian, being finitely

generated over the noetherian domain Z.

Let A be a division ring finite dimensional over its center K. Then a Z-order

in A can always be constructed, as it is shown in [18, page 109]. The following are

useful results about maximal Z-orders.

Proposition 3.9. [18, Corollary 10.4] Every Z-order in A is contained in a max-

imal Z-order in A. In particular, there exists a maximal Z-order in A.

Proposition 3.10. [18, Theorem 21.4] Every maximal Z-order in A is left and

right hereditary.

Example 3.11. [18, Exercise 10.2] Let A = Q⊕Qi⊕Qj⊕Qk be the division ring

of hamiltonian quaternions over Q. Let Λ0 = Λ⊕Za, where Λ = Z⊕Zi⊕Zj⊕Zk
and a = (1 + i + j + k)/2. Then Λ0 is a maximal Z-order in A. It follows from the

previous proposition that Λ0 is a left and right hereditary ring.

Proposition 3.12. [12, Proposition 9.1] Let S be a commutative ring. Let R be

an S-algebra finitely generated as an S-module. If R is prime and S is noetherian,

then every essential left or right ideal of R contains a nonzero central element of

the form s1.

Corollary 3.13. Let R be a Z-order in A. Then:

(1) R is a Z-coinitial ring.

(2) If R is a maximal Z-order in A, then R is a hereditary Z-coinitial ring.

Proof. (1). Z is noetherian and there is a ring monomorphism χ : Z → Z(R)

given by χ(n) = n1R. Since R has not zero divisors, R is prime, and every nonzero

left and right ideal is essential. To see the last assertion, let a, b ∈ R\{0}, then

there exists x ∈ A such that xa = b. Since x = yn−1 for y ∈ R and n ∈ Z, it follows

that ya = nb, so that Ra ∩Rb 6= 0. Similarly, aR ∩ bR 6= 0. Therefore, if I is a left

or right ideal of R it is essential, and by Proposition 3.12, Z ∩ I 6= 0. Therefore R

is Z-coinitial.

(2). It follows immediately from (1) and from Proposition 3.10. ¤

As a consequence, the ring Λ0 in Example 3.11 is a noncommutative Z-coinitial

ring.
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4. Radical modules and rings

In this section we introduce the concepts of radical module and radical ring. In

section 6 we shall prove that radical rings constitute a class of rings R for which

R-pr is not a set.

Definition 4.1. Let M ∈ Mod-R and N ≤ M . We say that N is a radical

submodule of M if there exists σ ∈ R-pr, σ 6= 1̂, such that σ is a radical and

N = σ(M). We call M a radical module if there exists L ∈ Mod-R such that M is

a radical submodule of L. A ring R is called a right (left) radical ring if the regular

module RR (RR) is a radical module.

The following are equivalent conditions for a proper submodule to be a radical

submodule.

Proposition 4.2. Let M ∈ Mod-R and N a proper fully invariant submodule of

M . Let i : N → M be the natural inclusion and p : M → M/N be the natural

projection. The following conditions are equivalent.

(a) N is a radical submodule of M .

(b) N = ω
M/N
0 (M).

(c) αM
N (M/N) = 0.

(d) For each h ∈ HomR(M,M/N) we have h(N) = 0.

(e) The homomorphism i∗ = HomR(i,M/N) : HomR(M,M/N) → HomR(N, M/N)

is zero.

(f) The homomorphism p∗ = HomR(p,M/N) : HomR(M/N,M/N) → HomR(M, M/N)

is an isomorphism.

(g) αM
N ¹ ω

M/N
0 .

(h) N = αM
N (M).

Proof. (a) ⇒ (b). Suppose that N = σ(M) for some radical σ 6= 1̂. Then we have

σ(M/N) = 0, so that σ ¹ ω
M/N
0 . Therefore N = σ(M) ≤ ω

M/N
0 (M) ≤ N , where

the last inequality follows from Definition 2.6.

(b) ⇔ (d) and (c) ⇔ (d) are direct consequences from Definition 2.6.

