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Abstract. For a Lie algebra, L, the Frattini subalgebra F (L) is the intersec-

tion of all maximal subalgebras of L. We develop two analogues of the Frattini

subalgebra, namely nFrat(L) and R(L). Specifically, we develop properties

involving non-generators, containment relations, and nilpotency.
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1. Introduction

Giovanni Frattini introduced his subgroup, now called the Frattini subgroup, in

the nineteenth century. A good reference is [14]. The Lie algebra analogue, the Frat-

tini subalgebra, appeared in [13] and early contributions to the theory can be found

in [2] - [4] and [18] - [23] and recent work is in [15] and [24]. Infinite dimensional

results can be found in [1], [10], and [16]. The generalization to non-associative

algebras was begun in [22] with particular non-associative algebras investigated in

[6], [7], [8], [12], [17], [20], [25], and [26], among others. Meanwhile, the group

concept has been generalized in various ways; for example, see [5] and [11].

The present paper contains Lie algebra analogues to the results in [11]. We find

characterizations of the concepts by non-generators, find to what extent our con-

cepts are nilpotent, find containments relations and a characterization of nilpotency.

All Lie algebras consider here are finite dimensional over a field, F .

Definition 1.1. For a Lie algebra L we define the following:

(1) M = {M |M is a maximal subalgebra of L}
(2) N = {N |N 6= L,N is a maximal ideal of L}
(3) R = {R |R is in M∩N} = all maximal subalgebras that are ideals

Lemma 1.2. Let N be an ideal of L.

(1) N ∈ N if and only if L/N is simple.

(2) N ∈ R if and only if dim(L/N) = 1.
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Definition 1.3. For a Lie algebra L we define the following subalgebras:

(1) nFrat(L) =
⋂

N∈N N

(2) R(L) =
⋂

N∈RN if R 6= ∅ and R(L) = L if R = ∅

2. Characterization by non-generators

It is true in group theory that Frat(G) is the set of non-generators. It is also

known that this concept carries over for nFrat(G) and R(G) [11]. We are going

to study the idea of non-generators for these concepts in Lie algebras. It is widely

recognized that the Frattini subalgebra is equal to the set of non-generators. We

will provide this proof as it fits with the rest.

Definition 2.1. A subset S of a Lie algebra L is normal in L if adx(S) ⊆ S for all

x ∈ L.

Definition 2.2. An element x ∈ L is a normal non-generator if L = 〈x, T 〉 for a

normal subset T in L implies L = 〈T 〉.

Proposition 2.3. F (L) equals the set of non-generators.

Proof. Let x ∈ F (L). Let L = 〈H,x〉. If H 6= L, then H ⊆ M , where M is a

maximal subalgebra. Also, x ∈ F (L) ⊆ M . Hence 〈H, x〉 = M , a contradiction. So

H = L and x is a non-generator.

Now suppose x /∈ F (L). Let M be a maximal subalgebra such that x /∈ M .

Then M ⊂ 〈x,M〉 ⊆ L, so 〈x,M〉 = L. But M 6= L, so x is a generator for L. ¤

Theorem 2.4. R(L) equals the set of all normal non-gernators of L.

Proof. Suppose x /∈ R(L). Then x /∈ M , a maximal subalgebra that is an ideal.

M is a normal subset of L and L = 〈x,M〉 but L 6= M . Hence x is a normal

generator.

Now suppose x ∈ R(L) and L = 〈x, S〉 for a normal subset S of L. If 〈S〉 6= L

then dim(L) = dim(S) + 1 so ,〈S〉 ∈ R. But x ∈ R(L) ⊆ 〈S〉 so 〈S〉 = L, a

contradiction. ¤

Definition 2.5. Let X be a subset of L. XL = 〈[x, l1, . . . , lk]〉 where x ∈ X and

li ∈ L and k = 0, 1, . . ..

Definition 2.6. An element x ∈ L is called an n-nongenerator of L if for every

subset X of L, L = XL whenever L = 〈x,X〉L.

Lemma 2.7. For any element g ∈ L any subset X of L, 〈g, X〉L = 〈gL, XL〉 =

gL + XL.
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Proof. Both gL and XL are contained in 〈g, X〉L, so 〈gL, XL〉 ⊆ 〈g,X〉L and

gL + XL ⊆ 〈g,X〉L. Since, 〈g, X〉 ⊆ 〈gL, XL〉 this implies 〈g,X〉L ⊆ 〈gL, XL〉.
Also, gL ⊆ gL + XL and XL ⊆ gL + XL, thus 〈gL, XL〉 ⊆ gL + XL.

