ON SPLITTING PERFECT POLYNOMIALS OVER $\mathbb{F}_{p^{p}}$

Luis H. Gallardo and Olivier Rahavandrainy
Received: 10 March 2010; Revised: 29 July 2010
Communicated by Abdullah Harmancı

Abstract

We characterize some splitting perfect polynomials in $\mathbb{F}_{q}[x]$, where $q=p^{p}$ and p is a prime number.

Mathematics Subject Classification (2000): 11T55, 11 T 06
Keywords: Artin-Schreier extension, finite fields, splitting polynomials, perfect polynomials

1. Introduction

Let q be a power of a prime p. For a monic polynomial $A \in \mathbb{F}_{q}[x]$, let $\omega(A)$ be the number of distinct irreducible monic factors of A, and let $\sigma(A)$ be the sum of all monic divisors of A (included the trivial divisors 1 and A):

$$
\sigma(A)=\sum_{D \text { monic, } D \mid A} D .
$$

If $\sigma(A)=A$, then we call A a perfect polynomial.
This is the appropriate analogue for polynomials of the notion of "multiperfect" numbers for two reasons: a) it is easy to see that A is perfect if and only if A divides $\sigma(A)$ and b) we are forced to consider monic polynomials only, since the sum of all divisors of a non-monic polynomial is trivially equal to 0 . Canaday [2] and Beard [1] studied principally the case when $q=p$ that even now is far from being understood. Assume now that $q \neq p$. Gallardo and Rahavandrainy [4,5] investigated the case $q=4$ mainly considering polynomials with a small number of prime factors in order to be able to get some results. So for general $q \neq p$, it is natural to consider first the study of some class of simple polynomials. A natural choice is to consider splitting polynomials that is, polynomials with all their roots in the same field where are the coefficients. Beard [1] does that for the case $q=p$. Recently, Gallardo and Rahavandrainy [7] studied splitting perfect polynomials over quadratic extensions $\left(q=p^{2}\right)$. On the other hand the p-th extension field of \mathbb{F}_{p}, that is the ArtinSchreier extension of the prime field \mathbb{F}_{p} has been recently $[10,3,9]$ considered in relation to the minimal period of Bell numbers. Some arithmetic properties of the
prime number p appear there naturally. We decided then to consider the study of splitting perfect polynomials over the field $\mathbb{F}_{p^{p}}$. Lemmas $2.9,2.10,3.2$ contain some simple arithmetic properties of the prime number p useful for our work. Of course, we just scratch the subject in this paper.

More precisely, let p be a prime number and let $q=p^{p}$. We denote by \mathbb{F}_{q} the field with q elements. It is the splitting field of the irreducible Artin-Schreier polynomial $f(x)=x^{p}-x-1 \in \mathbb{F}_{p}[x]$.
The splitting perfect polynomials over \mathbb{F}_{4} are known (see [4, Theorem 3.4]) so we shall assume in the rest of the paper that p is an odd prime.

By Lemma 2.4, a splitting perfect polynomial A can be expressed as

$$
A=A_{0} \cdots A_{r}=\prod_{j \in \mathbb{F}_{p}}\left(x-a_{0}-j\right)^{h_{0 j}} \cdots \prod_{j \in \mathbb{F}_{p}}\left(x-a_{r}-j\right)^{h_{r j}},
$$

where

$$
\begin{aligned}
& r+1=\frac{\omega(A)}{p} \in \mathbb{N}, \quad 0 \leq r \leq \frac{q}{p}-1 \\
& A_{i}=\prod_{j \in \mathbb{F}_{p}}\left(x-a_{i}-j\right)^{h_{i j}}, \operatorname{gcd}\left(A_{i}, A_{l}\right)=1 \text { if } i \neq l \\
& a_{i} \in \mathbb{F}_{q}, a_{i}-a_{l} \notin \mathbb{F}_{p} \text { for } 0 \leq i \neq l \leq r
\end{aligned}
$$

By changing $A(x)$ by $A\left(x+a_{0}\right)$, and by Lemma 2.2, we may suppose that $a_{0}=0$. We say that A is trivially perfect if for any $0 \leq i \leq r$, the polynomial A_{i} is perfect. In that case, A is perfect and for any $0 \leq i \leq r$, there exist $N_{i}, n_{i} \in \mathbb{N}$ such that:

$$
h_{i j}=N_{i} p^{n_{i}} \text { for any } j \in \mathbb{F}_{p}, N_{i} \mid p-1
$$

Observe (see Corollary 2.8) that there exists an infinite number of splitting trivially perfect polynomials with $\omega(A)=(r+1) p$. There exists also an infinite number of splitting non-trivially perfect polynomials with $\omega(A)=q$ (see Theorem 3 in [1]), namely those of the form $A=\prod_{b_{i} \in \mathbb{F}_{q}}\left(x-b_{i}\right)^{N p^{m}-1}$ where $N, m \in \mathbb{N}$ and N divides $q-1$.

We do not know if all splitting perfect polynomials are trivially perfect. However, we are able to classify some of them in our main result below:

Theorem 1.1. Let $0 \leq r \leq \frac{q}{p}-1$ be an integer. In the following cases, any splitting perfect polynomial, with $\omega(A)=(r+1) p$, is trivially perfect:
i) $0 \leq r \leq p^{2}-1$ and $a_{i}+a_{l}, a_{i}+a_{l}-a_{k} \notin \mathbb{F}_{p}$ for $i \neq l \neq k$.
ii) $0 \leq r \leq 5$.

After some useful technical lemmas in section 2 we prove Theorem 1.1 in section 3. The proof of part ii) requires some involved computations with non-linear systems over $\mathbb{F}_{q} / \mathbb{F}_{p}$.

2. Preliminary

In this section, we recall some useful results for the next sections. Let G be the Galois group of the polynomial $f(x)=x^{p}-x-1$. It is well known that G is a cyclic group of order p, generated by the Frobenius morphism:

$$
\pi: \mathbb{F}_{q}^{*} \rightarrow \mathbb{F}_{q}^{*}, \pi(t)=t^{p}
$$

The orbit, under the action of G, of an element $\omega \in \mathbb{F}_{q}$ but outside \mathbb{F}_{p} contains exactly p elements: $\omega, \omega^{p}, \ldots, \omega^{p^{p-1}}$.
In the following, we put: $\mathbb{F}_{p}=\{0,1,2, \ldots, p-1\}$.

Lemma 2.1. i) The polynomial $x^{l}-1$ splits in \mathbb{F}_{p} if and only if $l=N p^{m}$, where $N, m \in \mathbb{N}$ and N divides $p-1$.
ii) The polynomial $x^{l}-1$ splits in \mathbb{F}_{q} if and only if $l=N p^{m}$, where $N, m \in \mathbb{N}$ and N divides $q-1$.
In that case, if $d=\operatorname{gcd}(p-1, N)$, then $N=d+r p$ for some $r \in \mathbb{N}$, and for some $j_{1}, \ldots, j_{d} \in \mathbb{F}_{p}, b_{1}, \ldots, b_{r} \in \mathbb{F}_{q}-\mathbb{F}_{p}$, one has:
$x^{l}-1=\left(x^{N}-1\right)^{p^{m}}=\left(\prod_{\mu=1}^{d}\left(x-j_{\mu}\right) \prod_{\lambda=1}^{r}\left(\left(x-b_{\lambda}\right)\left(x-b_{\lambda}{ }^{p}\right) \cdots\left(x-b_{\lambda}{ }^{p^{p-1}}\right)\right)\right)^{p^{m}}$.
Lemma 2.2. The polynomial $P(x) \in \mathbb{F}_{q}[x]$ is perfect if and only if for all $a \in \mathbb{F}_{q}$, $P(x+a)$ is perfect.

Definition 2.3. For a monic polynomial $A \in \mathbb{F}_{q}[x]$, we define the integer $\omega(A)$ as the number of distinct irreducible monic factors of A.

