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Abstract. Using some common assumptions, we extend the study of the Lie

algebra multiplier for the strictly upper triangular matrices to the multiplier

of its derived algebra. Even though the algebras are very similar, many new

elements and cases appear in the derived algebra that do not exist in the

original.
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1. Introduction

We begin with a few definitions from [2]. Suppose L is a finite dimensional Lie

algebra over a field with characteristic not equal to two.

Definition 1.1. A pair of Lie algebras (C,M) is called a defining pair for L if

(1) L ∼= C/M

(2) M ⊂ Z(C) ∩ C2.

Definition 1.2. If (C, M) is a defining pair for L, then a C of maximal dimension

is called a cover for L. Likewise an M of maximal dimension is called a multiplier.

A multiplier is the Lie algebra analogue of the Schur multiplier from group the-

ory. Please see [3] for a collection of Schur’s contributions to this area. In [1] we

notice that if dim L = n, then dim M has an upperbound of 1
2n(n− 1). Therefore

a finite dimensional L will give both M and C finite dimensional. For M maximal,

dim M = 1
2n(n−1) ⇔ L is abelian. Similarly [2] shows that dim C ≤ 1

2n(n+1) and

that for Lie algebras (unlike groups) all covers are isomorphic. Since the multiplier

is abelian all brackets on M are trivial, making isomorphisms immediate, hence the

multiplier is unique and we will denote it by M(L). Accordingly, our interest in

classifying these Lie algebras lies in finding their dimensions.
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The multiplier is classified in [2] for L = the n × n strictly upper triangular

matrices. In this paper we find the dimension of the multiplier for the derived

algebra to be dim M(L2) = 2n2 − 11n + 16 for n ≥ 6. For n = 5, 4, 3, we have

dim M(L2) = 11, 3, 0 respectively.

2. Structure

Let L be the Lie algebra of n × n strictly upper triangular matrices and let

(C,M) be a defining pair for L2, therefore C/M ∼= L2 and M ⊂ Z(C) ∩ C2. Let

Eab denote the usual matrix units that form a basis for L2. Notice that L2 ⊂ L is

the Lie algebra of strictly upper triangular matrices with a superdiagonal of zeros,

thus a + 2 ≤ b. Since L2 ∼= C/M each element in L2 corresponds to an entire

coset in C. For each Eab in the basis of L2 we choose a representative from C in

the corresponding coset, called a transversal element and denote it by Fab. Define

u : L2 → C to be the map taking each Eab in the basis to its transversal Fab,

then extend the map u linearly. As in [2] we can completely describe the bracket

operation as

[Fst, Fab] =





Fsb + y(s, t, a, b) if t = a

y(s, t, a, b) if t 6= a

where y(s, t, a, b) ∈ M . For brevity we often denote y(s, t, a, b) as ystab. Due to the

anti-symmetry of the bracket we can assume that either s < a or s = a and t < b.

Following the model of [2], first make a change in the choice of Frt. Notice that

[Frs, Fst] = Frt + yrsst introduces y′s for each s, r + 1 < s < t − 1. For each pair

r, t, one y can be eliminated by the following change of basis. Set

Grt =





Frt if t− r < 4

Frt + yr,t−2,t−2,t = [Fr,t−2, Ft−2,t] otherwise

As stated in [2], “Thus {G(r, t)} and {F (r, t)} are complete sets of images of matrix

units[.] Since the y′s are central, G(r, t) and F (r, t) induce the same multiplication

in C.” We freely use this fact when computing; that is, multiplying by F ′s or G′s

gives the same result and we use which ever is most convenient. We proceed to

find all dependencies among the y′s, using the Jacobi identity as our tool. After

doing this, we have a basis for the multiplier and it remains to count the number

of elements in this basis. We divide our investigation into two sections: elements

produced by [Grs, Gst] and elements produced by [Gst, Gab], where t 6= a. Let

J(x, y, z) = 0 denote the Jacobi identity.
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3. [Grs, Gst]

Theorem 3.1. [Grs, Gst] = Grt, except in two cases: s = r + 2, t = r + 5 and

s = r + 3, t = r + 6.