Alternate Proof: Let g and h be in L and X a subset of L with x ∈ X.

xL =
∑

ai[x, hi1 , hi2 , . . . , hik
]

gL =
∑

bi[g, hi1 , hi2 , . . . , hik
]

〈g, x〉L = [αg + βx, h1, . . . , hn]

= [αg, h1, . . . , hn] + [βx, h1, . . . , hn]

∈ gL + XL and ∈ 〈gL, XL〉

So 〈g,X〉L ⊆ gL+XL and 〈g, X〉L ⊆ 〈gL, XL〉. Since g ∈ 〈h,X〉L then gL ∈ 〈g, X〉L
and similarly for X and XL. So gL + XL ⊆ 〈g, X〉L. Since gL + XL is a vector

space, 〈gL, XL〉 ⊆ gL + XL. Thus we get

〈g, X〉L ⊆ 〈gL, XL〉 ⊆ gL + XL ⊆ 〈g, X〉L

and the theorem holds. ¤

Theorem 2.8. For a Lie algebra L, nFrat(L) is the set of n-nongenerators of L.

Proof. Let T = {x |x is a n-nongenerator of L}. Since L is finite dimensional,

there exists maximal ideals so nFrat(L) 6= L. Suppose x ∈ T and x /∈ nFrat(L).

There exists N ∈ N such that x /∈ N . Now either xL + N = N or xL + N = L. If

xL + N = N then x ∈ N . But x /∈ N so xL + N 6= N . Thus xL + N = L. This

implies 〈x,N〉L = L, so N = NL = L since x is an n-nongenerator. But N 6= L

so this contradiction establishes x ∈ N for all N ∈ N and x ∈ nFrat(L). Thus

T ⊆ nFrat(L).

Conversely, let x ∈ nFrat(L) and suppose x is not an n-nongenerator. Thus

there exists S ⊆ L such that L = 〈x, S〉L, but L 6= SL. Hence SL is a proper ideal

of L and x /∈ SL. By lemma 2.7 L = 〈x, S〉L = xL + SL. Let M be maximal with

respect to the properties for SL: x /∈ M, M C L, SL ⊆ M,L = xL + M .

We claim M ∈ N . If not, there exists N such that M ( N ( L, N E L. Then

L = xL + M = xL + N . If x /∈ N , then N can replace M in the condition above

the claim, which is a contradiction. Thus x ∈ N and xL ⊆ N . Hence L = N ,

a contradiction. Hence M ∈ N , but x /∈ M so x /∈ nFrat(L), a contradiction.

Hence whenever L = 〈x, S〉L implies L = SL and x is an n-nongenerator. Thus

nFrat(L) ⊆ T . ¤
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3. Nilpotency and containments

In this section, we collect information about the Frattini subalgebra and its

generalizations which are inspired by the results in group theory. We begin by

reviewing known properties of the Frattini subalgebra or Frattini ideal.

The following theorem is proven in [19].

Theorem 3.1. Let L be a Lie algebra and N an ideal of L.

(1) F (L) + N/N ⊆ F (L/N).

(2) If N ⊆ F (L), then F (L)/N = F (L/N).

We have similar results for nFrat(L).

Theorem 3.2. Let L be a Lie algebra and N an ideal of L. Then

(1) (nFrat(L) + N)/N ⊆ nFrat(L/N);

(2) If N ⊆ nFrat(L), then nFrat(L)/N = nFrat(L/N).

Proof. (1) For each M with M/N ∈ N (L/N), we have M ∈ N (L). Thus

nFrat(L) ⊆ ⋂
M/N∈N (L/N) M and (nFrat(L) + N)/N ⊆ nFrat(L/N).

(2) Since N ⊆ nFrat(L), N ⊆ M for all M ∈ N (L). Also, M/N ∈ N (L/N) if

and only if M ∈ N (L). Then, nFrat(L)/N = (
⋂

M∈N (L) M)/N =
⋂

M∈N (L) M/N =

nFrat(L/N). ¤

In group theory, if G is finite then Frat(G) nilpotent. In Lie algebras, it is

known that the Frattini ideal is nilpotent.

Theorem 3.3. Let L be a Lie algebra, then φ(L) is nilpotent.

Proof. Let x ∈ φ(L). Then L1(x) ⊆ φ(L) since φ(L) E L. Thus L0(x)+φ(L) = L

and L0(x) + F (L) = L. Thus L0(x) = L and x is nilpotent. Hence φ(L) is

nilpotent. ¤

As in group theory, it is not always true that nFrat(L) or R(L) are nilpotent.

Example 3.4. Let L = gl(n, F ). If char(F ) = 0, then there are two maximal

ideals L′ and Z(L). Then L′ ∩ Z(L) = 0. However, if char(F ) = p, where p 6= 2

and p | n then , Z(L) ⊆ L′ = sl(n, F ). Thus the only maximal ideal is sl(n, F ) and

so nFrat(L) = sl(n, F ) and therefore, nFrat(L) is not nilpotent. In this example,

R(L) = nFrat(L) = sl(n, F ). Thus R(L) is also not nilpotent.

