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1. Introduction

Let q be a power of a prime p. For a monic polynomial A ∈ Fq[x], let ω(A) be

the number of distinct irreducible monic factors of A, and let σ(A) be the sum of

all monic divisors of A (included the trivial divisors 1 and A):

σ(A) =
∑

D monic, D|A
D.

If σ(A) = A, then we call A a perfect polynomial.

This is the appropriate analogue for polynomials of the notion of “multiperfect”

numbers for two reasons: a) it is easy to see that A is perfect if and only if A divides

σ(A) and b) we are forced to consider monic polynomials only, since the sum of all

divisors of a non-monic polynomial is trivially equal to 0. Canaday [2] and Beard [1]

studied principally the case when q = p that even now is far from being understood.

Assume now that q 6= p. Gallardo and Rahavandrainy [4,5] investigated the case

q = 4 mainly considering polynomials with a small number of prime factors in order

to be able to get some results. So for general q 6= p, it is natural to consider first the

study of some class of simple polynomials. A natural choice is to consider splitting

polynomials that is, polynomials with all their roots in the same field where are

the coefficients. Beard [1] does that for the case q = p. Recently, Gallardo and

Rahavandrainy [7] studied splitting perfect polynomials over quadratic extensions

(q = p2). On the other hand the p-th extension field of Fp, that is the Artin-

Schreier extension of the prime field Fp has been recently [10,3,9] considered in

relation to the minimal period of Bell numbers. Some arithmetic properties of the
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prime number p appear there naturally. We decided then to consider the study of

splitting perfect polynomials over the field Fpp . Lemmas 2.9, 2.10, 3.2 contain some

simple arithmetic properties of the prime number p useful for our work. Of course,

we just scratch the subject in this paper.

More precisely, let p be a prime number and let q = pp. We denote by Fq the field

with q elements. It is the splitting field of the irreducible Artin-Schreier polynomial

f(x) = xp − x− 1 ∈ Fp[x].

The splitting perfect polynomials over F4 are known (see [4, Theorem 3.4]) so we

shall assume in the rest of the paper that p is an odd prime.

By Lemma 2.4, a splitting perfect polynomial A can be expressed as

A = A0 · · ·Ar =
∏

j∈Fp

(x− a0 − j)h0j · · ·
∏

j∈Fp

(x− ar − j)hrj ,

where

r + 1 =
ω(A)

p
∈ N, 0 ≤ r ≤ q

p
− 1,

Ai =
∏

j∈Fp

(x− ai − j)hij , gcd(Ai, Al) = 1 if i 6= l

ai ∈ Fq, ai − al /∈ Fp for 0 ≤ i 6= l ≤ r.

By changing A(x) by A(x + a0), and by Lemma 2.2, we may suppose that a0 = 0.

We say that A is trivially perfect if for any 0 ≤ i ≤ r, the polynomial Ai is perfect.

In that case, A is perfect and for any 0 ≤ i ≤ r, there exist Ni, ni ∈ N such that:

hij = Nip
ni for any j ∈ Fp, Ni | p− 1.

Observe (see Corollary 2.8) that there exists an infinite number of splitting trivially

perfect polynomials with ω(A) = (r + 1)p. There exists also an infinite number of

splitting non-trivially perfect polynomials with ω(A) = q (see Theorem 3 in [1]),

namely those of the form A =
∏

bi∈Fq

(x− bi)Npm−1 where N,m ∈ N and N divides

q − 1.

We do not know if all splitting perfect polynomials are trivially perfect. However,

we are able to classify some of them in our main result below:

Theorem 1.1. Let 0 ≤ r ≤ q

p
− 1 be an integer. In the following cases, any split-

ting perfect polynomial, with ω(A) = (r + 1)p, is trivially perfect:

i) 0 ≤ r ≤ p2 − 1 and ai + al, ai + al − ak /∈ Fp for i 6= l 6= k.

ii) 0 ≤ r ≤ 5.
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After some useful technical lemmas in section 2 we prove Theorem 1.1 in sec-

tion 3. The proof of part ii) requires some involved computations with non-linear

systems over Fq/Fp.

2. Preliminary

In this section, we recall some useful results for the next sections. Let G be the

Galois group of the polynomial f(x) = xp − x − 1. It is well known that G is a

cyclic group of order p, generated by the Frobenius morphism:

π : F∗q → F∗q , π(t) = tp.

The orbit, under the action of G, of an element ω ∈ Fq but outside Fp contains

exactly p elements: ω, ωp, . . . , ωpp−1
.

In the following, we put: Fp = {0, 1, 2, . . . , p− 1}.

Lemma 2.1. i) The polynomial xl − 1 splits in Fp if and only if l = Npm, where

N,m ∈ N and N divides p− 1.

ii) The polynomial xl − 1 splits in Fq if and only if l = Npm, where N,m ∈ N and

N divides q − 1.

In that case, if d = gcd(p− 1, N), then N = d + rp for some r ∈ N, and for some

j1, . . . , jd ∈ Fp, b1, . . . , br ∈ Fq − Fp, one has:

xl − 1 = (xN − 1)pm

= (
d∏

µ=1

(x− jµ)
r∏

λ=1

((x− bλ)(x− bλ
p) · · · (x− bλ

pp−1
)) )

pm

.

Lemma 2.2. The polynomial P (x) ∈ Fq[x] is perfect if and only if for all a ∈ Fq,

P (x + a) is perfect.