Lemma 2.4. (see Lemma 2.5 in [5]) If A is a splitting perfect polynomial over \mathbb{F}_{q}, then $\omega(A) \equiv 0 \quad \bmod p$.
More precisely, if $\omega(A)=(r+1) p$, then $A=\prod_{j=0}^{p-1}\left(x-a_{0}-j\right)^{h_{0 j}} \ldots \prod_{j=0}^{p-1}\left(x-a_{r}-j\right)^{h_{r j}}$, where

$$
\begin{aligned}
& a_{0}, \ldots, a_{r} \in \mathbb{F}_{q}, a_{i}-a_{l} \notin \mathbb{F}_{p} \text { if } 0 \leq i \neq l \leq r \\
& h_{i j}=N_{i j} p^{n_{i j}}-1, N_{i j}, n_{i j} \in \mathbb{N} \text { and } N_{i j} \text { divides } q-1 .
\end{aligned}
$$

Remark 2.5. In the rest of paper, by Lemmata 2.4 and 2.2, a splitting perfect polynomial A such that $\omega(A)=(r+1) p$ will be always expressed as

$$
A=A_{0} \cdots A_{r}=\prod_{j=0}^{p-1}\left(x-a_{0}-j\right)^{h_{0 j}} \cdots \prod_{j=0}^{p-1}\left(x-a_{r}-j\right)^{h_{r j}}
$$

where

$$
\begin{aligned}
& A_{i}=\prod_{j=0}^{p-1}\left(x-a_{i}-j\right)^{h_{i j}}, \operatorname{gcd}\left(A_{i}, A_{l}\right)=1 \text { if } i \neq l \\
& a_{0}=0, a_{i} \in \mathbb{F}_{q}, a_{i}-a_{l} \notin \mathbb{F}_{p} \text { for } 0 \leq i \neq l \leq r \\
& h_{i j}=N_{i j} p^{n_{i j}}-1, N_{i j}, n_{i j} \in \mathbb{N}, N_{i j} \mid q-1
\end{aligned}
$$

Lemma 2.6. (see Theorem 5 in [1]) The polynomial $A_{0}=\prod_{j=0}^{p-1}(x-j)^{h_{0 j}}$ is perfect over \mathbb{F}_{p} if and only if for any $i, j, h_{0 i}=h_{0 j}=N p^{m}-1$, where $N, m \in \mathbb{N}$ and N divides $p-1$.

Now, we proceed to show a crucial lemma which allows us to establish Theorem 1.1.

Lemma 2.7. For $r \in \mathbb{N}^{*}$, let $A=A_{0} A_{1} \cdots A_{r}=A_{0} B$ be a splitting perfect polynomial over \mathbb{F}_{q}. If $N_{0 j} \mid p-1$ for any j, then the polynomials A_{0} and B are both perfect.

Proof. According to Notation 2.5, we have:
$A_{0}=\prod_{j=0}^{p-1}(x-j)^{h_{0 j}}$ and $B=\prod_{j=0}^{p-1} \prod_{i=1}^{r}\left(x-a_{i}-j\right)^{h_{i j}}$.
For any j, since $N_{0 j} \mid p-1$, none of the monomials $x-a_{i}-l\left(l \in \mathbb{F}_{p}, i \geq 1\right)$, divides $\sigma\left((x-j)^{h_{0 j}}\right)$. So we may put:

$$
\begin{aligned}
& \sigma\left((x-j)^{h_{0 j}}\right)=\prod_{l=0}^{p-1}(x-l)^{\alpha_{l}^{0 j 0}}, \\
& \sigma\left(\left(x-a_{1}-j\right)^{h_{1 j}}\right)=\prod_{l=0}^{p-1}(x-l)^{\alpha_{l}^{1 j 0}}\left(x-a_{1}-l\right)^{\alpha_{l}^{1 j 1}} \cdots\left(x-a_{r}-l\right)^{\alpha_{l}^{1 j r}} \\
& \vdots \\
& \sigma\left(\left(x-a_{r}-j\right)^{h_{r j}}\right)=\prod_{l=0}^{p-1}(x-l)^{\alpha_{l}^{r j 0}}\left(x-a_{1}-l\right)^{\alpha_{l}^{r j 1}} \cdots\left(x-a_{r}-l\right)^{\alpha_{l}^{r j r}} .
\end{aligned}
$$

Hence, by considering degrees, we obtain, for any $j \in\{0, \ldots, p-1\}$:

$$
h_{0 j}=\sum_{l=0}^{p-1} \alpha_{l}^{0 j 0}, h_{i j}=\sum_{l=0}^{p-1}\left(\alpha_{l}^{i j 0}+\cdots+\alpha_{l}^{i j r}\right) \text { if } 1 \leq i \leq r .
$$

Since $\sigma(A)=A$, by comparing exponent of $x-a_{i}-l$ in $\sigma(A)$ and in A, we get for any i, l :

$$
h_{0 l}=\sum_{j=0}^{p-1}\left(\alpha_{l}^{0 j 0}+\alpha_{l}^{1 j 0}+\cdots+\alpha_{l}^{r j 0}\right), h_{i l}=\sum_{j=0}^{p-1}\left(\alpha_{l}^{1 j i}+\cdots+\alpha_{l}^{r j i}\right) \text { if } 1 \leq i \leq r .
$$

We can deduce that:

$$
\begin{aligned}
& \sum_{j=0}^{p-1} \sum_{l=0}^{p-1} \alpha_{l}^{0 j 0}=\sum_{j=0}^{p-1} h_{0 j}=\sum_{l=0}^{p-1} h_{0 l}=\sum_{l=0}^{p-1} \sum_{j=0}^{p-1}\left(\alpha_{l}^{0 j 0}+\cdots+\alpha_{l}^{r j 0}\right) \\
& \sum_{j=0}^{p-1} \sum_{l=0}^{p-1}\left(\alpha_{l}^{1 j 0}+\cdots+\alpha_{l}^{1 j r}\right)=\sum_{j=0}^{p-1} h_{1 j}=\sum_{l=0}^{p-1} h_{1 l}=\sum_{l=0}^{p-1} \sum_{j=0}^{p-1}\left(\alpha_{l}^{1 j 1}+\cdots+\alpha_{l}^{r j 1}\right) \\
& \vdots \\
& \sum_{j=0}^{p-1} \sum_{l=0}^{p-1}\left(\alpha_{l}^{r j 0}+\cdots+\alpha_{l}^{r j r}\right)=\sum_{j=0}^{p-1} h_{r j}=\sum_{l=0}^{p-1} h_{r l}=\sum_{l=0}^{p-1} \sum_{j=0}^{p-1}\left(\alpha_{l}^{1 j r}+\cdots+\alpha_{l}^{r j r}\right)
\end{aligned}
$$

Thus:

$$
\begin{aligned}
\sum_{j=0}^{p-1}\left(h_{1 j}+\cdots+h_{r j}\right) & =\sum_{j=0}^{p-1} \sum_{l=0}^{p-1}\left(\left(\alpha_{l}^{1 j 0}+\cdots+\alpha_{l}^{1 j r}\right)+\cdots+\left(\alpha_{l}^{r j 0}+\cdots+\alpha_{l}^{r j r}\right)\right) \\
& =\sum_{j=0}^{p-1} \sum_{l=0}^{p-1}\left(\left(\alpha_{l}^{1 j 1}+\cdots+\alpha_{l}^{r j 1}\right)+\cdots+\left(\alpha_{l}^{1 j r}+\cdots+\alpha_{l}^{r j r}\right)\right)
\end{aligned}
$$

It follows that:

$$
\sum_{j=0}^{p-1} \sum_{l=0}^{p-1}\left(\alpha_{l}^{1 j 0}+\cdots+\alpha_{l}^{r j 0}\right)=0
$$

so that:

$$
\alpha_{l}^{1 j 0}=\cdots=\alpha_{l}^{r j 0}=0, \text { for any } j, l .
$$

Therefore, we have $\sigma\left(\prod_{j=0}^{p-1}(x-j)^{h_{0 j}}\right)=\prod_{j=0}^{p-1}(x-j)^{h_{0 j}}$ and we are done.
Using Lemmas 2.6 and 2.7, we immediately obtain:
Corollary 2.8. For any $r \in \mathbb{N}^{*}$, the splitting polynomial $A=\prod_{j=0}^{p-1} \prod_{i=0}^{r}\left(x-a_{i}-j\right)^{N_{i j} p^{n_{i j}}-1}$ is perfect over \mathbb{F}_{q} whenever for all $0 \leq i \leq r, N_{i j}=N_{i l}, n_{i j}=n_{i l}$ for all $j, l \in \mathbb{F}_{p}$.

