ON (σ, τ)-HIGHER DERIVATIONS IN PRIME RINGS

Mohammad Ashraf, Almas Khan and Claus Haetinger
Received: 25 September 2009; Revised: 10 April 2010
Communicated by Syed M. Tariq Rizvi

Abstract

Let R be a prime ring with $\operatorname{char}(R) \neq 2$ and σ, τ be commuting endomorphisms of R. In the present paper we show that under certain conditions on R every Jordan (σ, τ)-higher derivation on R is a (σ, τ)-higher derivation on R.

Mathematics Subject Classification (2000): 16W25, 16N60, 16U80.
Keywords: derivation, higher derivation, Jordan (σ, τ)-higher derivation

1. Introduction

Let R be a ring with center $Z(R)$, and σ, τ be endomorphisms of R. Endomorphisms σ, τ are said to be commuting endomorphisms if $\sigma \tau=\tau \sigma$. The set of natural numbers including 0 will be denoted by $I N$ and $[\cdot, \cdot]$ denotes the usual commutator operator. An additive mapping $d: R \rightarrow R$ is said to be a derivation (resp. Jordan derivation) on R if $d(a b)=d(a) b+a d(b)$ (resp. $d\left(a^{2}\right)=$ $d(a) a+a d(a))$ holds for all $a, b \in R$. An additive mapping $d: R \rightarrow R$ is called a (σ, τ)-derivation (resp. Jordan (σ, τ)-derivation) on R if $d(a b)=d(a) \tau(b)+\sigma(a) d(b)$ (resp. $\left.d\left(a^{2}\right)=d(a) \tau(a)+\sigma(a) d(a)\right)$ holds for all $a, b \in R$. Of course a (1,1)derivation (resp. Jordan (1,1)-derivation) is a derivation (resp. Jordan derivation) on R, where 1 is the identity map on R. For an example of a (σ, τ)-derivation which is not a derivation let $R=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}$. Define $\sigma, \tau: R \rightarrow R$ such that $\sigma\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$ and $\tau\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right)$, then clearly σ, τ are endomorphisms of R. Now define a map $d: R \rightarrow R$ such that $d\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$. Then it can be seen that d is a (σ, τ)-derivation on

[^0]R which is not a derivation on R.

Obviously, every derivation is a Jordan derivation on R but the converse need not be true in general. However, in 1957, I.N. Herstein [11] proved that on a prime ring with $\operatorname{char}(R) \neq 2$ every Jordan derivation is a derivation. Later on, this result was extended by several authors (see [2] and [3] where further references can be found). M. Brešar and J. Vukman [4] extended this result for (σ, τ)-derivations.

The concept of derivation was extended to higher derivation by F. Hasse and F.K. Schmidt [10] (see [1] and [9] for an historical account and applications). Let $D=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ be a family of additive mappings $d_{n}: R \rightarrow R$. Following Hasse and Schmidt [10], D is said to be a higher derivation (resp. Jordan higher derivation) on R if $d_{0}=I_{R}$ (the identity map on R) and $d_{n}(a b)=\sum_{i+j=n} d_{i}(a) d_{j}(b)$ (resp. $\left.d_{n}\left(a^{2}\right)=\sum_{i+j=n} d_{i}(a) d_{j}(a)\right)$ for all $a, b \in R$ and for each $n \in I N$.

In an attempt to generalize Herstein's result for higher derivations, C. Haetinger [8] proved that on a prime ring with $\operatorname{char}(R) \neq 2$ every Jordan higher derivation is a higher derivation (see [6] and [7] for English versions). Now, the main purpose of this paper is to extend this result for (σ, τ)-higher derivations in rings.

2. Preliminaries and Main Results

Motivated by the existence of (σ, τ)-derivations in rings we shall introduce the notion of (σ, τ)-higher derivation in rings as follows. Let R be a ring and $D=$ $\left\{f_{n}\right\}_{n \in N}$ be a family of maps $f_{n}: R \rightarrow R$. Then D is said to be a (σ, τ)-higher derivation (resp. Jordan (σ, τ)-higher derivation) where σ, τ are endomorphisms on R if:
(i) $f_{0}=I_{R}$;
(ii) $f_{n}(a+b)=f_{n}(a)+f_{n}(b)$;
(iii) $f_{n}(a b)=\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(b)\right)$
(resp. $f_{n}\left(a^{2}\right)=\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(a)\right)$, for all $a, b \in R$ and for each $n \in I N$.