Definition 2.3. For a monic polynomial A ∈ Fq[x], we define the integer ω(A) as

the number of distinct irreducible monic factors of A.

Lemma 2.4. (see Lemma 2.5 in [5]) If A is a splitting perfect polynomial over Fq,

then ω(A) ≡ 0 mod p.

More precisely, if ω(A) = (r+1)p, then A =
p−1∏

j=0

(x− a0 − j)h0j · · ·
p−1∏

j=0

(x− ar − j)hrj ,

where
a0, . . . , ar ∈ Fq, ai − al /∈ Fp if 0 ≤ i 6= l ≤ r

hij = Nijp
nij − 1, Nij , nij ∈ N and Nij divides q − 1.
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Remark 2.5. In the rest of paper, by Lemmata 2.4 and 2.2, a splitting perfect

polynomial A such that ω(A) = (r + 1)p will be always expressed as

A = A0 · · ·Ar =
p−1∏

j=0

(x− a0 − j)h0j · · ·
p−1∏

j=0

(x− ar − j)hrj ,

where

Ai =
p−1∏

j=0

(x− ai − j)hij , gcd(Ai, Al) = 1 if i 6= l

a0 = 0, ai ∈ Fq, ai − al /∈ Fp for 0 ≤ i 6= l ≤ r,

hij = Nijp
nij − 1, Nij , nij ∈ N, Nij | q − 1.

Lemma 2.6. (see Theorem 5 in [1]) The polynomial A0 =
p−1∏

j=0

(x− j)h0j is perfect

over Fp if and only if for any i, j, h0i = h0j = Npm − 1, where N,m ∈ N and N

divides p− 1.

Now, we proceed to show a crucial lemma which allows us to establish Theorem

1.1.

Lemma 2.7. For r ∈ N∗, let A = A0A1 · · ·Ar = A0B be a splitting perfect poly-

nomial over Fq. If N0j | p − 1 for any j, then the polynomials A0 and B are both

perfect.

Proof. According to Notation 2.5, we have:

A0 =
p−1∏

j=0

(x− j)h0j and B =
p−1∏

j=0

r∏

i=1

(x− ai − j)hij .

For any j, since N0j | p−1, none of the monomials x−ai− l (l ∈ Fp, i ≥ 1), divides

σ((x− j)h0j ). So we may put:

σ((x− j)h0j ) =
p−1∏

l=0

(x− l)α0j0
l ,

σ((x− a1 − j)h1j ) =
p−1∏

l=0

(x− l)α1j0
l (x− a1 − l)α1j1

l · · · (x− ar − l)α1jr
l ,

...

σ((x− ar − j)hrj ) =
p−1∏

l=0

(x− l)αrj0
l (x− a1 − l)αrj1

l · · · (x− ar − l)αrjr
l .

Hence, by considering degrees, we obtain, for any j ∈ {0, . . . , p− 1}:

h0j =
p−1∑

l=0

α0j0
l , hij =

p−1∑

l=0

(αij0
l + · · ·+ αijr

l ) if 1 ≤ i ≤ r.
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Since σ(A) = A, by comparing exponent of x− ai − l in σ(A) and in A, we get for

any i, l:

h0l =
p−1∑

j=0

(α0j0
l + α1j0

l + · · ·+ αrj0
l ), hil =

p−1∑

j=0

(α1ji
l + · · ·+ αrji

l ) if 1 ≤ i ≤ r.

We can deduce that:
p−1∑

j=0

p−1∑

l=0

α0j0
l =

p−1∑

j=0

h0j =
p−1∑

l=0

h0l =
p−1∑

l=0

p−1∑

j=0

(α0j0
l + · · ·+ αrj0

l ),

p−1∑

j=0

p−1∑

l=0

(α1j0
l + · · ·+ α1jr

l ) =
p−1∑

j=0

h1j =
p−1∑

l=0

h1l =
p−1∑

l=0

p−1∑

j=0

(α1j1
l + · · ·+ αrj1

l ),

...

p−1∑

j=0

p−1∑

l=0

(αrj0
l + · · ·+ αrjr

l ) =
p−1∑

j=0

hrj =
p−1∑

l=0

hrl =
p−1∑

l=0

p−1∑

j=0

(α1jr
l + · · ·+ αrjr

l )

Thus:
p−1∑

j=0

(h1j + · · ·+ hrj) =
p−1∑

j=0

p−1∑

l=0

((α1j0
l + · · ·+ α1jr

l ) + · · ·+ (αrj0
l + · · ·+ αrjr

l ))

=
p−1∑

j=0

p−1∑

l=0

((α1j1
l + · · ·+ αrj1

l ) + · · ·+ (α1jr
l + · · ·+ αrjr

l ))

It follows that:
p−1∑

j=0

p−1∑

l=0

(α1j0
l + · · ·+ αrj0

l ) = 0,

so that:

α1j0
l = · · · = αrj0

l = 0, for any j, l.

Therefore, we have σ(
p−1∏

j=0

(x− j)h0j ) =
p−1∏

j=0

(x− j)h0j and we are done. ¤

Using Lemmas 2.6 and 2.7, we immediately obtain:

Corollary 2.8. For any r ∈ N∗, the splitting polynomial A =
p−1∏

j=0

r∏

i=0

(x− ai − j)Nijpnij−1

is perfect over Fq whenever for all 0 ≤ i ≤ r, Nij = Nil, nij = nil for all j, l ∈ Fp.