Lemma 2.9. If a prime number v divides $p^{p}-1$ then either $(v \equiv 1 \bmod p)$ or $(p \equiv 1 \bmod v)$.

Lemma 2.10. For any odd integer t, the integer $1+t p$ does not divide $p^{p}-1$.
Proof. Put $m=1+t p$ and $f(p)=p^{p}-1$. Assume that m divides $f(p)$. Then $m=n_{1} n_{2}$ where n_{1} divides $m_{1}=p-1$ and n_{2} divides $m_{2}=1+p+\cdots+p^{p-1}$. It is well known and it is easy to prove that $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$. So,

$$
\text { (1) : } e=\operatorname{gcd}\left(n_{1}, n_{2}\right)=1 \text {. }
$$

Now, each prime factor v of n_{2} divides m_{2}, so that $v \equiv 1 \bmod p$, by Lemma 2.9. It follows that $n_{2} \equiv 1 \bmod p$. Moreover, clearly $m \equiv 1 \bmod p$. Thus:

$$
(2): n_{1} \equiv 1 \quad \bmod p
$$

Observe that m_{2} is odd and m is even, since p and t are both odd. Thus, n_{2} is odd and n_{1} is even since $m=n_{1} n_{2}$.
By (2), we may write: $n_{1}=1+s p$, with $s \geq 0$. If $s=0$, then $n_{1}=1$. This is impossible since n_{1} is even. So, $s \geq 1$ and we get:

$$
n_{1}=1+s p \geq 1+p>p-1=m_{1} .
$$

This is impossible since n_{1} is a positive divisor of m_{1}. This proves the result.

3. Proof of Theorem 1.1

We recall that we use Notation 2.5 for a splitting perfect polynomial.
3.1. Case (i). If $N_{i j}$ divides $p-1$ for all $0 \leq i \leq r$ and for all $j \in \mathbb{F}_{p}$, then we can apply Lemma 2.7. So, the polynomials $B=\prod_{j=0}^{p-1} \prod_{i=1}^{r}\left(x-a_{i}-j\right)^{h_{i j}}$ and $A_{0}=\prod_{j=0}^{p-1}\left(x-a_{0}-j\right)^{h_{0 j}}$ are both perfect. We remark that $\omega(B)=r p$. So the result follows by induction on r.
If there exist $1 \leq i_{1} \leq r$ and $j_{1} \in \mathbb{F}_{p}$ such that $N_{i_{1} j_{1}}=N$ does not divide $p-1$, then there exist $i_{2} \geq 1$ and $j_{2} \in \mathbb{F}_{p}$ such that the monomial $x-a_{i_{2}}-j_{2}$ divides $x^{N}-1$. So, the monomial $x-a_{i_{1}}-j_{1}-a_{i_{2}}-j_{2}$ divides $\sigma\left(\left(x-a_{i_{1}}-j_{1}\right)^{h_{i_{1} j_{1}}}\right)$ and thus divides $\sigma(A)=A$. So, either $\left(a_{i_{1}}+a_{i_{2}} \in \mathbb{F}_{p}\right)$ or (there exists $1 \leq u \leq r$ such that $\left.a_{i_{1}}+a_{i_{2}}-a_{u} \in \mathbb{F}_{p}\right)$. It is impossible by hypothesis.
3.2. Case (ii) with $w(A) \leq 2 p$. - Case $w(A)=p$

It is immediate from Lemma 2.6.

- Case $w(A)=2 p$

Such polynomial may be of the form: $A=A_{0} A_{1}=\prod_{j=0}^{p-1}(x-j)^{h_{0 j}} \prod_{j=0}^{p-1}\left(x-a_{1}-j\right)^{h_{1 j}}$.

We have two cases:
Case 1: If either (for all $j, N_{0 j} \mid p-1$) or (for all $j, N_{1 j} \mid p-1$), then by Lemma 2.7, A_{0} and A_{1} are both perfect, with $\omega\left(A_{0}\right)=\omega\left(A_{1}\right)=p$. The result follows from previous case.
Case 2: If there exist $j, l \in \mathbb{F}_{p}$ such that $N_{0 j}$ and $N_{1 l}$ do not divide $p-1$ then, we have:

$$
\begin{aligned}
& 1+\cdots+(x-j)^{h_{0 j}}=\frac{1}{x-j-1}\left((x-j)^{N_{0 j}}-1\right)^{p^{n_{0 j}}} \\
& 1+\cdots+\left(x-a_{1}-l\right)^{N_{1 l}}=\frac{1}{x-a_{1}-l-1}\left(\left(x-a_{1}-l\right)^{N_{1 l}}-1\right)^{p^{n_{1 l}}}
\end{aligned}
$$

Put:

$$
d_{j}=\operatorname{gcd}\left(N_{0 j}, p-1\right), d_{l}=\operatorname{gcd}\left(N_{1 l}, p-1\right), \gamma_{0}, \gamma_{1} \notin \mathbb{F}_{p}, \gamma_{0}^{N_{0 j}}=\gamma_{1}^{N_{1 l}}=1
$$

Then, the orbit of γ_{0} contains exactly p elements and we have: $N_{0 j}=d_{j}+p$.
It follows that: $1 \equiv p \equiv N_{j} \equiv 0 \quad \bmod d_{j}$, so $d_{j}=1$ and $N_{0 j}=1+p$.
Analogously, we obtain: $N_{1 l}=1+p$.
But, by Lemma 2.10, $1+p$ does not divide $q-1$. It is impossible.
3.3. Case $w(A) \geq 3 p$. We need the following lemmas.

Lemma 3.1. Let A be a splitting perfect polynomial with $\omega(A)=(r+1) p$. If $(x-a)^{N p^{m}-1}$ divides A and if N does not divide $p-1$, then $N=d+\lambda p$, where $d=\operatorname{gcd}(N, p-1), \lambda \equiv 0 \bmod d$ and $1 \leq \lambda \leq r$.

Proof. If $N=d d_{1}$, where d_{1} divides $\frac{p^{p}-1}{p-1}$, then, by Lemma 2.9, d_{1} is congruent to 1 modulo p, so that $d_{1}=1+\mu p$. Thus, $N=d d_{1}=d+\mu d p$ has the claimed form. Put $\lambda=\mu d$. We have:

$$
d+\lambda p=\omega\left((x-a)^{N p^{m}-1}\right) \leq \omega(A)=(r+1) p, \text { where } d \geq 1
$$

We conclude that: $1 \leq \lambda \leq r$.
Lemma 3.2. i) If 3 divides $p^{p}-1$ then $p \equiv 1 \bmod 3$.
ii) If $d=\operatorname{gcd}(1+2 p, p-1)$, then $d \in\{1,3\}$.
iii) If $1+2 p$ divides $p^{p}-1$ then $p \equiv 2 \bmod 3$ and $\operatorname{gcd}(1+2 p, p-1)=1$.
iv) If $1+4 p$ divides $p^{p}-1$ then either $(p=3)$ or $(p \equiv 1 \bmod 3)$.
$v)$ The integers $1+2 p$ and $1+4 p$ do not simultaneously divide $p^{p}-1$.
Proof. i): by Lemma 2.9 , since $3 \not \equiv 1 \bmod p$.
ii): the integer d must divide $1+2 p+p-1=3 p$ and $d \neq p$. We get the result.
iii): If $p \equiv 1 \bmod 3$, then by ii), we have: $\operatorname{gcd}(1+2 p, p-1)=3$. Any prime divisor
$r \neq 3$ of $1+2 p$ divides $p^{p}-1$, so $r \equiv 1 \bmod p$, since r does not divide $p-1$. Thus, we may write:

$$
1+2 p=3(1+u p), \text { for some integer } u
$$

Hence: $1 \equiv 1+2 p=3(1+u p) \equiv 3 \bmod p$. It is impossible. We are done. If $p=3$, we see that $7=1+2 p$ does not divide $26=p^{p}-1$.
iv): If $p \equiv 2 \bmod 3$, then 3 divides $1+4 p$ and $p^{p}-1$, so $p \equiv 1 \bmod 3$ by i). It is impossible.
v): by iii) and iv).

The following lemma gives the possible forms of $h_{i j}=N_{i j} p^{n_{i j}}-1$.