Proof. Clearly [Grs, Gst] = Frt + yrsst = Grt whenever yrsst = yr,t−2,t−2,t. Sup-

pose first that t ≥ r+7 and s 6= t−2. The Jacobi identity J(Frs, Fs,t−2, Ft−2,t) = 0

immediately gives yrsst = yr,t−2,t−2,t when s = r +2, r +3. However if s > r +3 we

can use the identities J(Frc, Fcs, Fst) = 0 and J(Frc, Fc,t−2, Ft−2,t) = 0 together to

achieve yrsst = yr,t−2,t−2,t, where c = r + 2.

Suppose t = r + 6. If s = r + 4 then yrsst = yr,t−2,t−2,t is trivial. The Jacobi

identity J(Frs, Fs,t−2, Ft−2, t) = 0 gives yrsst = yr,t−2,t−2,t when s = r+2. However

if s = r + 3, there are no Jacobi identities available to equate yrsst and yr,t−2,t−2,t.

Therefore [Gr,r+3, Gr+3,r+6] = Fr,r+6 + yr,r+3,r+3,r+6 is not necessarily Grt.

Suppose t = r + 5. If s = r + 3 then yrsst = yr,t−2,t−2,t is trivial. If s = r + 2,

there are no Jacobi identities available to equate yrsst and yr,t−2,t−2,t. Therefore

[Gr,r+2, Gr+2,r+5] = Fr,r+5 + yr,r+2,r+2,r+5 is not necessarily Grt.

Suppose t = r +4. The only choice for s is t−2. Therefore [Grs, Gst] = Grt. ¤

Therefore the only non-zero multiplier element possibilities produced from

[Grs, Gst] are of the form yr,r+2,r+2,r+5 and yr,r+3,r+3,r+6. This is an interesting

contrast to the dim M(L) case where no multiplier elements result from [Grs, Gst].

Please note that we consider Frt + yrsst 6= Grt whenever possible to get M of

maximal dimension. We can also make a change in the choice of y′s to convert all

F ′s to G′s and hence describe C, but dim M(L2) is our primary concern.

4. [Gst, Gab], t 6= a

Consider the second case where t 6= a gives [Gst, Gab] = ystab. The assumption

s < a or s = a and t < b eliminates the s = b possibility. Since no F is produced

by the bracket notice that [Gst, Gab] = ystab ∈ M(L2). We will work with the F ′s

rather than the G′s as both produce the same elements in M(L2). We wish to find

all the relationships between the values of the subscripts where ystab = 0, otherwise

we assume ystab 6= 0 to get M(L2) of maximal dimension. We begin by showing an

upper bound on the distance between subscripts for which ystab may be non-zero.

Theorem 4.1. If b ≥ a + 5 or t ≥ s + 5 then ystab = 0.

Proof. Suppose b ≥ a + 5. If t = a + 2 then let c = a + 3, otherwise choose

c = a + 2. By construction c 6= s, t, a, b. (c 6= s because s ≤ a.) Therefore

J(Fst, Fac, Fcb) = 0 ⇒ ystab = 0.
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Similarly suppose t ≥ s + 5. If a = s + 2 then let c = s + 3, otherwise choose

c = s + 2. By construction c 6= s, t, a, but we need c 6= b also. Notice s =

a ⇒ t < b ⇒ c = s + 2 < s + 5 ≤ t < b. On the other hand if s < a

then s + 2 < a + 2 ≤ b (i.e. b ≥ s + 3). Therefore either b > s + 3 ≥ c or

b = s + 3 ⇒ a = s + 1 ⇒ c = s + 2 6= b. Therefore in all cases c 6= b. This

gives c 6= s, t, a, b and therefore J(Fsc, Fct, Fab) = 0 ⇒ ystab = 0. ¤

Theorem 4.2. If b = a+ 4 then ystab = 0 ⇔ t 6= a+ 2 or s < a (s 6= a). Similarly

if t = s + 4 then ystab = 0 ⇔ a 6= s + 2 or b 6= t.