Lemma 2.9. If a prime number v divides pp − 1 then either (v ≡ 1 mod p) or

(p ≡ 1 mod v).
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Lemma 2.10. For any odd integer t, the integer 1 + tp does not divide pp − 1.

Proof. Put m = 1 + tp and f(p) = pp − 1. Assume that m divides f(p). Then

m = n1n2 where n1 divides m1 = p− 1 and n2 divides m2 = 1 + p + · · ·+ pp−1.

It is well known and it is easy to prove that gcd(m1,m2) = 1. So,

(1) : e = gcd(n1, n2) = 1.

Now, each prime factor v of n2 divides m2, so that v ≡ 1 mod p, by Lemma 2.9.

It follows that n2 ≡ 1 mod p. Moreover, clearly m ≡ 1 mod p. Thus:

(2) : n1 ≡ 1 mod p.

Observe that m2 is odd and m is even, since p and t are both odd. Thus, n2 is odd

and n1 is even since m = n1n2.

By (2), we may write: n1 = 1 + sp, with s ≥ 0. If s = 0, then n1 = 1. This is

impossible since n1 is even. So, s ≥ 1 and we get:

n1 = 1 + sp ≥ 1 + p > p− 1 = m1.

This is impossible since n1 is a positive divisor of m1. This proves the result. ¤

3. Proof of Theorem 1.1

We recall that we use Notation 2.5 for a splitting perfect polynomial.

3.1. Case (i). If Nij divides p − 1 for all 0 ≤ i ≤ r and for all j ∈ Fp, then

we can apply Lemma 2.7. So, the polynomials B =
p−1∏

j=0

r∏

i=1

(x− ai − j)hij and

A0 =
p−1∏

j=0

(x− a0 − j)h0j are both perfect. We remark that ω(B) = rp. So the

result follows by induction on r.

If there exist 1 ≤ i1 ≤ r and j1 ∈ Fp such that Ni1j1 = N does not divide p − 1,

then there exist i2 ≥ 1 and j2 ∈ Fp such that the monomial x − ai2 − j2 divides

xN − 1. So, the monomial x− ai1 − j1 − ai2 − j2 divides σ((x− ai1 − j1)hi1j1 ) and

thus divides σ(A) = A. So, either (ai1 + ai2 ∈ Fp) or (there exists 1 ≤ u ≤ r such

that ai1 + ai2 − au ∈ Fp). It is impossible by hypothesis.

3.2. Case (ii) with w(A) ≤ 2p. - Case w(A) = p

It is immediate from Lemma 2.6.

- Case w(A) = 2p

Such polynomial may be of the form: A = A0A1 =
p−1∏

j=0

(x− j)h0j

p−1∏

j=0

(x− a1 − j)h1j .
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We have two cases:

Case 1: If either (for all j, N0j |p− 1) or (for all j, N1j |p− 1), then by Lemma 2.7,

A0 and A1 are both perfect, with ω(A0) = ω(A1) = p. The result follows from

previous case.

Case 2: If there exist j, l ∈ Fp such that N0j and N1l do not divide p− 1 then, we

have:

1 + · · ·+ (x− j)h0j =
1

x− j − 1
((x− j)N0j − 1)pn0j

,

1 + · · ·+ (x− a1 − l)N1l =
1

x− a1 − l − 1
((x− a1 − l)N1l − 1)pn1l

.

Put:

dj = gcd(N0j , p− 1), dl = gcd(N1l, p− 1), γ0, γ1 /∈ Fp, γ
N0j

0 = γN1l
1 = 1.

Then, the orbit of γ0 contains exactly p elements and we have: N0j = dj + p.

It follows that: 1 ≡ p ≡ Nj ≡ 0 mod dj , so dj = 1 and N0j = 1 + p.

Analogously, we obtain: N1l = 1 + p.

But, by Lemma 2.10, 1 + p does not divide q − 1. It is impossible.

3.3. Case w(A) ≥ 3p. We need the following lemmas.

Lemma 3.1. Let A be a splitting perfect polynomial with ω(A) = (r + 1)p. If

(x − a)Npm−1 divides A and if N does not divide p − 1, then N = d + λp, where

d = gcd(N, p− 1), λ ≡ 0 mod d and 1 ≤ λ ≤ r.

Proof. If N = dd1, where d1 divides
pp − 1
p− 1

, then, by Lemma 2.9, d1 is congruent

to 1 modulo p, so that d1 = 1 + µp. Thus, N = dd1 = d + µdp has the claimed

form. Put λ = µd. We have:

d + λp = ω((x− a)Npm−1) ≤ ω(A) = (r + 1)p, where d ≥ 1,

We conclude that: 1 ≤ λ ≤ r. ¤

Lemma 3.2. i) If 3 divides pp − 1 then p ≡ 1 mod 3.

ii) If d = gcd(1 + 2p, p− 1), then d ∈ {1, 3}.
iii) If 1 + 2p divides pp − 1 then p ≡ 2 mod 3 and gcd(1 + 2p, p− 1) = 1.

iv) If 1 + 4p divides pp − 1 then either (p = 3) or (p ≡ 1 mod 3).

v) The integers 1 + 2p and 1 + 4p do not simultaneously divide pp − 1.