Lemma 3.3. Let A be a splitting perfect polynomial, with $w(A)=(r+1) p$, and $(x-a)^{N p^{m}-1}$ a monomial dividing A such that N does not divide $p-1$: if $r \in\{2,3\}$, then $N=1+2 p$, if $r \in\{4,5\}$, then either $(N \in\{1+2 p, 2+4 p\})$ or $(N=1+4 p)$.

Proof. If N does not divide $p-1$, then by Lemma 3.1, $N=d+\lambda p$, where $d=\operatorname{gcd}(N, p-1), 1 \leq \lambda \leq r, d \mid \lambda$.
If $r=2$, then $1 \leq \lambda \leq 2$.
If $\lambda=1$, then $N=1+p$ which does not divide $p^{p}-1$ by Lemma 2.10.
If $\lambda=2$, then $N \in\{1+2 p, 2+2 p\}$. If $N=2+2 p$, then $1+p$ divides $p^{p}-1$. It is impossible by Lemma 2.10.
If $r=3$, then $1 \leq \lambda \leq 3$.
If $\lambda \leq 2$, then $N=1+2 p$.
If $\lambda=3$, then $N \in\{1+3 p, 3+3 p\}$. Thus, either $1+3 p$ or $1+p$ divides $p^{p}-1$. It is impossible by Lemma 2.10.
If $r=4$, then $1 \leq \lambda \leq 4$.
If $\lambda \leq 3$, then $N=1+2 p$.
If $\lambda=4$, then $N \in\{1+4 p, 2+4 p, 4+4 p\}$. We can exclude the case $N=4+4 p$ since $1+p$ does not divide $p^{p}-1$. Furthermore, by Lemma 3.2, the integers $1+4 p$ and $1+2 p$ do not simultaneously divide $p^{p}-1$.
If $r=5$, then $1 \leq \lambda \leq 5$.
If $\lambda \leq 4$, then either $(N \in\{1+2 p, 2+4 p\})$ or $(N=1+4 p)$.
If $\lambda=5$, then $N \in\{1+5 p, 5+5 p\}$. We can exclude this case since, by Lemma 2.10, $1+5 p$ and $1+p$ do not divide $p^{p}-1$. We are done.
3.3.1. Case (ii) and $\omega(A)=3 p$. Such polynomial is of the form:

$$
A=A_{0} A_{1} A_{2}=\prod_{j=0}^{p-1}(x-j)^{h_{0 j}} \prod_{j=0}^{p-1}\left(x-a_{1}-j\right)^{h_{1 j}} \prod_{j=0}^{p-1}\left(x-a_{2}-j\right)^{h_{2 j}}
$$

Case 1: If there exists $i \in\{0,1,2\}$ such that for all $j, N_{i j} \mid p-1$, then, we may suppose $i=0$. So, by Lemma 2.7, A_{0} and $A_{1} A_{2}$ are both perfect. It follows by section 3.2, that A_{0} and $B=A_{1} A_{2}$ are both trivially perfect.
Case 2: If there exist $j_{0}, j_{1}, j_{2} \in \mathbb{F}_{p}$ such that $N_{0 j_{0}}, N_{1 j_{1}}$ and $N_{2 j_{2}}$ do not divide $p-1$ then, by lemma 3.3, we must have: $N_{0 j_{0}}=N_{1 j_{1}}=N_{2 j_{2}}=1+2 p=N$. Since the only monomials which interfere are: $x-j, x-a_{1}-j$ and $x-a_{2}-j$, for $j \in \mathbb{F}_{p}$, we can write:

$$
x^{N}-1=(x-1) \prod_{j=0}^{p-1}\left(x-a_{1}-j\right)\left(x-a_{2}-j\right)
$$

Thus, for some $l \in \mathbb{F}_{p}$, the monomials $x-2 a_{1}-j-l, x-a_{1}-a_{2}-j-l$ must divide $\sigma(A)=A$, since they divide $\sigma\left(\left(x-a_{1}-l\right)^{h_{1 l}}\right)$. Analogously, for some $s \in \mathbb{F}_{p}$, the monomials $x-2 a_{2}-j-s, x-a_{1}-a_{2}-j-s$ must divide A. So, we must have: $2 a_{1}-a_{2}, 2 a_{2}-a_{1}, a_{1}+a_{2} \in \mathbb{F}_{p}$. It follows that $3 a_{1}, 3 a_{2} \in \mathbb{F}_{p}$. So, $p=3$. But, in this case $N=1+2 p=7$ does not divide $26=p^{p}-1$. We are done.
3.3.2. Convention. We consider the quotient space $\mathbb{F}_{q} / \mathbb{F}_{p}$. For $b_{1}, \ldots, b_{m} \in \mathbb{F}_{q} / \mathbb{F}_{p}$, we write: $b_{1} \cdots b_{m}=0$ to mean that at least one of the b_{j} 's equals 0 .
Furthermore, we denote in the same manner an element a of \mathbb{F}_{q} and its class \bar{a} modulo \mathbb{F}_{p}.
3.3.3. Case (ii) and $w(A)=4 p$. Such polynomial is of the form: $A=A_{0} A_{1} A_{2} A_{3}=$ $A_{0} B$.
Case 1: If there exists i (say $i=0$) such that for all $j, N_{0 j} \mid p-1$, then, by Lemma 2.7, A_{0} and B are both perfect, and by Sections 3.2 and 3.3.1, they are both trivially perfect.
Case 2: If there exist $j_{0}, \ldots, j_{3} \in \mathbb{F}_{p}$ such that $N_{0 j_{0}}, \ldots, N_{3 j_{3}}$ do not divide $p-1$.
Thus, by Lemma 3.3, we must have: $N_{0 j_{0}}=\cdots=N_{3 j_{3}}=1+2 p=N$.
Therefore, there exist $a, b \in\left\{a_{1}, a_{2}, a_{3}\right\}$ and $j_{a}, j_{b} \in \mathbb{F}_{p}$, such that $a \neq b$ and the monomials $x-a-j_{a}$ and $x-b-j_{b}$ divide $x^{N}-1$.
So, for $1 \leq i \leq 3$, the monomials $x-a_{i}-j_{i}-a-j_{a}$ and $x-a_{i}-j_{i}-b-j_{b}$ divide $\sigma\left(\left(x-a_{i}-j_{i}\right)^{h_{i j_{i}}}\right)$ and hence divide A.
Therefore, $a_{i}+a, a_{i}+b, a_{i}+a-a_{r_{i}}, a_{i}+b-a_{s_{i}} \in \mathbb{F}_{p}$, for some $r_{i}, s_{i} \in\{1,2,3\}$.

We may suppose $a=a_{1}, b=a_{2}$, so the following conditions must be satisfied:

$$
\left\{\begin{array}{l}
\left(2 a_{1}-a_{2} \in \mathbb{F}_{p}\right) \text { or }\left(2 a_{1}-a_{3} \in \mathbb{F}_{p}\right) \\
\left(2 a_{2}-a_{1} \in \mathbb{F}_{p}\right) \text { or }\left(2 a_{2}-a_{3} \in \mathbb{F}_{p}\right) \\
\left(a_{1}+a_{2} \in \mathbb{F}_{p}\right) \text { or }\left(a_{1}+a_{2}-a_{3} \in \mathbb{F}_{p}\right) \\
\left(a_{1}+a_{3} \in \mathbb{F}_{p}\right) \text { or }\left(a_{1}+a_{3}-a_{2} \in \mathbb{F}_{p}\right) \\
\left(a_{2}+a_{3} \in \mathbb{F}_{p}\right) \text { or }\left(a_{2}+a_{3}-a_{1} \in \mathbb{F}_{p}\right)
\end{array}\right.
$$