Proof. (⇐) Suppose b = a + 4. If t 6= a + 2 let c = a + 2, so c 6= t, a, b and

furthermore s ≤ a < c ⇒ c 6= s. Therefore c 6= s, t, a, b and J(Fst, Fac, Fcb) = 0 ⇒
ystab = 0. On the other hand if t = a + 2 and s < a then let c = t− 1. In this case

J(Fst, Ftb, Fat) = 0 ⇒ ystab = −ysbat and J(Fsc, Fcb, Fat) = 0 ⇒ ysbat = 0

which together give ystab = 0.

(⇒) Suppose b = a + 4, t = a + 2, and s = a. There is no value of c such that

Fac and Fcb are both defined while c 6= t. As such, there are no Jacobi identities

available to zero out ystab.

(⇐) Suppose t = s + 4. If a 6= s + 2 let c = s + 2, so c 6= s, t, a. Notice when s = a

then t < b so s < c < t < b ⇒ c 6= b. If s < a then c = s+2 < a+2 ≤ b ⇒ c 6= b.

Therefore c 6= s, t, a, b and J(Fsc, Fct, Fab) = 0 ⇒ ystab = 0. On the other hand

if a = s + 2 and b > t then let c = a + 1. In this case J(Fsa, Fat, Fab) = 0 ⇒
ystab = ysbat and J(Fsc, Fcb, Fat) = 0 ⇒ ysbat = 0 which together give ystab = 0.

If a = s + 2 and b < t then s < s + 2 = a < a + 2 ≤ b < t ⇒ s + 4 < t and

hence by Theorem 4.1, ystab = 0.

(⇒) Suppose t = s + 4, a = s + 2, and b = t. There is no value of c such that

Fsc and Fct are both defined while c 6= a. As such, there are no Jacobi identities

available to zero out ystab. ¤

Now that we have an upper bound on the distance for which non-zero ystab values

may be produced, we continue our search by separating the variable relationships

into three cases. Either s = a, a > t, or s < a < t.

Case 1: s = a

For a fixed value of s, suppose s = a. Theorems 4.1 and 4.2 discuss b ≥ s + 4,

so consider b < s + 4. Let tmin = s + 2. Since s = a ⇒ t < b this gives

tmin < b < s + 4 = tmin + 2, so b = tmin + 1.

Theorem 4.3. When b = tmin + 1, we get one new non-zero value for ystab.
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Proof. Observe b = tmin + 1 = s + 3 = a + 3. Additionally t < b ⇒ t < s + 3.

Therefore 6 ∃c such that Fac and Fcb are both defined, similarly 6 ∃c such that Fsc and

Fct are both defined. Therefore ystab 6= 0. Also b = tmin + 1, t < b ⇒ t = tmin,

therefore t may take on only one value for this fixed b, hence we get 1 distinct new

non-zero value for ystab. Putting this together we have y(s, s + 2, s, s + 3) 6= 0. ¤

Case 2: a > t

Theorem 4.4. If a > t then ystab 6= 0 for all t and b such that both t < s + 4 and

b < a + 4. Otherwise ystab = 0 when a > t.

Proof. If t ≥ s + 5 or b ≥ a + 5 then Theorem 4.1 ⇒ ystab = 0. If t = s + 4 or

b = a+4 then Theorem 4.2 ⇒ ystab = 0 since a > t ⇒ t 6= a+2 and a 6= s+2.