(d) ⇔ (e) is obvious.

(e) ⇔ (f) is immediate, applying the contravariant Hom functor HomR( ,M/N)

to the exact sequence 0 → N → M → M/N → 0.

(b) ⇒ (g). By Remark 2.7, the hypothesis implies that αM
N ¹ ω

M/N
0 . Since

ω
M/N
0 is a radical, we have αM

N ¹ ω
M/N
0 .

(g) ⇒ (h). We have N ≤ αM
N (M) ≤ αM

N (M) ≤ ω
M/N
0 (M) ≤ N , the last

inequality by Definition 2.6.
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(h) ⇒ (a) is obvious. ¤

Recall that M ∈ Mod-R is called quasi-projective or M -projective if for each

epimorphism g : M → L and each homomorphism k : M → L there exists an

endomorphism h : M → M such that gh = k.

Example 4.3. Let M ∈ Mod-R and suppose that M is quasi-projective. Then con-

dition (f) of Proposition 4.2 holds. Therefore each fully invariant proper submodule

of M is a radical submodule.

The following proposition gives equivalent conditions for a ring to be right radi-

cal.

Proposition 4.4. For a ring R the following conditions are equivalent.

(a) R is right radical.

(b) There is a generator G of Mod-R such that G is a radical module.

(c) Every M ∈ Mod-R is a radical module.

Proof. (a) ⇒ (b) and (c) ⇒ (a) are obvious.

(b) ⇒ (c). By hypothesis, there is a generator G ∈ Tσ, for some radical σ 6= 1̂.

By Remark 2.5, Tσ is closed under direct sums and epimorphisms, so that M ∈ Tσ

for each M ∈ Mod-R. ¤

5. A subclass of the class of right radical rings

Throughout this section we assume that Z is an integral domain. Our aim is to

prove that every countable Z-coinitial and right hereditary ring R is a right radical

ring for any integral domain Z. Following [6], we consider the radical ωR
0 . We will

prove that there exists a right R-module M such that ωR
0 (M) = R. The following

is a consequence of Definition 2.6 and Remark 2.7.

Remark 5.1. Let R be a ring and M a right R-module that contains R as a

submodule. The following conditions are equivalent.

(a) ωR
0 (M/R) = 0.

(b) ωR
0 ¹ ω

M/R
0 .

(c) M/R is cogenerated by R.

Let Z be an integral domain, and suppose that the ring R is a Z-coinitial ring.

Among the right R-modules M that satisfy any (and hence all) of the conditions

of Remark 5.1, we characterize those such that ωR
0 (M) = R as the ones for which

ExtR(M/R,R) has a Z-torsionfree element. When R is a countable Z-coinitial and
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right hereditary ring, we prove the existence of such a Z-torsionfree element when

M/R = RN, clearly satisfying the conditions of Remark 5.1. In what follows, ( )∗

will denote the Hom contravariant functor HomR( , R).

The following results, namely, Proposition 5.2 and Proposition 5.4, generalize

those stated by Mines in [15] and proved in [6, Theorem 3.6].

Proposition 5.2. Let R be a ring. Let M ∈ Mod-R be such that R ≤ M and

let f : R → M be the inclusion map. Assume that ωR
0 (M/R) = 0. The following

conditions are equivalent:

(a) ωR
0 (M) = R.

(b) f∗ : M∗ → R∗ is the zero homomorphism.

Proof. (a) ⇒ (b). Suppose that ωR
0 (M) = R. Let φ ∈ M∗. Then f∗(φ) = φf = 0,

since R ≤ Ker(φ), by Definition 2.6.