We pause to look at an example of a (σ, τ)-higher derivation on R .
Example 2.1. Let R be an algebra over field of rationals Q and σ, τ be endomorphisms of R. Define $d_{n}=\frac{\delta^{n}}{n!}$, for all $n \in I N$, where δ is a (σ, τ)-derivation on R such that $\delta \sigma=\sigma \delta$ and $\delta \tau=\tau \delta$. Consider the sequence $D=\left\{d_{n}\right\}_{n \in N}$; we shall show that D is (σ, τ)-higher derivation. We shall use induction on n to prove the claim:

- For $n=0, d_{0}(a b)=\frac{\delta^{0}(a b)}{0!}=a b$.
- For $n=1$,

$$
d_{1}(a b)=\frac{\delta^{1}(a b)}{1!}=\delta(a b)=\sigma(a) \delta(b)+\delta(a) \tau(b)=\sigma(a) d_{1}(b)+d_{1}(a) \tau(b) .
$$

- For $n=2$,

$$
\begin{aligned}
d_{2}(a b) & =\frac{\delta^{2}(a b)}{2!}=\frac{\delta}{2}(\delta(a b))=\frac{\delta}{2}(\sigma(a) \delta(b)+\delta(a) \tau(b))= \\
& =\frac{1}{2}\left(\sigma^{2}(a) \delta^{2}(b)+\sigma(\delta(a)) \delta(\tau(b))+\delta(\sigma(a)) \tau(\delta(b))+\delta^{2}(a) \tau^{2}(b)\right)= \\
& =\sigma^{2}(a) \frac{\left.\delta^{2}(b)\right)}{2!}+\delta(\sigma(a)) \delta(\tau(b))+\frac{\delta^{2}(a)}{2!} \tau^{2}(b)= \\
& =\sigma^{2}(a) d_{2}(b)+d_{1}(\sigma(a)) d_{1}(\tau(b))+d_{2}(a) \tau^{2}(b) .
\end{aligned}
$$

- Now suppose that $d_{n}=\frac{\delta^{n}}{n!}$ defines a (σ, τ)-higher derivation on R for each $m<n$.
Consider $d_{n}(a b)=\frac{\delta^{n}(a b)}{n!}=\frac{1}{n} \delta\left(\frac{\delta^{n-1}(a b)}{(n-1)!}\right)=\frac{1}{n} \delta\left(d_{n-1}(a b)\right)$. Applying the hypothesis of induction on d_{n-1}, we have

$$
\begin{aligned}
d_{n}(a b)= & \frac{\delta}{n} \sum_{j=0}^{n-1} d_{j}\left(\sigma^{n-1-j}(a)\right) d_{n-1-j} \tau^{i}(b)=\frac{\delta}{n} \sum_{j=0}^{n-1} \frac{\delta^{j}}{j!}\left(\sigma^{n-1-j}(a)\right) \frac{\delta^{n-1-j}}{(n-1-j)!}\left(\tau^{j}(b)\right)= \\
= & \frac{1}{n} \sum_{j=0}^{n-1}\left\{\frac{\sigma\left(\delta^{j}\left(\sigma^{n-1-j}(a)\right)\right)}{j!} \frac{\delta^{n-j}\left(\tau^{j}(b)\right)}{(n-1-j)!}+\frac{\delta^{j+1}\left(\sigma^{n-1-j}(a)\right)}{j!} \frac{\tau\left(\delta^{n-1-j}\left(\tau^{j}(b)\right)\right)}{(n-1-j)!}\right\}= \\
= & \frac{1}{n} \sum_{j=0}^{n-1}\left\{d_{j}\left(\sigma^{n-j}(a)\right) d_{n-j}\left(\tau^{j}(b)\right)(n-j)+d_{j+1}\left(\sigma^{n-1-j}(a)\right) d_{n-1-j}\left(\tau^{j+1}(b)\right)(j+1)\right\}= \\
= & \sum_{j=0}^{n-1} d_{j}\left(\sigma^{n-j}(a)\right) d_{n-j}\left(\tau^{j}(b)\right)-\frac{1}{n} \sum_{j=0}^{n-2} d_{j}\left(\sigma^{n-j}(a)\right) d_{n-j}\left(\tau^{j}(b)\right) j- \\
& -\frac{1}{n} d_{n-1}(\sigma(a)) d_{1}\left(\tau^{n-1}(b)\right)(n-1)+\frac{1}{n} \sum_{l=2}^{n} d_{l}\left(\sigma^{n-l}(a)\right) d_{n-l}\left(\tau^{l}(b)\right)(l-1)+ \\
& +\frac{1}{n} \sum_{l=1}^{n} d_{l}\left(\sigma^{n-l}(a)\right) d_{n-l}\left(\tau^{l}(b)\right) .
\end{aligned}
$$