If t < s + 4 and b < a + 4 then there is no value of c, such that Fsc and Fct are

both defined for s < c < t. Similarly there is no value of c, such that Fac and Fcb

are both defined for a < c < b. Therefore the identities J(Fsc, Fct, Fab) = 0 and

J(Fst, Fac, Fcb) = 0 are not available. Also, placing a c such that s < t < c < a < b

will not provide any helpful Jacobi identities, no matter how large the gap between

t and a. Thus ystab will always be non-zero in this case. ¤

Case 3: s < a < t

Theorems 4.1 and 4.2 discuss b ≥ a + 4 and t ≥ s + 4.

Theorem 4.5. If s < a < t, ystab 6= 0 in the event that t < s + 4 and b < a + 4.

Proof. There is not enough space available between s, t, a, b to define a suitable c

to use any of the previous Jacobi identities, hence we cannot zero out ystab when

b ∈ {a + 2, a + 3} and t ∈ {s + 2, s + 3}. Therefore ystab 6= 0 in this case. ¤

Collecting all this information, Table 1 lists all non-zero ystab possibilities.

Table 1. ystab 6= 0 possibilities

Theorem 4.2 b = a + 4, t = a + 2, and s = a

Theorem 4.2 t = s + 4, a = s + 2 and b = t

Case 1/Theorem 4.3 s = a, b = tmin + 1 = s + 3, and t = tmin = s + 2

Case 2/Theorem 4.4 a > t, t < s + 4, and b < a + 4

Case 3/Theorem 4.5 s < a < t, t = s + 2, s + 3, and b = a + 2, a + 3
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5. Counting the multiplier elements

To count all the cases when ystab 6= 0, notice there are two types of elements:

y(s, s + x1, s + x2, s + x3) where x1, x2, x3 are all fixed and y(s, s + x1, a, a + x2)

where a > s + x1 and x1, x2 are both fixed. Since s + xi, i = 1, 2, 3 and a + x2 were

subscripts of the G′s, and initially subscripts of the standard matrix units, these

numbers may not exceed n.

Type 1: y(s, s + x1, s + x2, s + x3)

Since s ≥ 1 and s + xi ≤ n for i = 1, 2, 3 this implies s ∈ {1, 2, . . . , n − w}
where w = max{x1, x2, x3}. Therefore y(s, s+x1, s+x2, s+x3) may take on n−w

possible values. If n ≤ w there is no contribution to the multiplier, M(L2), since w

represents the distance between matrix positions and n the total matrix positions.

Notice also that the elements yrsst from the [Grs, Gst] case also fall into this

category since all subscripts can be described as distances from r.

Type 2: y(s, s + x1, a, a + x2) where a > s + x1

Since no matrix positions may exceed n, this implies a ≤ n − x2. If s = 1 then

a ≥ 2 + x1. Therefore a ∈ {2 + x1 . . . n − x2}, giving (n − x2) − (2 + x1) + 1 =

n − x2 − x1 − 1 different values for a. If s = 2, the minimum value of a increases

by 1, yielding one fewer possible value of a. Every further increment of s in turn

decrements the allowable values of a until a can assume only one value. Thus

as s increases, the number of possible values of a go from n − x2 − x1 − 1 down

to 1, giving
n−x2−x1−1∑

i=1

i =
(n− (x2 + x1 + 1))(n− (x2 + x1))

2
possible values of

y(s, s + x1, a, a + x2).

As in Type 1, this type demands a distance of x2 + x1 + 1 between matrix

positions, hence if n ≤ x2 + x1 + 1 there is no contribution to the multiplier,

M(L2), since the original matrix units are not available to work with.

Using these two counting techniques, Table 2 lists all non-trivial yrsst and ystab

possibilities and the number of times they occur. Adding all of these together

gives dimM(L2) = (n − 6) + 2(n − 5) + 5(n − 4) + 3(n − 3) + (n − 5)(n − 6) +
(n−6)(n−7)+(n−4)(n−5)

2 . Also, as stated above if any n − w term is not positive,

omit it from the formula because the matrices will not be large enough to produce

the corresponding matrix units and the resulting multiplier elements they would

have produced. Despite the appearance of a few zeros in the previous unsimplified
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formula when n = 6 and 7, modifying this formula is not absolutely necessary unless

n ≤ 5 in which case some n − w terms will be negative. This gives dim M(L2) =

2n2−11n+16 for n ≥ 6 and with the appropriate modifications dim M(L2) = 11, 3, 0

for n = 5, 4, 3 respectively.