(b) ⇒ (a). Suppose that f∗ = 0. For each φ ∈ M∗ we have φf = f∗(φ) = 0, which

means that R ≤ Ker(φ) and we conclude that R ≤ ωR
0 (M). On the other hand,

by Proposition 2.3, ωR
0 (M)/R = ωR

0 (M/R) = 0, being ωR
0 a radical. Therefore

ωR
0 (M) = R. ¤

Remark 5.3. Notice that R∗ = Endl(RR) and that there is a ring isomorphism

λ : R → Endl(RR). It follows that, if Z is an integral domain, R is left (respectively

right) Z-coinitial if, and only if, R∗ is left (respectively right) Z-coinitial. Notice

also that if f ∈ HomR(R,M), then Imf∗ = {k ∈ Endl(RR) | k = hf, h ∈ M∗} is

a left ideal of R∗.

Proposition 5.4. Let R be a left Z-coinitial ring. Let M ∈ Mod-R be such that

R ≤ M and let f : R → M be the inclusion map. For an exact sequence E : 0 →
R

f→ M → M/R → 0 the following conditions are equivalent:

(a) f∗ : M∗ → R∗ is the zero homomorphism.

(b) [E] ∈ ExtR(M/R, R) is Z-torsionfree.

Proof. (a) ⇒ (b). Suppose that n[E] = 0 for some n ∈ Z\{0}. The following

diagram:

E : 0 // R
f //

µR
n =n1R

²²

M //

α

²²

M/R // 0

µR
n E : 0 // R

f1 // M1
// M/R // 0

commutes and has exact rows for some M1 ∈ Mod-R and some R-homomorphisms

f1 and α. Now, µR
n E splits, since [µR

n E] = n[E] = 0. It follows that there is
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an R-homomorphism g1 : M1 → R such that g1f1 = 1R. Since n 6= 0, we have

f∗(g1α) = g1αf = µR
n 6= 0. Therefore f∗ 6= 0.

(b) ⇒ (a). Suppose that f∗ 6= 0. Since Imf∗ is a left ideal of R∗, which is also left

Z-coinitial, there exists n ∈ Z\{0} such that µR
n = n1R ∈ Imf∗, i.e., (µR

n )∗(1R) =

µR
n = f∗(µ′) for some µ′ ∈ M∗. Consider again a commutative diagram as the one

above. By applying the functor ( )∗ to this diagram, and adding the corresponding

connecting homomorphisms δ and δ1 from the long exact sequences we obtain:

0 // (M/R)∗ // M1
∗ f1

∗
//

α∗

²²

R∗
δ1 //

(µR
n )∗

²²

ExtR(M/R,R)

0 // (M/R)∗ // M∗ f∗ // R∗
δ // ExtR(M/R, R),

Since δ1(1R) = δ(µR
n )∗(1R) = δf∗(µ′) = 0, it follows that 1R ∈ Ker(δ1) = f1

∗(M∗
1 ).

Thus there is g1 ∈ M1
∗ such that g1f1 = f1

∗g1 = 1R. Therefore the extension

µR
n E splits, that is, n[E] = 0. We conclude that [E] is a Z-torsion element in

ExtR(M/R,R). ¤

Therefore, to conclude that a Z-coinitial ring R is a right radical ring it is enough

to construct a Z-torsionfree element in some extension group ExtR(P,R), where

P is cogenerated by R. We will focus in the case when P = RN, which we assume

throughout this subsection.

Proposition 5.5. Let R be a left or right Z-coinitial ring. If R is right hereditary,

then ExtR(P,R) is a divisible Z-module.

Proof. By Proposition 3.4.4, R and hence P , are torsionfree Z-modules. By Corol-

lary 2.15, we conclude that ExtR(P, R) is a divisible Z-module. ¤

In [17, Theorem 8] Nunke describes the structure of the abelian group ExtZ(ZN,Z).

Using some ideas of Nunke’s result we prove, under the hypothesis of Proposi-

tion 5.5, that ExtR(P, R) 6= 0 when R is countable. Then, using the fact that

ExtR(P, R) is divisible in this case, we construct a Z-torsionfree element.

Proposition 5.6. Let R be a countable, right Z-coinitial ring and right hereditary

ring. Then ExtR(P,R) 6= 0.