It is known in group theory that if N is a normal subgroup in G then Frat(N) ⊆
Frat(G). This result does not hold in complete generality for Lie algebras. How-

ever, it does hold in the following case.
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Theorem 3.5. Let N be an ideal of L over a field F , then if char(F ) = 0 or if L

is solvable, then F (N) ⊆ F (L).

Proof. If char(F ) = 0, then F (N) is an ideal in L by [22]. If L is solvable, then

F (N) is an ideal in L by [4]. Thus F (N) ⊆ F (L). See Theorem 3.7. ¤

If L is over a field of characteristicp it is possible for F (N) * F (L) when N is

an ideal in L. The following is an example based off an similar example given by

Jacobson in [9].

Example 3.6. Let A be a vector space over a field of characteristic p and let

{x0, x1, . . . , xp−1} be a basis for A. Define linear transformations R and S of A by

R(xi) = xi+1, i < p− 1

R(xp−1) = x0

S(xi) = ixi−1, i(mod p) > 0

S(x0) = 0

Then [R, S] = I where I is the identity linear transformation. Let B be the three

dimensional Lie algebra with basis {R, S, I}. B is a Heisenberg Lie algebra. Let

L be the semi direct sum of A and B with multiplication given by [b, a] = b(a)

for b ∈ B, a ∈ A. Let K = A + 〈S〉. K is nilpotent since S is a nilpotent

linear transformation. Hence F (K) = K2 and K is not an ideal in L. Also

F (K) = K2 = 〈x0, x1, . . . , xp−2〉 is not an ideal in L. Now let H = A + 〈S, I〉.
H is not nilpotent since [I, x0] = x0. H is solvable and K is an ideal in H.

F (K) = K2 is also an ideal in H. Hence F (K) ⊆ F (H). Also F (H) ( H2 and

dimH2 = dimK2 + 1. Thus F (K) = K2 ⊆ F (H) ( H2 yields that F (K) = F (H).

Therefore, F (H) is not an ideal in L even though H is ideal in L. Furthermore,

F (L) = 0 as we now will show. B acts irreducibly on A, hence B is maximal in

L. Thus F (L) ⊆ B. Since L is solvable, F (L) is an ideal of L and therefore,

[F (L), A] ⊆ F (L) ∩ A ⊆ B ∩ A = 0. Since F (L) consists of linear transformations

of A, F (L) = 0. Hence F (H) ( F (L) and F (L) = 0 does not imply that F (H) = 0

even though H is an ideal in L.

Under certain conditions in Lie algebras, we get that F (N) ⊆ F (L). This

property also carries over to the Frattini ideal, nFrat(L), and R(L).

Theorem 3.7. If N ⊆ L and F (N) is an ideal of L, then F (N) ⊆ F (L).

Proof. Suppose not. Then there exists a maximal subalgebra M in L such that

F (N) *M . Then F (N) + M = L. So (F (N) + M) ∩N = F (N) + (N ∩M) = N .
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Thus N ∩ M = N which implies that F (N) ⊂ N ⊆ M which is a contradiction.

Therefore, F (N) ⊆ F (L). ¤

Theorem 3.8. If N ⊆ L and φ(N) is an ideal of L, then φ(N) ⊆ φ(L).

Proof. Suppose not. φ(N)+φ(L) is an ideal in L. So if φ(N)+φ(L) ⊆ F (L) then

φ(N) ⊆ φ(L) which is a contradiction. So there exists a maximal subalgebra M of L

such that φ(N) *M . Then φ(N)+M = L. This implies that φ(N)+(N∩M) = N

as above. This implies that N ∩ M = N . Thus N ⊆ M and hence φ(N) ⊆ M

which is a contradiction. Therefore, φ(N) ⊆ φ(L). ¤

Theorem 3.9. If N ⊆ L and nFrat(N) is an ideal of L, then nFrat(N) ⊆
nFrat(L).

Proof. Suppose not. Then there exists a maximal ideal M of L such that

nFrat(N) * M . Then nFrat(N) + M = L. Then nFrat(N) + (M ∩ N) = N

which implies M ∩ N = N . Thus nFrat(N) ⊆ N ⊆ M which is a contradiction.

Therefore, nFrat(N) ⊆ nFrat(L). ¤

Theorem 3.10. If N ⊆ L and R(N) is an ideal of L, then R(N) ⊆ R(L).

Proof. Suppose not. Then there exists a maximal ideal M of L such that R(N) *
M . Then R(N) + M = L. Then R(N) + (M ∩N) = N which implies M ∩N = N .