Proof. i): by Lemma 2.9, since 3 6≡ 1 mod p.

ii): the integer d must divide 1 + 2p + p− 1 = 3p and d 6= p. We get the result.

iii): If p ≡ 1 mod 3, then by ii), we have: gcd(1+2p, p−1) = 3. Any prime divisor



92 LUIS H. GALLARDO AND OLIVIER RAHAVANDRAINY

r 6= 3 of 1+2p divides pp− 1, so r ≡ 1 mod p, since r does not divide p− 1. Thus,

we may write:

1 + 2p = 3(1 + up), for some integer u.

Hence: 1 ≡ 1 + 2p = 3(1 + up) ≡ 3 mod p. It is impossible. We are done.

If p = 3, we see that 7 = 1 + 2p does not divide 26 = pp − 1.

iv): If p ≡ 2 mod 3, then 3 divides 1 + 4p and pp − 1, so p ≡ 1 mod 3 by i). It is

impossible.

v): by iii) and iv). ¤

The following lemma gives the possible forms of hij = Nijp
nij − 1.

Lemma 3.3. Let A be a splitting perfect polynomial, with w(A) = (r + 1)p, and

(x− a)Npm−1 a monomial dividing A such that N does not divide p− 1:

if r ∈ {2, 3}, then N = 1 + 2p,

if r ∈ {4, 5}, then either (N ∈ {1 + 2p, 2 + 4p}) or (N = 1 + 4p).

Proof. If N does not divide p − 1, then by Lemma 3.1, N = d + λp, where

d = gcd(N, p− 1), 1 ≤ λ ≤ r, d | λ.

If r = 2, then 1 ≤ λ ≤ 2.

If λ = 1, then N = 1 + p which does not divide pp − 1 by Lemma 2.10.

If λ = 2, then N ∈ {1 + 2p, 2 + 2p}. If N = 2 + 2p, then 1 + p divides pp − 1. It is

impossible by Lemma 2.10.

If r = 3, then 1 ≤ λ ≤ 3.

If λ ≤ 2, then N = 1 + 2p.

If λ = 3, then N ∈ {1 + 3p, 3 + 3p}. Thus, either 1 + 3p or 1 + p divides pp − 1. It

is impossible by Lemma 2.10.

If r = 4, then 1 ≤ λ ≤ 4.

If λ ≤ 3, then N = 1 + 2p.

If λ = 4, then N ∈ {1 + 4p, 2 + 4p, 4 + 4p}. We can exclude the case N = 4 + 4p

since 1 + p does not divide pp− 1. Furthermore, by Lemma 3.2, the integers 1 + 4p

and 1 + 2p do not simultaneously divide pp − 1.

If r = 5, then 1 ≤ λ ≤ 5.

If λ ≤ 4, then either (N ∈ {1 + 2p, 2 + 4p}) or (N = 1 + 4p).

If λ = 5, then N ∈ {1 + 5p, 5 + 5p}. We can exclude this case since, by Lemma

2.10, 1 + 5p and 1 + p do not divide pp − 1. We are done. ¤
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3.3.1. Case (ii) and ω(A) = 3p. Such polynomial is of the form:

A = A0A1A2 =
p−1∏

j=0

(x− j)h0j

p−1∏

j=0

(x− a1 − j)h1j

p−1∏

j=0

(x− a2 − j)h2j .

Case 1: If there exists i ∈ {0, 1, 2} such that for all j, Nij | p − 1, then, we may

suppose i = 0. So, by Lemma 2.7, A0 and A1A2 are both perfect. It follows by

section 3.2, that A0 and B = A1A2 are both trivially perfect.

Case 2: If there exist j0, j1, j2 ∈ Fp such that N0j0 , N1j1 and N2j2 do not divide

p− 1 then, by lemma 3.3, we must have: N0j0 = N1j1 = N2j2 = 1 + 2p = N . Since

the only monomials which interfere are: x− j, x− a1− j and x− a2− j, for j ∈ Fp,

we can write:

xN − 1 = (x− 1)
p−1∏

j=0

(x− a1 − j)(x− a2 − j),

Thus, for some l ∈ Fp, the monomials x−2a1− j− l, x−a1−a2− j− l must divide

σ(A) = A, since they divide σ((x − a1 − l)h1l). Analogously, for some s ∈ Fp, the

monomials x− 2a2 − j − s, x− a1 − a2 − j − s must divide A. So, we must have:

2a1 − a2, 2a2 − a1, a1 + a2 ∈ Fp. It follows that 3a1, 3a2 ∈ Fp. So, p = 3. But, in

this case N = 1 + 2p = 7 does not divide 26 = pp − 1. We are done.

3.3.2. Convention. We consider the quotient space Fq/Fp. For b1, . . . , bm ∈ Fq/Fp,

we write: b1 · · · bm = 0 to mean that at least one of the bj ’s equals 0.

Furthermore, we denote in the same manner an element a of Fq and its class ā

modulo Fp.

3.3.3. Case (ii) and w(A) = 4p. Such polynomial is of the form: A = A0A1A2A3 =

A0B.

Case 1: If there exists i (say i = 0) such that for all j, N0j | p− 1, then, by Lemma

2.7, A0 and B are both perfect, and by Sections 3.2 and 3.3.1, they are both triv-

ially perfect.

Case 2: If there exist j0, . . . , j3 ∈ Fp such that N0j0 , . . . , N3j3 do not divide p − 1.

Thus, by Lemma 3.3, we must have: N0j0 = · · · = N3j3 = 1 + 2p = N .