By Convention 3.3.2, we obtain the following system of equations with unknowns $a_{1}, a_{2}, a_{3} \in \mathbb{F}_{q} / \mathbb{F}_{p}, a_{1} \neq a_{2} \neq a_{3}:$

$$
(\circ):\left\{\begin{array}{l}
\left(2 a_{1}-a_{2}\right)\left(2 a_{1}-a_{3}\right)=0 \\
\left(2 a_{2}-a_{1}\right)\left(2 a_{2}-a_{3}\right)=0 \\
\left(a_{1}+a_{2}\right)\left(a_{1}+a_{2}-a_{3}\right)=0 \\
\left(a_{1}+a_{3}\right)\left(a_{1}+a_{3}-a_{2}\right)=0 \\
\left(a_{2}+a_{3}\right)\left(a_{2}+a_{3}-a_{1}\right)=0
\end{array}\right.
$$

which is impossible by Lemma 3.4. We are done.
Lemma 3.4. System (○) has no distinct solutions in $\mathbb{F}_{q} / \mathbb{F}_{p}$.
Proof. : If $a_{1}, a_{2}, a_{3} \in \mathbb{F}_{q} / \mathbb{F}_{p}$ satisfy this system, then any possible case leads to contradiction:

Case $2 a_{1}-a_{2}=0$
if $2 a_{2}-a_{1}=0$ then we have: $3\left(a_{1}-a_{2}\right)=0 \in \mathbb{F}_{p}$, so $p=3$. Thus, $N=1+2 p=7$ does not divide $26=p^{p}-1$. It is impossible.
if $2 a_{2}-a_{3}=0$ then $2 a_{1}+a_{2}-a_{3}=0$. Thus $a_{1}+a_{2} \neq 0$, since $a_{1}-a_{3} \neq 0$. So we must have $a_{1}+a_{2}-a_{3}=0$.
Therefore, $a_{1}=\left(2 a_{1}+a_{2}-a_{3}\right)-\left(a_{1}+a_{2}-a_{3}\right)=0$. It is impossible.

Case $2 a_{1}-a_{3}=0$
if $2 a_{2}-a_{1}=0$ then $a_{1}+2 a_{2}-a_{3}=0$. Thus $a_{1}+a_{2} \neq 0$, since $a_{2}-a_{3} \neq 0$.
So we must have $a_{1}+a_{2}-a_{3}=0$.
Therefore, $a_{2}=\left(2 a_{2}+a_{1}-a_{3}\right)-\left(a_{1}+a_{2}-a_{3}\right)=0$. It is impossible.
if $2 a_{2}-a_{3}=0$ then $2\left(a_{1}-a_{2}\right)=0$. It is impossible.
3.3.4. Case (ii) and $w(A)=5 p$. Case 1: If there exists i (say $i=0$) such that for all $j, N_{0 j} \mid p-1$, then, by Lemma 2.7, A_{0} and $B=A_{1} \cdots A_{4}$ are both perfect and thus trivially perfect.
Case 2: If there exist $j_{0}, \ldots, j_{4} \in \mathbb{F}_{p}$ such that $N_{0 j_{0}}, \ldots, N_{4 j_{4}}$ do not divide $p-1$. Thus, by Lemma 3.3, we must have: either ($N_{0 j_{0}}=\cdots=N_{4 j_{4}}=1+4 p$) or $\left(N_{0 j_{0}}, \ldots, N_{4 j_{4}} \in\{1+2 p, 2+4 p\}\right)$.

Case 21:

If $N_{0 j_{0}}=\cdots=N_{4 j_{4}}=1+4 p=N$, then there exist $l_{1}, \ldots, l_{4} \in \mathbb{F}_{p}$ such that the four monomials $x-a_{i}-l_{i}, 1 \leq i \leq 4$, divide $x^{N}-1$.
Moreover, $p \neq 5$ since $1+4 p$ must divide $p^{p}-1$.
As in the proof in Section 3.3.3, for all $i \in\{1, \ldots, 4\}$, there exist $l_{i}, k_{i}, t_{i} \in\{1, \ldots, 4\}$ such that:

$$
\left\{\begin{array}{l}
\left(2 a_{i}-a_{l_{i}} \in \mathbb{F}_{p}\right) \\
\left(a_{i}+a_{k_{i}} \in \mathbb{F}_{p}\right) \text { or }\left(a_{i}+a_{k_{i}}-a_{t_{i}} \in \mathbb{F}_{p}\right) .
\end{array}\right.
$$

We observe that a_{1}, \ldots, a_{4} play symmetric roles, and we use Convention 3.3.2, so we can reduce to the following system of equations:

$$
(*):\left\{\begin{array}{l}
2 a_{1}-a_{2}=0 \\
\left(2 a_{2}-a_{1}\right)\left(2 a_{2}-a_{3}\right)=0 \\
\left(2 a_{3}-a_{1}\right)\left(2 a_{3}-a_{2}\right)\left(2 a_{3}-a_{4}\right)=0 \\
\left(2 a_{4}-a_{1}\right)\left(2 a_{4}-a_{2}\right)\left(2 a_{4}-a_{3}\right)=0 \\
\left(a_{1}+a_{2}\right)\left(a_{1}+a_{2}-a_{3}\right)\left(a_{1}+a_{2}-a_{4}\right)=0 \\
\left(a_{1}+a_{3}\right)\left(a_{1}+a_{3}-a_{2}\right)\left(a_{1}+a_{3}-a_{4}\right)=0 \\
\left(a_{1}+a_{4}\right)\left(a_{1}+a_{4}-a_{2}\right)\left(a_{1}+a_{4}-a_{3}\right)=0 \\
\left(a_{2}+a_{3}\right)\left(a_{2}+a_{3}-a_{1}\right)\left(a_{2}+a_{3}-a_{4}\right)=0 \\
\left(a_{2}+a_{4}\right)\left(a_{2}+a_{4}-a_{1}\right)\left(a_{2}+a_{4}-a_{3}\right)=0 \\
\left(a_{3}+a_{4}\right)\left(a_{3}+a_{4}-a_{1}\right)\left(a_{3}+a_{4}-a_{2}\right)=0
\end{array}\right.
$$

which is impossible by Lemma 3.5.

Case 22:
If $N_{0 j_{0}}, \ldots, N_{4 j_{4}} \in\{1+2 p, 2+4 p\}=\{N, 2 N\}$, then there exist $a, b \in\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $j_{a}, j_{b} \in \mathbb{F}_{p}$, such that the monomials $x-a-j_{a}$ and $x-b-j_{b}$ divide $x^{N}-1$. So, for $1 \leq i \leq 4$, the monomials $x-a_{i}-j_{i}-a-j_{a}$ and $x-a_{i}-j_{i}-b-j_{b}$ divide $\sigma\left(\left(x-a_{i}-j_{i}\right)^{h_{i j_{i}}}\right)$ and A.

As in the proof of Proposition 3.3.3, we may suppose $a=a_{1}, b=a_{2}$. Moreover, a_{1} and a_{2} (resp. a_{3} and a_{4}) play symmetric roles. So, the following conditions must be satisfied:

$$
(* *):\left\{\begin{array}{l}
\left(2 a_{1}-a_{2}\right)\left(2 a_{1}-a_{3}\right)=0 \\
\left(2 a_{2}-a_{1}\right)\left(2 a_{2}-a_{3}\right)\left(2 a_{2}-a_{4}\right)=0 \\
\left(a_{1}+a_{2}\right)\left(a_{1}+a_{2}-a_{3}\right)\left(a_{1}+a_{2}-a_{4}\right)=0 \\
\left(a_{1}+a_{3}\right)\left(a_{1}+a_{3}-a_{2}\right)\left(a_{1}+a_{3}-a_{4}\right)=0 \\
\left(a_{1}+a_{4}\right)\left(a_{1}+a_{4}-a_{2}\right)\left(a_{1}+a_{4}-a_{3}\right)=0 \\
\left(a_{2}+a_{3}\right)\left(a_{2}+a_{3}-a_{1}\right)\left(a_{2}+a_{3}-a_{4}\right)=0 \\
\left(a_{2}+a_{4}\right)\left(a_{2}+a_{4}-a_{1}\right)\left(a_{2}+a_{4}-a_{3}\right)=0 .
\end{array}\right.
$$

Lemma 3.6 implies that $p=5$. Hence, we have modulo \mathbb{F}_{p} :

$$
\text { either }\left(a_{2}=2 a_{1}, a_{3}=-a_{1}, a_{4}=-2 a_{1}\right) \text { or }\left(a_{2}=-a_{1}, a_{3}=2 a_{1}, a_{4}=-2 a_{1}\right) .
$$

If $N=1+2 p=11$, then:

$$
x^{N}-1=(x-1) \prod_{j=0}^{p-1}\left(x-a_{1}-j\right)\left(x-a_{2}-j\right), \text { where } a_{2}=2 a_{1} \text { or } a_{2}=-a_{1}
$$

Put: $\Lambda_{1}=\left\{b \in \mathbb{F}_{q} / \mathbb{F}_{p}:(x+b)\right.$ divides $\left.x^{11}-1\right\}$.
For all $b, c \in \Lambda_{1}$, we see that either $\left(b+2 c \in \mathbb{F}_{p}\right)$ or $\left(b+c \in \mathbb{F}_{p}\right)$.
By computations, if $\alpha \in \mathbb{F}_{q}$ such that $\alpha^{p}-\alpha-1=0$, then $b_{1}=\alpha^{4}+3 \alpha^{3}+\alpha^{2}+2 \alpha+4$ and $c_{1}=3 \alpha^{4}+4 \alpha^{3}+3 \alpha^{2}+3 \alpha+2$ belong to Λ_{1}, but $b_{1}+2 c_{1}, b_{1}+c_{1} \notin \mathbb{F}_{p}$. It is impossible.