Proof. First we claim that |P ∗| ≤ ℵ0. Let Φ : R(N) → P ∗ be the function that

sends each y = (yi)i∈N to the R-homomorphism Φy : P → R such that, for each

z ∈ P , Φy(z) =
∑

n∈supp(y) ynπn(z), where supp(y) denotes the support of y in

R(N), and πn are the natural projections. We will show that Φ is surjective. Let
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ϕ ∈ P ∗. In particular, ϕ is a Z-homomorphism, and, by Proposition 3.4(6), R

is a slender Z-module. It follows from Proposition 2.19 that the set {n ≥ 1 |
ϕ(εn) 6= 0} is finite, where εn denotes the element of P whose n-th coordinate is

1 and whose other coordinates are 0. Let {n ≥ 1 | ϕ(εn) 6= 0} = {n1, . . . , nr}.
Let η = ϕ − ∑r

i=1 ϕιniπni , where, for each i ∈ {1, . . . , r}, ιni denote natural

inclusions. Since R is right Z-coinitial, we can apply Proposition 2.21 to conclude

that η = 0. Thus ϕ =
∑r

i=1 ϕιni
πni

. Moreover, if z = (zi)i∈N ∈ P , then for each i

we have that, (ϕιiπi)(z) = ϕιi(zi) = ϕ(εizi) = ϕ(εi)zi = ϕ(εi)πi(z). Thus ϕ(z) =∑r
i=1 ϕ(εni

)πni
(z). Therefore Φ is surjective, so that |P ∗| ≤ |R(N)| = |R| = ℵ0,

which proves our claim.

By Proposition 3.4.5, R is a reduced Z-module, so that it is not divisible. Hence

there exists m ∈ Z\{0} such that mR 6= R. Moreover, mR is not a direct sum-

mand of R because R is a right uniform Z-module. It follows that the short ex-

act sequence 0 → R
µR

m→ R → R/mR → 0 does not split, which implies that

ExtR(R/mR, R) 6= 0. We claim that |ExtR(P/mP, R)| ≥ 2ℵ0 . Being R right hered-

itary, the monomorphism 0 → (R/mR)(N) → (R/mR)N induces an epimorphism

ExtR((R/mR)N, R) → ExtR((R/mR)(N), R) → 0. Since (ExtR(R/mR,R))N ∼=
ExtR((R/mR)(N), R), we have |ExtR((R/mR)N, R)| ≥ |(ExtR(R/mR,R))N| ≥
2ℵ0 . Now, P/mP ∼= (R/mR)N, so we conclude that |ExtR(P/mP,R)| ≥ 2ℵ0 .

Now consider in Mod-R the short exact sequence 0 → P
µP

m→ P → P/mP →
0, which induces the exactness of the sequence 0 → (P/mP )∗ → P ∗ → P ∗ →
ExtR(P/mP,R) → ExtR(P,R) → ExtR(P, R) → 0. If ExtR(P, R) = 0, then we

would have an epimorphism P ∗ → ExtR(P/mP, R) → 0, but as we have seen before

|ExtR(P/mP, R)| > |P ∗|, a contradiction. Therefore ExtR(P,R) 6= 0. ¤

Proposition 5.7. Let R be a countable, right Z-coinitial and right hereditary ring.

Then ExtR(P,R) has a Z-torsionfree element.

Proof. We begin by showing that there is an independent and infinite family

{Tn}n≥1 of R-submodules of P such that Tn
∼= P for each n ≥ 1. Let P =

{p1, p2, . . . } be the set of prime numbers and, for each n ≥ 1, let An = {pn
k :

k ≥ 1} and Tn = {z ∈ P : supp(z) ⊆ An}. Then Tn
∼= RAn ∼= P for each

n ≥ 1. Let z ∈ Tk ∩ (
∑

n6=k Tn). Then supp(z) ⊆ Ak. On the other hand,

z = z1 + · · · + zm, with zi ∈ Tni and ni 6= k for all i ∈ {1, . . . ,m}. Accordingly,

supp(z) ⊆ ∪m
i=1supp(zi) ⊆ ∪m

i=1Ani . It follows that supp(z) ⊆ Ak ∩ (∪m
i=1Ani) = ∅,

that is, z = 0.