Therefore, there exist a, b ∈ {a1, a2, a3} and ja, jb ∈ Fp, such that a 6= b and the

monomials x− a− ja and x− b− jb divide xN − 1.

So, for 1 ≤ i ≤ 3, the monomials x− ai − ji − a− ja and x− ai − ji − b− jb divide

σ((x− ai − ji)hiji ) and hence divide A.

Therefore, ai + a, ai + b, ai + a− ari , ai + b− asi ∈ Fp, for some ri, si ∈ {1, 2, 3}.
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We may suppose a = a1, b = a2, so the following conditions must be satisfied:




(2a1 − a2 ∈ Fp) or (2a1 − a3 ∈ Fp)

(2a2 − a1 ∈ Fp) or (2a2 − a3 ∈ Fp)

(a1 + a2 ∈ Fp) or (a1 + a2 − a3 ∈ Fp)

(a1 + a3 ∈ Fp) or (a1 + a3 − a2 ∈ Fp)

(a2 + a3 ∈ Fp) or (a2 + a3 − a1 ∈ Fp).

By Convention 3.3.2, we obtain the following system of equations with unknowns

a1, a2, a3 ∈ Fq/Fp, a1 6= a2 6= a3:

(◦) :





(2a1 − a2)(2a1 − a3) = 0

(2a2 − a1)(2a2 − a3) = 0

(a1 + a2)(a1 + a2 − a3) = 0

(a1 + a3)(a1 + a3 − a2) = 0

(a2 + a3)(a2 + a3 − a1) = 0,

which is impossible by Lemma 3.4. We are done.

Lemma 3.4. System (◦) has no distinct solutions in Fq/Fp.

Proof. : If a1, a2, a3 ∈ Fq/Fp satisfy this system, then any possible case leads to

contradiction:

Case 2a1 − a2 = 0

if 2a2 − a1 = 0 then we have: 3(a1 − a2) = 0 ∈ Fp, so p = 3. Thus, N = 1 + 2p = 7

does not divide 26 = pp − 1. It is impossible.

if 2a2 − a3 = 0 then 2a1 + a2 − a3 = 0. Thus a1 + a2 6= 0, since a1 − a3 6= 0.

So we must have a1 + a2 − a3 = 0.

Therefore, a1 = (2a1 + a2 − a3)− (a1 + a2 − a3) = 0. It is impossible.

Case 2a1 − a3 = 0

if 2a2 − a1 = 0 then a1 + 2a2 − a3 = 0. Thus a1 + a2 6= 0, since a2 − a3 6= 0.

So we must have a1 + a2 − a3 = 0.

Therefore, a2 = (2a2 + a1 − a3)− (a1 + a2 − a3) = 0. It is impossible.

if 2a2 − a3 = 0 then 2(a1 − a2) = 0. It is impossible. ¤
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3.3.4. Case (ii) and w(A) = 5p. Case 1: If there exists i (say i = 0) such that for

all j, N0j | p− 1, then, by Lemma 2.7, A0 and B = A1 · · ·A4 are both perfect and

thus trivially perfect.

Case 2: If there exist j0, . . . , j4 ∈ Fp such that N0j0 , . . . , N4j4 do not divide p − 1.

Thus, by Lemma 3.3, we must have: either (N0j0 = · · · = N4j4 = 1 + 4p) or

(N0j0 , . . . , N4j4 ∈ {1 + 2p, 2 + 4p}).

Case 21:

If N0j0 = · · · = N4j4 = 1 + 4p = N , then there exist l1, . . . , l4 ∈ Fp such that the

four monomials x− ai − li, 1 ≤ i ≤ 4, divide xN − 1.

Moreover, p 6= 5 since 1 + 4p must divide pp − 1.

As in the proof in Section 3.3.3, for all i ∈ {1, . . . , 4}, there exist li, ki, ti ∈ {1, . . . , 4}
such that: {

(2ai − ali ∈ Fp)

(ai + aki ∈ Fp) or (ai + aki − ati ∈ Fp).

We observe that a1, . . . , a4 play symmetric roles, and we use Convention 3.3.2, so

we can reduce to the following system of equations:

(∗) :





2a1 − a2 = 0

(2a2 − a1)(2a2 − a3) = 0

(2a3 − a1)(2a3 − a2)(2a3 − a4) = 0

(2a4 − a1)(2a4 − a2)(2a4 − a3) = 0

(a1 + a2)(a1 + a2 − a3)(a1 + a2 − a4) = 0

(a1 + a3)(a1 + a3 − a2)(a1 + a3 − a4) = 0

(a1 + a4)(a1 + a4 − a2)(a1 + a4 − a3) = 0

(a2 + a3)(a2 + a3 − a1)(a2 + a3 − a4) = 0

(a2 + a4)(a2 + a4 − a1)(a2 + a4 − a3) = 0

(a3 + a4)(a3 + a4 − a1)(a3 + a4 − a2) = 0,

which is impossible by Lemma 3.5.

Case 22:

If N0j0 , . . . , N4j4 ∈ {1+2p, 2+4p} = {N, 2N}, then there exist a, b ∈ {a1, a2, a3, a4}
and ja, jb ∈ Fp, such that the monomials x− a− ja and x− b− jb divide xN − 1.