If $N=2+4 p=22$, then:

$$
x^{N}-1=(x-1)(x+1) \prod_{j=0}^{p-1}\left(x-a_{1}-j\right)\left(x+a_{1}-j\right)\left(x-2 a_{1}-j\right)\left(x+2 a_{1}-j\right)
$$

Put: $\Lambda_{2}=\left\{b \in \mathbb{F}_{q} / \mathbb{F}_{p}:(x+b)\right.$ divides $\left.x^{22}-1\right\}$.
We see that, for all $b, c \in \Lambda_{2}$, one of the following conditions must hold: $b+c \in \mathbb{F}_{p}$, $b+2 c \in \mathbb{F}_{p}, b-2 c \in \mathbb{F}_{p}$.
But the elements b_{1} and c_{1} defined above do not satisfy that condition.
We are done.

Lemma 3.5. The system of equations ($*$) has no distinct solutions in $\mathbb{F}_{q} / \mathbb{F}_{p}$.
Proof. First of all, recall that in this lemma, $p \neq 5$. We may consider only the following cases:
(i): $2 a_{1}-a_{2}=0,2 a_{2}-a_{1}=0$,
(ii): $2 a_{1}-a_{2}=0,2 a_{2}-a_{3}=0$.

Case (i):
In that case, we have: $3\left(a_{1}-a_{2}\right)=0$, so $p=3$. Moreover, $a_{1}+a_{2}=0$.
Thus, $a_{1}+a_{3}, a_{1}+a_{4}, a_{2}+a_{3}, a_{2}+a_{4} \neq 0$.
We have: $a_{1}+a_{3}-a_{2} \neq 0$, since $\left(a_{1}+a_{3}-a_{2}\right)+\left(a_{1}+a_{2}\right)=2 a_{1}+a_{3}=a_{3}-a_{1} \neq 0$.
So, $a_{1}+a_{3}-a_{4}=0$.
Therefore:

- if $a_{1}+a_{4}-a_{2}=0$, then $2 a_{1}+2 a_{2}+a_{3}=0$, so $a_{3}=0$. It is impossible.
- if $a_{1}+a_{4}-a_{3}=0$, then $2 a_{1}=0$. It is impossible.

Case (ii):

We have: $a_{1}+a_{2}-3 a_{1}=0$.
If $p=3$, then $a_{1}+a_{2}=0$, and $a_{2}+a_{3}=0$. It is impossible since $a_{1}-a_{3} \neq 0$.
Thus, $p \neq 3$, and $a_{1}+a_{2}, a_{2}+a_{3} \neq 0$.
Since, $a_{1}+a_{2}-a_{3}=a_{1}-a_{2} \neq 0$, we have: $a_{1}+a_{2}-a_{4}=0$. So $a_{4}-3 a_{1}=0$ and $a_{2}+a_{4}=5 a_{1} \neq 0$. Therefore, we have either $\left(a_{2}+a_{4}-a_{1}=0\right)$ or $\left(a_{2}+a_{4}-a_{3}=0\right)$. It follows that: $a_{1}=0$, which is impossible.

Lemma 3.6. If $p \neq 5$, then the system of equations ($* *$) has no distinct solutions in $\mathbb{F}_{q} / \mathbb{F}_{p}$.

Proof. We may consider only the following cases:
(i): $2 a_{1}-a_{2}=0,2 a_{2}-a_{1}=0$,
(ii): $2 a_{1}-a_{2}=0,2 a_{2}-a_{3}=0$,
(iii): $2 a_{1}-a_{3}=0,2 a_{2}-a_{1}=0$,
(iv): $2 a_{1}-a_{3}=0,2 a_{2}-a_{3}=0$,
(v): $2 a_{1}-a_{3}=0,2 a_{2}-a_{4}=0$.

Case (i):
In that case, we have: $3\left(a_{1}-a_{2}\right)=0$, so $p=3$. Thus, $N=1+2 p=7$ does not divide $26=p^{p}-1$. It contradicts the fact: N divides $q-1=p^{p}-1$.

Case (ii):
According to the proof of Lemma 3.4, we must have: $a_{1}+a_{2}-a_{4}=0$, in particular,
$a_{1}+a_{2} \neq 0$. We obtain the following equalities:

$$
\begin{aligned}
& 2 a_{1}-a_{2}=0,2 a_{2}-a_{3}=0, a_{1}+a_{2}-a_{4}=0, a_{1}+a_{4}-a_{3}=0, \\
& a_{2}+a_{3}-a_{1}=0, a_{2}+a_{4}=0, a_{1}+a_{3}=0 .
\end{aligned}
$$

Thus, $a_{3}=2 a_{2}=4 a_{1}, a_{3}=a_{1}-a_{2}=-a_{1}$. So, $5 a_{1}=0$. It is impossible since $p \neq 5$.
Case (iii): It is similar to the previous case (ii), since a_{1} and a_{2} play symmetric roles.

Case (iv): We have: $2\left(a_{1}-a_{2}\right)=0$. It is impossible.

Case (v): We have: $a_{1}+a_{2}-a_{3}, a_{1}+a_{2}-a_{4} \neq 0$, since $a_{1}-a_{2} \neq 0$. So, $a_{1}+a_{2}=0$.
Therefore, $a_{3}+a_{4}=2\left(a_{1}+a_{2}\right)=0$, and $a_{1}+a_{3}, a_{1}+a_{4}, a_{2}+a_{3}, a_{2}+a_{4} \neq 0$.
There are two possibilities:

- $a_{1}+a_{3}-a_{2}=0$. It implies: $2 a_{1}+a_{3}=a_{1}+a_{2}+a_{1}+a_{3}-a_{2}=0$ and thus $4 a_{1}=2 a_{1}-a_{3}+2 a_{1}+a_{3}=0$. It is impossible.
- $a_{1}+a_{3}-a_{4}=0$. It implies: $a_{1}+2 a_{3}=\left(a_{1}+a_{3}-a_{4}\right)+\left(a_{3}+a_{4}\right)=0$ and thus $5 a_{1}=2\left(2 a_{1}-a_{3}\right)+a_{1}+2 a_{3}=0$. It is possible only if $p=5$.
3.3.5. Case (ii) and $w(A)=6 p$. Case 1: If there exists i such that for all j, $N_{i j} \mid p-1$, then, as in the proof in Section 3.3.4, we conclude that A is trivially perfect.
Case 2: If there exist $j_{0}, \ldots, j_{5} \in \mathbb{F}_{p}$ such that $N_{0 j_{0}}, \ldots, N_{5 j_{5}}$ do not divide $p-1$. Thus, by Lemma 3.3, we must have: either ($N_{0 j_{0}}=\cdots=N_{5 j_{5}}=1+4 p$) or $\left(N_{0 j_{0}}, \ldots, N_{5 j_{5}} \in\{1+2 p, 2+4 p\}\right)$.
Case 21: $N_{0 j_{0}}=\cdots=N_{5 j_{5}}=1+4 p=N$:
In this case, $p \neq 5$ and there exist $l_{1}, \ldots, l_{5} \in \mathbb{F}_{p}$ such that the five monomials $x-a_{i}-l_{i}, 1 \leq i \leq 5$, divide $x^{N}-1$. So, as in the proof in Section 3.3.3, for all $i \in\{1, \ldots, 5\}$, there exist $l_{i}, k_{i}, t_{i} \in\{1, \ldots, 5\}$ such that:

$$
\left\{\begin{array}{l}
\left(2 a_{i}-a_{l_{i}} \in \mathbb{F}_{p}\right) \\
\left(a_{i}+a_{k_{i}} \in \mathbb{F}_{p}\right) \text { or }\left(a_{i}+a_{k_{i}}-a_{t_{i}} \in \mathbb{F}_{p}\right) .
\end{array}\right.
$$