Now we construct a Z-torsionfree element in (ExtR(P, R))N. By Proposition

5.6, there is x1 6= 0 in ExtR(P,R). Since Z ⊆ R is countable, we can assume
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that Z\{0} = {z1 = 1, z2, . . .}. Since ExtR(P,R) is Z-divisible, there exists x2 ∈
ExtR(P, R) such that x2z2 = x1, and we construct a sequence x1 = x, x2, . . . of

nonzero elements in ExtR(P,R) such that for each n ∈ N, there exists xn+1 ∈
ExtR(P, R) such that xn+1zn+1 = xn. Then x = (x1, x2, . . .) ∈ (ExtR(P, R))N is

Z-torsionfree.

Finally, consider the exact sequence 0 → ⊕n≥1Tn
i→ P . Under the hypothesis

that R is right hereditary, and considering that:

(ExtR(P, R))N ∼=
∏

n≥1

ExtR(Tn, R) ∼= ExtR(⊕n≥1Tn, R),

we have the exactness of the sequence ExtR(P, R)
(i)∗→ (ExtR(P,R))N → 0. Then,

being (i)∗ an epimorphism and since x ∈ (ExtR(P, R))N is Z-torsionfree, there

is w ∈ ExtR(P, R) such that (i)∗(w) = x. Then w is a Z-torsionfree element in

ExtR(P, R). ¤

Now we prove the main theorem of this section. Notice that we use the fact that

R is both left and right Z-coinitial.

Theorem 5.8. Let R be a countable, Z-coinitial and right hereditary ring. Then

there exists M ∈ Mod-R such that ωR
0 (M) = R. Therefore R is a right radical ring.

Proof. By Proposition 5.7, there exists an exact sequence E : 0 → R
f→ M →

P → 0 such that [E] is a Z-torsionfree element in ExtR(P,R). It follows from

Proposition 5.4 that f∗ : M∗ → R∗ is the zero homomorphism. Since M/R ∼= P is

cogenerated by R, we conclude, by Proposition 5.2, that ωR
0 (M) = R. ¤

6. R-pr is not a set for right radical rings

In this section we prove that for every right radical ring the lattice of preradicals

is not a set. We use the same technique as the one used in [6] for abelian groups.

Definition 6.1. Let σ ∈ R-pr, M ∈ Mod-R, and x ∈ M . We define the σ-height

of x in M , denoted by h(x, σ,M), as the largest ordinal γ such that x ∈ σγ(M), in

case such γ exists. Otherwise, we define h(x, σ,M) = ∞.

As an immediate consequence we have the following properties.

Remark 6.2. Let σ ∈ R-pr, M, N ∈ Mod-R, x ∈ M and γ ∈ OR. Then:

(1) x ∈ σγ(M) if, and only if, h(x, σ,M) ≥ γ.

(2) If f ∈ HomR(M, N) and h(x, σ,M) ≥ γ then h(f(x), σ,N) ≥ γ.
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Theorem 6.3. Let σ ∈ R-pr be a radical. Let {Mn}n≥1 be a family in Mod-R such

that, for each n ≥ 1 we have σ(Mn+1) = Mn. Then for each γ ∈ OR and each

n ≥ 1 there exists M(γ, n) ∈ Mod-R such that σγ(M(γ, n)) = Mn.