So, for 1 ≤ i ≤ 4, the monomials x− ai − ji − a− ja and x− ai − ji − b− jb divide

σ((x− ai − ji)hiji ) and A.
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As in the proof of Proposition 3.3.3, we may suppose a = a1, b = a2. Moreover,

a1 and a2 (resp. a3 and a4) play symmetric roles. So, the following conditions must

be satisfied:

(∗∗) :





(2a1 − a2)(2a1 − a3) = 0

(2a2 − a1)(2a2 − a3)(2a2 − a4) = 0

(a1 + a2)(a1 + a2 − a3)(a1 + a2 − a4) = 0

(a1 + a3)(a1 + a3 − a2)(a1 + a3 − a4) = 0

(a1 + a4)(a1 + a4 − a2)(a1 + a4 − a3) = 0

(a2 + a3)(a2 + a3 − a1)(a2 + a3 − a4) = 0

(a2 + a4)(a2 + a4 − a1)(a2 + a4 − a3) = 0.

Lemma 3.6 implies that p = 5. Hence, we have modulo Fp:

either (a2 = 2a1, a3 = −a1, a4 = −2a1) or (a2 = −a1, a3 = 2a1, a4 = −2a1).

If N = 1 + 2p = 11, then:

xN − 1 = (x− 1)
p−1∏

j=0

(x− a1 − j)(x− a2 − j), where a2 = 2a1 or a2 = −a1.

Put: Λ1 = {b ∈ Fq/Fp : (x + b) divides x11 − 1}.
For all b, c ∈ Λ1, we see that either (b + 2c ∈ Fp) or (b + c ∈ Fp).

By computations, if α ∈ Fq such that αp−α−1 = 0, then b1 = α4+3α3+α2+2α+4

and c1 = 3α4 + 4α3 + 3α2 + 3α + 2 belong to Λ1, but b1 + 2c1, b1 + c1 6∈ Fp. It is

impossible.

If N = 2 + 4p = 22, then:

xN − 1 = (x− 1)(x + 1)
p−1∏

j=0

(x− a1 − j)(x + a1 − j)(x− 2a1 − j)(x + 2a1 − j).

Put: Λ2 = {b ∈ Fq/Fp : (x + b) divides x22 − 1}.
We see that, for all b, c ∈ Λ2, one of the following conditions must hold: b + c ∈ Fp,

b + 2c ∈ Fp, b− 2c ∈ Fp.

But the elements b1 and c1 defined above do not satisfy that condition.

We are done.

Lemma 3.5. The system of equations (∗) has no distinct solutions in Fq/Fp.

Proof. First of all, recall that in this lemma, p 6= 5. We may consider only the

following cases:

(i): 2a1 − a2 = 0, 2a2 − a1 = 0,
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(ii): 2a1 − a2 = 0, 2a2 − a3 = 0.

Case (i):

In that case, we have: 3(a1 − a2) = 0, so p = 3. Moreover, a1 + a2 = 0.

Thus, a1 + a3, a1 + a4, a2 + a3, a2 + a4 6= 0.

We have: a1 +a3−a2 6= 0, since (a1 +a3−a2)+(a1 +a2) = 2a1 +a3 = a3−a1 6= 0.

So, a1 + a3 − a4 = 0.

Therefore:

- if a1 + a4 − a2 = 0, then 2a1 + 2a2 + a3 = 0, so a3 = 0. It is impossible.

- if a1 + a4 − a3 = 0, then 2a1 = 0. It is impossible.

Case (ii):

We have: a1 + a2 − 3a1 = 0.

If p = 3, then a1 + a2 = 0, and a2 + a3 = 0. It is impossible since a1 − a3 6= 0.

Thus, p 6= 3, and a1 + a2, a2 + a3 6= 0.

Since, a1 + a2 − a3 = a1 − a2 6= 0, we have: a1 + a2 − a4 = 0. So a4 − 3a1 = 0 and

a2+a4 = 5a1 6= 0. Therefore, we have either (a2+a4−a1 = 0) or (a2+a4−a3 = 0).

It follows that: a1 = 0, which is impossible. ¤

Lemma 3.6. If p 6= 5, then the system of equations (∗∗) has no distinct solutions

in Fq/Fp.

Proof. We may consider only the following cases:

(i): 2a1 − a2 = 0, 2a2 − a1 = 0,

(ii): 2a1 − a2 = 0, 2a2 − a3 = 0,

(iii): 2a1 − a3 = 0, 2a2 − a1 = 0,

(iv): 2a1 − a3 = 0, 2a2 − a3 = 0,

(v): 2a1 − a3 = 0, 2a2 − a4 = 0.

Case (i):

In that case, we have: 3(a1 − a2) = 0, so p = 3. Thus, N = 1 + 2p = 7 does not

divide 26 = pp − 1. It contradicts the fact: N divides q − 1 = pp − 1.

Case (ii):

According to the proof of Lemma 3.4, we must have: a1 +a2−a4 = 0, in particular,
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a1 + a2 6= 0. We obtain the following equalities:

2a1 − a2 = 0, 2a2 − a3 = 0, a1 + a2 − a4 = 0, a1 + a4 − a3 = 0,

a2 + a3 − a1 = 0, a2 + a4 = 0, a1 + a3 = 0.

Thus, a3 = 2a2 = 4a1, a3 = a1−a2 = −a1. So, 5a1 = 0. It is impossible since p 6= 5.

Case (iii): It is similar to the previous case (ii), since a1 and a2 play symmet-

ric roles.