Since a_{1}, \ldots, a_{5} play symmetric roles, we can reduce, as in the proof in Section 3.3.4, to the following system of equations:

$$
(\bar{*}):\left\{\begin{array}{l}
2 a_{1}-a_{2}=0 \\
\left(2 a_{2}-a_{1}\right)\left(2 a_{2}-a_{3}\right)=0 \\
\left(2 a_{3}-a_{1}\right)\left(2 a_{3}-a_{2}\right)\left(2 a_{3}-a_{4}\right)\left(2 a_{3}-a_{5}\right)=0 \\
\left(2 a_{4}-a_{1}\right)\left(2 a_{4}-a_{2}\right)\left(2 a_{4}-a_{3}\right)\left(2 a_{4}-a_{5}\right)=0 \\
\left(2 a_{5}-a_{1}\right)\left(2 a_{5}-a_{2}\right)\left(2 a_{5}-a_{3}\right)\left(2 a_{5}-a_{4}\right)=0 \\
\left(a_{1}+a_{2}\right)\left(a_{1}+a_{2}-a_{3}\right)\left(a_{1}+a_{2}-a_{4}\right)\left(a_{1}+a_{2}-a_{5}\right)=0 \\
\left(a_{1}+a_{3}\right)\left(a_{1}+a_{3}-a_{2}\right)\left(a_{1}+a_{3}-a_{4}\right)\left(a_{1}+a_{3}-a_{5}\right)=0 \\
\left(a_{1}+a_{4}\right)\left(a_{1}+a_{4}-a_{2}\right)\left(a_{1}+a_{4}-a_{3}\right)\left(a_{1}+a_{4}-a_{5}\right)=0 \\
\left(a_{1}+a_{5}\right)\left(a_{1}+a_{5}-a_{2}\right)\left(a_{1}+a_{5}-a_{3}\right)\left(a_{1}+a_{5}-a_{4}\right)=0 \\
\left(a_{2}+a_{3}\right)\left(a_{2}+a_{3}-a_{1}\right)\left(a_{2}+a_{3}-a_{4}\right)\left(a_{2}+a_{3}-a_{5}\right)=0 \\
\left(a_{2}+a_{4}\right)\left(a_{2}+a_{4}-a_{1}\right)\left(a_{2}+a_{4}-a_{3}\right)\left(a_{2}+a_{4}-a_{5}\right)=0 \\
\left(a_{2}+a_{5}\right)\left(a_{2}+a_{5}-a_{1}\right)\left(a_{2}+a_{5}-a_{3}\right)\left(a_{2}+a_{5}-a_{4}\right)=0 \\
\left(a_{3}+a_{4}\right)\left(a_{3}+a_{4}-a_{1}\right)\left(a_{3}+a_{4}-a_{2}\right)\left(a_{3}+a_{4}-a_{5}\right)=0 \\
\left(a_{3}+a_{5}\right)\left(a_{3}+a_{5}-a_{1}\right)\left(a_{3}+a_{5}-a_{2}\right)\left(a_{3}+a_{5}-a_{4}\right)=0 \\
\left(a_{4}+a_{5}\right)\left(a_{4}+a_{5}-a_{1}\right)\left(a_{4}+a_{5}-a_{2}\right)\left(a_{4}+a_{5}-a_{3}\right)=0,
\end{array}\right.
$$

which is impossible by Lemma 3.7.

Case 22:
If $N_{0 j_{0}}, \ldots, N_{5 j_{5}} \in\{1+2 p, 2+4 p\}=\{N, 2 N\}$, then there exist $a, b \in\left\{a_{1}, \ldots, a_{5}\right\}$ and $j_{a}, j_{b} \in \mathbb{F}_{p}$, such that the monomials $x-a-j_{a}$ and $x-b-j_{b}$ divide $x^{N}-1$. So, for $1 \leq i \leq 4$, the monomials $x-a_{i}-j_{i}-a-j_{a}$ and $x-a_{i}-j_{i}-b-j_{b}$ divide $\sigma\left(\left(x-a_{i}-j_{i}\right)^{h_{i j_{i}}}\right)$ and A.
As in the proof in Section 3.3.4, we may suppose $a=a_{1}, b=a_{2}$. Moreover, a_{1} and a_{2} (resp. a_{3}, a_{4} and a_{5}) play symmetric roles. So the following conditions must be satisfied:

$$
(\overline{* *}):\left\{\begin{array}{l}
\left(2 a_{1}-a_{2}\right)\left(2 a_{1}-a_{3}\right)=0 \\
\left(2 a_{2}-a_{1}\right)\left(2 a_{2}-a_{3}\right)\left(2 a_{2}-a_{4}\right)=0 \\
\left(a_{1}+a_{2}\right)\left(a_{1}+a_{2}-a_{3}\right)\left(a_{1}+a_{2}-a_{4}\right)\left(a_{1}+a_{2}-a_{5}\right)=0 \\
\left(a_{1}+a_{3}\right)\left(a_{1}+a_{3}-a_{2}\right)\left(a_{1}+a_{3}-a_{4}\right)\left(a_{1}+a_{3}-a_{5}\right)=0 \\
\left(a_{1}+a_{4}\right)\left(a_{1}+a_{4}-a_{2}\right)\left(a_{1}+a_{4}-a_{3}\right)\left(a_{1}+a_{4}-a_{5}\right)=0 \\
\left(a_{1}+a_{5}\right)\left(a_{1}+a_{5}-a_{2}\right)\left(a_{1}+a_{5}-a_{3}\right)\left(a_{1}+a_{5}-a_{4}\right)=0 \\
\left(a_{2}+a_{3}\right)\left(a_{2}+a_{3}-a_{1}\right)\left(a_{2}+a_{3}-a_{4}\right)\left(a_{2}+a_{3}-a_{5}\right)=0 \\
\left(a_{2}+a_{4}\right)\left(a_{2}+a_{4}-a_{1}\right)\left(a_{2}+a_{4}-a_{3}\right)\left(a_{2}+a_{4}-a_{5}\right)=0 \\
\left(a_{2}+a_{5}\right)\left(a_{2}+a_{5}-a_{1}\right)\left(a_{2}+a_{5}-a_{3}\right)\left(a_{2}+a_{5}-a_{4}\right)=0
\end{array}\right.
$$

Lemma 3.8 implies that $p=5$. We get:
either $\left(a_{2}=2 a_{1}, a_{3}=-a_{1}, a_{4}=-2 a_{1}\right)$ or $\left(a_{2}=-a_{1}, a_{3}=2 a_{1}, a_{4}=-2 a_{1}\right)$.

So the line 6 of $(\overline{* *})$ is impossible. We are done.
Lemma 3.7. System $(\bar{*})$ has no distinct solutions in $\mathbb{F}_{q} / \mathbb{F}_{p}$.
Proof. As in the proof of Lemma 3.5, we must have: $p \neq 5$, and we may only consider the following cases:
(i): $2 a_{1}-a_{2}=0,2 a_{2}-a_{1}=0$,
(ii): $2 a_{1}-a_{2}=0,2 a_{2}-a_{3}=0$.

Case (i):
In that case, we have: $3\left(a_{1}-a_{2}\right)=0$, so $p=3$. Moreover, $a_{1}+a_{2}=0$.
Thus, $a_{1}+a_{3}, a_{1}+a_{4}, a_{2}+a_{3}, a_{2}+a_{4}, a_{1}+a_{5}, a_{2}+a_{5} \neq 0$.
According to the proof of Lemma 3.5, case (i), we have either ($a_{1}+a_{3}-a_{4}=0$) or ($a_{1}+a_{3}-a_{5}=0$). Since a_{4} and a_{5} play symmetric roles, we may only consider the first case: $a_{1}+a_{3}-a_{4}=0$.
Still by the proof of Lemma 3.5, it remains this possibility: $a_{1}+a_{4}-a_{5}=0$. So, $a_{2}+a_{3}-a_{5}=0$, and $a_{3}+a_{4}+a_{5}=\left(a_{1}+a_{4}-a_{5}\right)+\left(a_{2}+a_{3}-a_{5}\right)=0$. Thus, $a_{3}+a_{5} \neq 0$.