Proof. We proceed by transfinite induction on γ. For each n ≥ 1, take M(0, n) =

Mn. Assume that M(γ, n) is defined for each n ≥ 1 in such a way that σγ(M(γ, n)) =

Mn. For n ≥ 1 define M(γ +1, n) = M(γ, n+1). Notice that σγ+1(M(γ +1, n)) =

σ(σγ(M(γ + 1, n))) = σ(σγ(M(γ, n + 1))) = σ(Mn+1) = Mn. Now suppose that η

is a limit ordinal and assume that M(γ, n) is defined for each ordinal γ < η and

n ≥ 1. Consider the following short exact sequence:

0 → Mn ↪→ M(γ, n) → M(γ, n)/σγ(M(γ, n)) → 0

which induces the exactness of the following sequence:

0 → ⊕
γ<η

Mn ↪→ ⊕
γ<η

M(γ, n) → ⊕
γ<η

(M(γ, n)/σγ(M(γ, n))) → 0

Let ∇ : ⊕
γ<η

Mn −→ Mn denote the codiagonal map and define M(η, n) to be a

corresponding pushout such that Mn ≤ M(η, n) and completes the commutative

diagram:

0 // ⊕
γ<η

Mn Â Ä //

∇
²²

⊕
γ<η

M(γ, n) //

²²

⊕
γ<η

(M(γ, n)/σγ(M(γ, n))) // 0

0 // Mn
Â Ä // M(η, n) // ⊕

γ<η
(M(γ, n)/σγ(M(γ, n))) // 0

From Proposition 2.2 and Remark 2.4, it follows that ση( ⊕
γ<η

(M(γ, n)/σγ(M(γ, n))))

= ⊕
γ<η

ση((M(γ, n)/σγ(M(γ, n)))) ≤ ⊕
γ<η

σγ((M(γ, n)/σγ(M(γ, n)))) = 0. By Propo-

sition 2.1, we have (ση(M(η, n)) + Mn)/Mn ≤ ση(M(η, n)/Mn) = 0. Therefore

ση(M(η, n)) ≤ Mn. In order to prove the opposite inequality, let x ∈ Mn =

σγ(M(γ, n)). For each ordinal γ such that γ < η we consider the natural inclusion

ιγ : Mn → ⊕
γ<η

Mn. By Remark 6.2.1, we have h(ιγ(x), σ, ⊕
δ<η

M(δ, n)) ≥ γ and

considering the previous diagram and Remark 6.2.2 we have h(x, σ,M(η, n)) ≥ γ,

since for each ordinal γ, ∇(ιγ(x)) = x. Therefore h(x, σ,M(η, n)) ≥ γ for each

ordinal γ < η, so that h(x, σ,M(η, n)) ≥ η, which means that x ∈ ση(M(η, n)).

We conclude that ση(M(η, n)) = Mn for the limit ordinal η and this concludes the

proof. ¤

Now we are able to construct a class of preradicals which is not a set. First we

need the following definition.
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Definition 6.4. Let M ∈ Mod-R and σ ∈ R-pr. The σ-length of M , denoted

by l(σ,M), is the least ordinal λ such that σλ(M) = σλ+1(M). Notice that this

ordinal always exists, since {σλ(M)}λ∈OR is a descending chain of submodules of

M , and M is a set.

Theorem 6.5. Let R be a right radical ring. Let 1̂ 6= σ ∈ R-pr be a radical and

M ∈ Mod-R be such that σ(M) = R. Then:

(1) For each γ ∈ OR there exists Nγ ∈ Mod-R such that l(σ,Nγ) = γ.

(2) There exists a chain of radicals in R-pr which is not a set.

Proof. To prove (1), by Proposition 4.4, we have that R ∈ Tσ implies that M ∈ Tσ

for each M ∈ Mod-R. Therefore there is a set {Mn}n≥1 in Mod-R such that M0 =

σ(R), M1 = R, and σ(Mn+1) = Mn. By Theorem 6.3, for each n ≥ 1 and for each

γ ∈ OR there exists M(γ, n) ∈ Mod-R such that σγ(M(γ, n)) = Mn. In particular,

for each ordinal γ, σγM(γ, 1) = M1 = R, so that, by Proposition 2.3 and Remark

2.4, σγ(M(γ, 1)/R) = σγ(M(γ, 1))/R = 0. It follows that l(σ,M(γ, 1)/R) ≤ γ. We

claim that l(σ,M(γ, 1)/R) = γ. If this is not the case, there would be an ordinal

η < γ such that ση(M(γ, 1)/R) = 0, that is, ση(M(γ, 1)) = R. Hence σ(R) =

σ(ση(M(γ, 1))) = ση+1(M(γ, 1)) ≥ σγ(M(γ, 1)) = M1 = R. By Proposition 2.9,

we would have σ = 1̂. We conclude that ση(M(γ, 1)/R) 6= 0 for all η < γ, which

means that l(σ,M(γ, 1)/R) = γ.