Thus R(N) ⊆ N ⊆ M which is a contradiction. Therefore, R(N) ⊆ R(L). ¤

Here we consider what happens when L is the direct sum of ideals. Unlike in

group theory, we do not get equality for the Frattini subalgebra. However, we do

get equality for the Frattini ideal, nFrat(L), and R(L). The proofs of the first two

are shown by Towers in [22].

Lemma 3.11. If L = L1 ⊕ · · · ⊕ Ln, then F (L) = F (L1)⊕ · · · ⊕ F (Ln).

Theorem 3.12. If L = L1 ⊕ · · · ⊕ Ln, then φ(L) = φ(L1)⊕ · · · ⊕ φ(Ln).

Theorem 3.13. If L = L1 ⊕ · · · ⊕ Ln, then nFrat(L) = nFrat(L1) ⊕ · · · ⊕
nFrat(Ln).

Proof. Since L = L1 ⊕ · · · ⊕ Ln, nFrat(Li) ( Li for each i. Let Mj ∈ N (Lj).

Then we have L1 ⊕ · · · ⊕Lj−1 ⊕Lj+1 ⊕ · · · ⊕Ln ⊕Mj ∈ N (L). Thus, nFrat(L) ⊆
L1⊕· · ·⊕Lj−1⊕Lj+1⊕· · ·⊕Ln⊕nFrat(Mj). Therefore, nFrat(L) ⊆ nFrat(L1)⊕
· · · ⊕ nFrat(Ln).

Now consider Lj . Since Lj is an ideal of L, nFrat(Lj) ⊆ nFrat(L) by Theorem

3.9. Thus, nFrat(L1)⊕ · · · ⊕ nFrat(Ln) ⊆ nFrat(L). ¤
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Theorem 3.14. If L = L1 ⊕ · · · ⊕ Ln, then R(L) = R(L1)⊕ · · · ⊕R(Ln).

Proof. The proof is similar to that of nFrat(L). ¤

4. Characterizations of nilpotency

In this section, relations between φ(L), nFrat(L), and R(L) are investigated. We

also find a characterization of nilpotency in terms of the equality of these ideals.

Lemma 4.1. In any Lie algebra L, φ(L) ⊆ R(L) and nFrat(L) ⊆ R(L).

Theorem 4.2. φ(L) ⊆ nFrat(L).

Proof. For each N ∈ N , φ(L) + N E L. Thus φ(L) + N = N or φ(L) + N =

L. If φ(L) + N = L then N = L as φ(L) cannot be supplemented, which is a

contradiction. Thus φ(L) + N = N , so φ(L) ⊆ N for all N ∈ N . Therefore,

φ(L) ⊆ nFrat(L). ¤

Corollary 4.3. For a Lie algebra L, φ(L) ⊆ nFrat(L) ⊆ R(L).

The following is an example of Corollary 4.3.

Example 4.4. Let L be the nonabelian two dimensional Lie algebra, L = span{x, y}
with [x, y] = y. Then y is the only maximal ideal of L. So φ(L) = 0 and nFrat(L) =

R(L) = y. Thus φ(L) ⊂ nFrat(L) ⊆ R(L).

Lemma 4.5. If L is a solvable Lie algebra, then R(L) = nFrat(L).

Proof. Let L be a solvable Lie algebra. Let N be a maximal ideal of L. Then

dim(L/N) = 1 for any N ∈ N . This is true if and only if N ∈ R by Lemma 1.2.

But then the set of all maximal ideals is equal to the set of all maximal subalgebras

that are ideals, N = R. So nFrat(L) = R(L). ¤

Lemma 4.5 is not true if L is not solvable. The following is an example of a

non-solvable Lie algebra with R(L) 6= nFrat(L).

Example 4.6. Let L = sl(2, F ). L is not solvable. Since the only maximal ideal

is {0} then nFrat(L) = {0}. However, L contains no maximal subalgebras that are

ideals, so R = ∅ which implies R(L) = sl(2, F ). Thus R(L) 6= nFrat(L).

Theorem 4.7. Let L be a Lie algebra. Then L is nilpotent if and only if φ(L) =

nFrat(L) = R(L).
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Proof. If L is nilpotent then L is solvable. Hence φ(L) = nFrat(L) = R(L).

So suppose φ(L) = nFrat(L) = R(L). Let M be a maximal ideal of L such that

M = ⊕Mi. Consider the Lie algebra homomorphism Π : L −→ ⊕
(L/Mi), where

Π(x) = (x + M1, x + M2, . . . , x + Mn) for x ∈ L. So each L/Mi is a 1-dimensional

subalgebra of L and hence an abelian subalgebra. The KerΠ = ∩Mi = R(L). But

then L/KerΠ is abelian since it is the direct sum of abelian subalgebras. Thus

L/KerΠ = L/R(L) which equals L/φ(L) is nilpotent and hence L is nilpotent. ¤
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