Case (iv): We have: 2(a1 − a2) = 0. It is impossible.

Case (v): We have: a1 + a2 − a3, a1 + a2 − a4 6= 0, since a1 − a2 6= 0. So,

a1 + a2 = 0.

Therefore, a3 + a4 = 2(a1 + a2) = 0, and a1 + a3, a1 + a4, a2 + a3, a2 + a4 6= 0.

There are two possibilities:

- a1 + a3 − a2 = 0. It implies: 2a1 + a3 = a1 + a2 + a1 + a3 − a2 = 0 and thus

4a1 = 2a1 − a3 + 2a1 + a3 = 0. It is impossible.

- a1 + a3 − a4 = 0. It implies: a1 + 2a3 = (a1 + a3 − a4) + (a3 + a4) = 0 and thus

5a1 = 2(2a1 − a3) + a1 + 2a3 = 0. It is possible only if p = 5. ¤

3.3.5. Case (ii) and w(A) = 6p. Case 1: If there exists i such that for all j,

Nij | p − 1, then, as in the proof in Section 3.3.4, we conclude that A is trivially

perfect.

Case 2: If there exist j0, . . . , j5 ∈ Fp such that N0j0 , . . . , N5j5 do not divide p − 1.

Thus, by Lemma 3.3, we must have: either (N0j0 = · · · = N5j5 = 1 + 4p) or

(N0j0 , . . . , N5j5 ∈ {1 + 2p, 2 + 4p}).
Case 21: N0j0 = · · · = N5j5 = 1 + 4p = N :

In this case, p 6= 5 and there exist l1, . . . , l5 ∈ Fp such that the five monomials

x − ai − li, 1 ≤ i ≤ 5, divide xN − 1. So, as in the proof in Section 3.3.3, for all

i ∈ {1, . . . , 5}, there exist li, ki, ti ∈ {1, . . . , 5} such that:

{
(2ai − ali ∈ Fp)

(ai + aki ∈ Fp) or (ai + aki − ati ∈ Fp).
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Since a1, . . . , a5 play symmetric roles, we can reduce, as in the proof in Section
3.3.4, to the following system of equations:

(∗) :





2a1 − a2 = 0

(2a2 − a1)(2a2 − a3) = 0

(2a3 − a1)(2a3 − a2)(2a3 − a4)(2a3 − a5) = 0

(2a4 − a1)(2a4 − a2)(2a4 − a3)(2a4 − a5) = 0

(2a5 − a1)(2a5 − a2)(2a5 − a3)(2a5 − a4) = 0

(a1 + a2)(a1 + a2 − a3)(a1 + a2 − a4)(a1 + a2 − a5) = 0

(a1 + a3)(a1 + a3 − a2)(a1 + a3 − a4)(a1 + a3 − a5) = 0

(a1 + a4)(a1 + a4 − a2)(a1 + a4 − a3)(a1 + a4 − a5) = 0

(a1 + a5)(a1 + a5 − a2)(a1 + a5 − a3)(a1 + a5 − a4) = 0

(a2 + a3)(a2 + a3 − a1)(a2 + a3 − a4)(a2 + a3 − a5) = 0

(a2 + a4)(a2 + a4 − a1)(a2 + a4 − a3)(a2 + a4 − a5) = 0

(a2 + a5)(a2 + a5 − a1)(a2 + a5 − a3)(a2 + a5 − a4) = 0

(a3 + a4)(a3 + a4 − a1)(a3 + a4 − a2)(a3 + a4 − a5) = 0

(a3 + a5)(a3 + a5 − a1)(a3 + a5 − a2)(a3 + a5 − a4) = 0

(a4 + a5)(a4 + a5 − a1)(a4 + a5 − a2)(a4 + a5 − a3) = 0,

which is impossible by Lemma 3.7.

Case 22:
If N0j0 , . . . , N5j5 ∈ {1 + 2p, 2 + 4p} = {N, 2N}, then there exist a, b ∈ {a1, . . . , a5}
and ja, jb ∈ Fp, such that the monomials x− a− ja and x− b− jb divide xN − 1.
So, for 1 ≤ i ≤ 4, the monomials x− ai − ji − a− ja and x− ai − ji − b− jb divide
σ((x− ai − ji)hiji ) and A.
As in the proof in Section 3.3.4, we may suppose a = a1, b = a2. Moreover, a1 and
a2 (resp. a3, a4 and a5) play symmetric roles. So the following conditions must be
satisfied:

(∗∗) :





(2a1 − a2)(2a1 − a3) = 0

(2a2 − a1)(2a2 − a3)(2a2 − a4) = 0

(a1 + a2)(a1 + a2 − a3)(a1 + a2 − a4)(a1 + a2 − a5) = 0

(a1 + a3)(a1 + a3 − a2)(a1 + a3 − a4)(a1 + a3 − a5) = 0

(a1 + a4)(a1 + a4 − a2)(a1 + a4 − a3)(a1 + a4 − a5) = 0

(a1 + a5)(a1 + a5 − a2)(a1 + a5 − a3)(a1 + a5 − a4) = 0

(a2 + a3)(a2 + a3 − a1)(a2 + a3 − a4)(a2 + a3 − a5) = 0

(a2 + a4)(a2 + a4 − a1)(a2 + a4 − a3)(a2 + a4 − a5) = 0

(a2 + a5)(a2 + a5 − a1)(a2 + a5 − a3)(a2 + a5 − a4) = 0.