Now we shall prove (2). Let us consider the chain {σγ}γ∈OR. By (1), for each

γ ∈ OR there exists Nγ ∈ Mod-R such that l(σ,Nγ) = γ. Now suppose that

δ, η ∈ OR with δ < η. By Definition 6.4, we have that σδ(Nη) 6= ση(Nη), and this

implies that σδ 6= ση. Therefore {σγ}γ∈OR is not a set. ¤

As an immediate consequence of Theorem 5.8 and Theorem 6.5 we have the

following result.

Corollary 6.6. Let R be a countable, Z-coinitial and right hereditary ring. Then:

(1) For each ordinal γ there exists M ∈ Mod-R with l(ωR
0 ,M) = γ.

(2) There exists a chain of radicals in R-pr which is not a set.

7. Some rings for which R-pr is not a set.

We start remarking some constructions of rings for which R-pr is not a set, that

arise from the results stated at the end of Section 2.1.

Remark 7.1. Let R be a countable, Z-coinitial and right hereditary ring. For a

ring S we have that S-pr is not a set if any of the following conditions hold:
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(1) S =
∏n

i=1 Ri and Rj = R for some j ∈ {1, . . . , n}.
(2) S is Morita equivalent to R, in particular, if S =Mn(R) for some n > 1.

(3) R is isomorphic to a factor ring of S.

Now we present some examples of rings that satisfy the hypothesis of Corollary

6.6, and hence they are such that R-pr is not a set.

Example 7.2. Z satisfies all conditions of Corollary 6.6. In fact as Nunke proved

in [17], ExtZ(ZN,Z) has an element of infinite order. Using this fact, Fay, Oxford

and Walls proved in [6] that ωZ0 (M) = Z. They also constructed explicitly the chain

of radicals which is in correspondence with OR.

Example 7.3. Recall Example 2.16. The ring Z(p), the localization of Z by the

prime p is a countable discrete valuation ring of zero characteristic and its residue

field is a finite field, and hence of prime characteristic. In particular, it is a torsion

Z-module. By Corollary 3.7, Z(p) is a Z-coinitial ring. Being a Dedekind domain,

it is hereditary.

Example 7.4. In general, let R = OK be the ring of integers of a number field

K. Then R is a Dedekind domain of zero characteristic. By Theorem 2.18, it is

hereditary. R is countable, being the ring of algebraic integers of a finite extension

of the countable field Q. This ring R has the finite norm property, that is, for

every 0 6= I ≤ R the factor ring R/I is finite (see [16, I.1.4]), and therefore it is

torsion as a Z-module. By Proposition 3.2, R is Z-coinitial. By Theorem 3.6, for

every non-zero prime ideal P of R, the localization RP is also Z-coinitial, and it is

a countable discrete valuation ring. Therefore R and each of its localizations RP

satisfy the conditions of Corollary 6.6.

Example 7.5. Let D be a countable Dedekind domain. By Theorem 2.18, D is

hereditary and by Remark 3.3, it is D-coinitial. In particular, let F be a countable

field, for example the field Q of rational numbers. Then the ring of polynomials

F [x] is a countable Dedekind domain.

Example 7.6. (See Section 3.3). Let Z be a countable Dedekind domain with field

of fractions K. Let A be a division ring finite dimensional over its center K. Let

R be a right hereditary Z-order in A. Then R satisfies the conditions of Corollary

6.6. In particular, this is the case when R is a maximal Z-order in A, for example

R = Λ0 (see Example 3.11).
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