Table 2. Counting multiplier elements for L2

yrsst or ystab non-trivial Number of occurences

yr,r+2,r+2,r+5 n− 5

yr,r+3,r+3,r+6 n− 6

ys,s+2,s,s+4 n− 4

ys,s+4,s+2,s+4 n− 4

ys,s+2,s,s+3 n− 3

ys,s+2,a,a+2
(n−4)(n−5)

2

ys,s+2,a,a+3
(n−5)(n−6)

2

ys,s+3,a,a+2
(n−5)(n−6)

2

ys,s+3,a,a+3
(n−6)(n−7)

2

ys,s+2,s+1,s+3 n− 3

ys,s+2,s+1,s+4 n− 4

ys,s+3,s+1,s+3 n− 3

ys,s+3,s+1,s+4 n− 4

ys,s+3,s+2,s+4 n− 4

ys,s+3,s+2,s+5 n− 5

6. Examples

Example 6.1. Suppose n = 4, notice L2 is abelian. The formula gives dim M(L2)

= 3. The Lie algebra corresponds to F13, F14, F24 in C. Considering all possible

brackets gives

[F13, F14] = y1314

[F13, F24] = y1324

[F14, F24] = y1424

Each bracket produces an element in the multiplier, but no F ’s. Therefore any

Jacobi identity will trivially give zero and no additional information about the y’s.

Counting the y′s also dim M(L2) = 3.
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Example 6.2. Suppose n = 5. The formula for dim M(L2) reduces to 5(n− 4) +

3(n− 3) = 11. C contains F13, F14, F15, F24, F25, F35. The possible brackets are

[F13, F14] = y1314 [F13, F15] = y1315 [F13, F24] = y1324

[F13, F25] = y1325 [F13, F35] = F15 + y1335 = G15 [F14, F15] = y1415 = 0

[F14, F24] = y1424 [F14, F25] = y1425 [F14, F35] = y1435

[F15, F24] = y1524 = 0 [F15, F25] = y1525 = 0 [F15, F35] = y1535

[F24, F25] = y2425 [F24, F35] = y2435 [F25, F35] = y2535

We get y1415, y1524, y1525 = 0 from J(F13, F35, F14) = 0, J(F13, F35, F24) = 0, and

J(F13, F35, F25) = 0 respectively. Counting the y’s also shows dim M(L2) = 11.

Example 6.3. Suppose n = 6. Then dim M(L2) = 2n2−11n+16 = 22. Computing

all possible bracket operations produces Table 3. We place a ∗ wherever we would

have [x, x] or violate s < a or s = a, t < b. All the zeros come from some Jacobi

identity.

Table 3. Bracket Operation [Fst, Fab], when n = 6

F13 F14 F15 F16 F24 F25 F26 F35 F36 F46

F13 ∗ y1314 y1315 0 y1324 y1325 0 G15 G16 + y1336 y1346

F14 ∗ ∗ 0 0 y1424 y1425 0 y1435 y1436 G16

F15 ∗ ∗ ∗ 0 0 0 0 y1535 0 0

F16 ∗ ∗ ∗ ∗ 0 0 0 0 0 0

F24 ∗ ∗ ∗ ∗ ∗ y2425 y2426 y2435 y2436 G26

F25 ∗ ∗ ∗ ∗ ∗ ∗ 0 y2535 y2536 y2546

F26 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 y2646

F35 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ y3536 y3546

F36 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ y3646

F46 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Notice that counting the y’s also gives dim M(L2) = 22.
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