Lemma 3.8 implies that p = 5. We get:

either (a2 = 2a1, a3 = −a1, a4 = −2a1) or (a2 = −a1, a3 = 2a1, a4 = −2a1).
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So the line 6 of (∗∗) is impossible. We are done.

Lemma 3.7. System (∗) has no distinct solutions in Fq/Fp.

Proof. As in the proof of Lemma 3.5, we must have: p 6= 5, and we may only

consider the following cases:

(i): 2a1 − a2 = 0, 2a2 − a1 = 0,

(ii): 2a1 − a2 = 0, 2a2 − a3 = 0.

Case (i):

In that case, we have: 3(a1 − a2) = 0, so p = 3. Moreover, a1 + a2 = 0.

Thus, a1 + a3, a1 + a4, a2 + a3, a2 + a4, a1 + a5, a2 + a5 6= 0.

According to the proof of Lemma 3.5, case (i), we have either (a1 + a3 − a4 = 0)

or (a1 + a3 − a5 = 0). Since a4 and a5 play symmetric roles, we may only consider

the first case: a1 + a3 − a4 = 0.

Still by the proof of Lemma 3.5, it remains this possibility: a1 + a4 − a5 = 0. So,

a2 + a3 − a5 = 0, and a3 + a4 + a5 = (a1 + a4 − a5) + (a2 + a3 − a5) = 0. Thus,

a3 + a5 6= 0.

Furthermore:

a3 + a5 − a1 6= 0 since (a3 + a4 + a5)− (a3 + a5 − a1) = a1 + a4 6= 0,

a3 + a5 − a2 6= 0 since a2 + a4 6= 0,

a3 + a5 − a4 6= 0 since 2a4 = (a3 + a5 + a4)− (a3 + a5 − a4) 6= 0.

We see that the line 14 of (∗) is not satisfied.

Case (ii):

According to the proof of Lemma 3.5, case (ii), we have: p 6= 3, a1 + a2 6= 0 and

a2 + a3 6= 0.

Since a1+a2−a3 = a1−a2 6= 0, we have either(a1+a2−a4 = 0) or (a1+a2−a5 = 0).

It suffices to consider the first case: a1 + a2 − a4 = 0.

So a4 − 3a1 = 0 and a2 + a4 6= 0. Therefore (see proof of Lemma 3.5, case (ii)), we

have either (a2+a4−a1 = 0) or (a2+a4−a3 = 0) or (a2+a4−a5 = 0). The condition:

(a2 +a4−a1 = 0) or (a2 +a4−a3 = 0) does not hold since it implies a1 = 0, which

is impossible. So a2 + a4 − a5 = 0. Thus: a2 = 2a1, a3 = 4a1, a4 = 3a1, a5 = 5a1.

It follows that the line 4 of (∗) is not satisfied. It is impossible. ¤

Lemma 3.8. If p 6= 5, then System (∗∗) has no distinct solutions in Fq/Fp.

Proof. We may only consider (see proof of Lemma 3.6) the following cases:

(i): 2a1 − a2 = 0, 2a2 − a3 = 0,
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(ii): 2a1 − a3 = 0, 2a2 − a4 = 0.

Case (i):

According to the proof of Lemma 3.6, case (ii), we must have: p 6= 3, a1 + a2 6= 0

and a1 + a2 − a5 = 0. So a5 = a1 + a2 = 3a1. We obtain: a3 = 2a2 = 4a1. So

a4 + a1 = 0 since a4 + a1 − a2 = a4 − a1 6= 0 and a4 + a1 − a3 = a4 − a5 6= 0.

Thus the line 4 of (∗∗) is not satisfied. It is impossible.

Case (ii): We have: a1 + a2 − a3, a1 + a2 − a4 6= 0, since a1 − a2 6= 0. So, ei-

ther (a1 + a2 = 0) or (a1 + a2 = a5).

- If a1 + a2 = 0, then according to the proof of Lemma 3.6, it just remains the

case: a1 + a3 = a5. So we obtain: a2 = −a1, a3 = 2a1, a4 = 2a2 = −2a1, a5 = 3a1.

Thus the line 6 of (∗∗) is not satisfied. It is impossible.

- If a1 + a2 = a5, then a3 + a4 = 2(a1 + a2) = 2a5 6= 0. Since p 6= 3, we have:

a1 + a3 = 3a1 6= 0 and a1 + a3 − a5 = a3 − a2 6= 0. It remains two cases:

- if a1 + a3 − a2 = 3a1 − a2 = 0, then:





a1 + a4 − a5 = a4 − a2 6= 0,

a1 + a4 − a2 = a4 − a3 6= 0,

a1 + a4 − a3 = a4 − a1 6= 0.

Thus, 0 = a1 + a4 = a1 + 2a2 = 7a1. So p = 7, it is impossible because 15 = 1 + 2p

does not divide pp − 1 = 77 − 1.

Thus the line 5 of (∗∗) is not satisfied. It is impossible.

- if a1 + a3 − a4 = 3a1 − a4 = 0, then:





a1 + a4 = 4a1 6= 0,

2(a1 + a4 − a2) = 5a1 6= 0, since p 6= 5,

a1 + a4 − a3 = 2a1 6= 0,

2(a1 + a4 − a5) = 3a1 6= 0, since p 6= 3.

Thus the line 5 of (∗∗) is not satisfied. It is impossible. ¤
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