Furthermore:

$a_{3}+a_{5}-a_{1} \neq 0$ since $\left(a_{3}+a_{4}+a_{5}\right)-\left(a_{3}+a_{5}-a_{1}\right)=a_{1}+a_{4} \neq 0$,
$a_{3}+a_{5}-a_{2} \neq 0$ since $a_{2}+a_{4} \neq 0$,
$a_{3}+a_{5}-a_{4} \neq 0$ since $2 a_{4}=\left(a_{3}+a_{5}+a_{4}\right)-\left(a_{3}+a_{5}-a_{4}\right) \neq 0$.
We see that the line 14 of $(\bar{*})$ is not satisfied.

Case (ii):
According to the proof of Lemma 3.5, case (ii), we have: $p \neq 3, a_{1}+a_{2} \neq 0$ and $a_{2}+a_{3} \neq 0$.
Since $a_{1}+a_{2}-a_{3}=a_{1}-a_{2} \neq 0$, we have either $\left(a_{1}+a_{2}-a_{4}=0\right)$ or $\left(a_{1}+a_{2}-a_{5}=0\right)$. It suffices to consider the first case: $a_{1}+a_{2}-a_{4}=0$.
So $a_{4}-3 a_{1}=0$ and $a_{2}+a_{4} \neq 0$. Therefore (see proof of Lemma 3.5, case (ii)), we have either $\left(a_{2}+a_{4}-a_{1}=0\right)$ or $\left(a_{2}+a_{4}-a_{3}=0\right)$ or $\left(a_{2}+a_{4}-a_{5}=0\right)$. The condition: $\left(a_{2}+a_{4}-a_{1}=0\right)$ or $\left(a_{2}+a_{4}-a_{3}=0\right)$ does not hold since it implies $a_{1}=0$, which is impossible. So $a_{2}+a_{4}-a_{5}=0$. Thus: $a_{2}=2 a_{1}, a_{3}=4 a_{1}, a_{4}=3 a_{1}, a_{5}=5 a_{1}$. It follows that the line 4 of $(\bar{*})$ is not satisfied. It is impossible.

Lemma 3.8. If $p \neq 5$, then System $(\overline{* *})$ has no distinct solutions in $\mathbb{F}_{q} / \mathbb{F}_{p}$.
Proof. We may only consider (see proof of Lemma 3.6) the following cases:
(i): $2 a_{1}-a_{2}=0,2 a_{2}-a_{3}=0$,
(ii): $2 a_{1}-a_{3}=0,2 a_{2}-a_{4}=0$.

Case (i):
According to the proof of Lemma 3.6, case (ii), we must have: $p \neq 3, a_{1}+a_{2} \neq 0$ and $a_{1}+a_{2}-a_{5}=0$. So $a_{5}=a_{1}+a_{2}=3 a_{1}$. We obtain: $a_{3}=2 a_{2}=4 a_{1}$. So $a_{4}+a_{1}=0$ since $a_{4}+a_{1}-a_{2}=a_{4}-a_{1} \neq 0$ and $a_{4}+a_{1}-a_{3}=a_{4}-a_{5} \neq 0$.
Thus the line 4 of $(\overline{* *})$ is not satisfied. It is impossible.

Case (ii): We have: $a_{1}+a_{2}-a_{3}, a_{1}+a_{2}-a_{4} \neq 0$, since $a_{1}-a_{2} \neq 0$. So, either $\left(a_{1}+a_{2}=0\right)$ or $\left(a_{1}+a_{2}=a_{5}\right)$.

- If $a_{1}+a_{2}=0$, then according to the proof of Lemma 3.6, it just remains the case: $a_{1}+a_{3}=a_{5}$. So we obtain: $a_{2}=-a_{1}, a_{3}=2 a_{1}, a_{4}=2 a_{2}=-2 a_{1}, a_{5}=3 a_{1}$. Thus the line 6 of $(\overline{* *})$ is not satisfied. It is impossible.
- If $a_{1}+a_{2}=a_{5}$, then $a_{3}+a_{4}=2\left(a_{1}+a_{2}\right)=2 a_{5} \neq 0$. Since $p \neq 3$, we have: $a_{1}+a_{3}=3 a_{1} \neq 0$ and $a_{1}+a_{3}-a_{5}=a_{3}-a_{2} \neq 0$. It remains two cases:
- if $a_{1}+a_{3}-a_{2}=3 a_{1}-a_{2}=0$, then:

$$
\left\{\begin{array}{l}
a_{1}+a_{4}-a_{5}=a_{4}-a_{2} \neq 0 \\
a_{1}+a_{4}-a_{2}=a_{4}-a_{3} \neq 0 \\
a_{1}+a_{4}-a_{3}=a_{4}-a_{1} \neq 0
\end{array}\right.
$$

Thus, $0=a_{1}+a_{4}=a_{1}+2 a_{2}=7 a_{1}$. So $p=7$, it is impossible because $15=1+2 p$ does not divide $p^{p}-1=7^{7}-1$.
Thus the line 5 of $(\overline{* *})$ is not satisfied. It is impossible.

- if $a_{1}+a_{3}-a_{4}=3 a_{1}-a_{4}=0$, then:

$$
\left\{\begin{array}{l}
a_{1}+a_{4}=4 a_{1} \neq 0 \\
2\left(a_{1}+a_{4}-a_{2}\right)=5 a_{1} \neq 0, \text { since } p \neq 5 \\
a_{1}+a_{4}-a_{3}=2 a_{1} \neq 0 \\
2\left(a_{1}+a_{4}-a_{5}\right)=3 a_{1} \neq 0, \text { since } p \neq 3
\end{array}\right.
$$

Thus the line 5 of $(\overline{* *})$ is not satisfied. It is impossible.

Acknowledgment. The authors would like to thank the referee for suggestions and for careful reading of the paper.

References

[1] J. T. B. Beard Jr, James. R. Oconnell Jr and Karen I. West, Perfect polynomials over $G F(q)$, Rend. Accad. Lincei, 62 (1977), 283-291.
[2] E. F. Canaday, The sum of the divisors of a polynomial, Duke Math. Journal,7 (1941), 721-737.
[3] M. Car, L. H. Gallardo, O. Rahavandrainy and L. N. Vaserstein, About the period of Bell numbers modulo a prime, Bull. Korean Math. Soc., 45(1)(2008), 143-155.
[4] L. Gallardo and O. Rahavandrainy, On perfect polynomials over \mathbb{F}_{4}, Portugaliae Mathematica, 62(1) (2005), 109-122.
[5] L. Gallardo and O. Rahavandrainy, Perfect polynomials over \mathbb{F}_{4} with less than five prime factors, Port. Math. (N.S.), 64(1) (2007), 21-38.
[6] L. H. Gallardo and O. Rahavandrainy, Odd perfect polynomials over \mathbb{F}_{2}, J. Théor. Nombres Bordeaux, 19 (2007), 165-174.
[7] L. H. Gallardo and O. Rahavandrainy, On splitting perfect polynomials over $\mathbb{F}_{p^{2}}$, Port. Math. (N.S.), 66(3) (2009), 261-273.
[8] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1983, (Reprinted 1987).
[9] P. L. Montgomery, S. Nahm and S. S. Wagstaff, Jr., The period of the Bell numbers modulo a prime, Math. Comp., 79(271) (2010), 1793-1800.
[10] S. S. Wagstaff, Jr., Aurifeuillian factorizations and the period of the Bell numbers modulo a prime, Math. Comp., 65 (1996), 383-391.

Luis H. Gallardo

Department of Mathematics
University of Brest
6, Av. Le Gorgeu, C.S. 93837,
29238 Brest Cedex 3, France
e-mail: Luis.Gallardo@univ-brest.fr

Olivier Rahavandrainy
Department of Mathematics
University of Brest
6, Av. Le Gorgeu, C.S. 93837,
29238 Brest Cedex 3, France
e-mail: Olivier.Rahavandrainy@univ-brest.fr