Simplifying further this equality we get,

$$
\begin{aligned}
d_{n}(a b)= & \sum_{j=0}^{n-1} d_{j}\left(\sigma^{n-j}(a)\right) d_{n-j}\left(\tau^{j}(b)\right)-\frac{1}{n} \sum_{j=2}^{n-2} d_{j}\left(\sigma^{n-j}(a)\right) d_{n-j}\left(\tau^{j}(b)\right) j- \\
& -\frac{1}{n} d_{1}\left(\sigma^{n-1}(a)\right) d_{n-1}(\tau(b))-d_{n-1}(\sigma(a)) d_{1}\left(\tau^{n-1}(b)+\frac{1}{n} d_{n-1}(\sigma(a)) d_{1}\left(\tau^{n-1}(b)\right)+\right. \\
& +\frac{1}{n} \sum_{l=2}^{n-2} d_{l}\left(\sigma^{n-l}(a)\right) d_{n-l}\left(\tau^{l}(b)\right) l+d_{n}(a) \tau^{n}(b)+d_{n-1}(\sigma(a)) d_{1}\left(\tau^{n-1}(b)\right)- \\
& -\frac{1}{n} d_{n-1}(\sigma(a)) d_{1}\left(\tau^{n-1}(b)\right)-\frac{1}{n} \sum_{l=2}^{n} d_{l}\left(\sigma^{n-l}(a)\right) d_{n-l}\left(\tau^{l}(b)\right)+ \\
& +\frac{1}{n} \sum_{l=2}^{n} d_{l}\left(\sigma^{n-l}(a)\right) d_{n-l}\left(\tau^{l}(b)\right)+\frac{1}{n} d_{1}\left(\sigma^{n-1}(a)\right) d_{n-1}(\tau(b))= \\
= & \sum_{j=0}^{n} d_{j}\left(\sigma^{n-j}(a)\right) d_{n-j}\left(\tau^{j}(b)\right) .
\end{aligned}
$$

Thus, the family $D=\left\{d_{n}\right\}_{n \in \mathbb{N}}$, where $d_{n}=\frac{\delta^{n}}{n!}$, defines a (σ, τ)-higher derivation on R.

The above definitions suggest that every (σ, τ)-higher derivation on R is a Jordan (σ, τ)-higher derivation on R but the converse need not be true in general. It is
also worth mentioning that in the above example if δ is assumed to be a Jordan (σ, τ)-derivation on R which is not a (σ, τ)-derivation on R, then it is equaly easy to find a Jordan (σ, τ)-higher derivation on R which is not a (σ, τ)-higher derivation on R.

In the present paper we explore the converse part of this problem and find the condition on R under which a Jordan (σ, τ)-higher derivation on R becomes (σ, τ) higher derivation on R. In fact, the main results of the present paper are as follows:

Theorem 2.2. Let R be a 2-torsion-free ring and σ, τ be commuting endomorphisms of R such that τ is one-one and onto. If R has a commutator which is not a right zero divisor, then every Jordan (σ, τ)-higher derivation on R is a (σ, τ)-higher derivation on R.

Theorem 2.3. Let R be a non-commutative prime ring with $\operatorname{char}(R) \neq 2$ and σ, τ be commuting endomorphisms of R such that τ is one-one and onto. Then, every Jordan (σ, τ)-higher derivation on R is a (σ, τ)-higher derivations on R.

Note that Theorem 2.2 above seems similar to [5, Theorem 1.3] for Jordan generalized higher derivations and Lie ideals.

For every fixed $n \in I N$ and for each $a, b \in R$ we denote by $\Phi_{n}(a, b)$ the element of R defined by

$$
\Phi_{n}(a, b)=f_{n}(a b)-\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(b)\right)
$$

It is straightforward to see that if $\Phi_{n}(a, b)=0$ then $D=\left\{f_{n}\right\}_{n \in N}$ is a (σ, τ)-higher derivation on R.

In order to develop the proofs of the above theorems, we begin with the following known lemmas:

Lemma 2.4. ([12, Lemma 3.10]) Let R be a prime ring with char $(R) \neq 2$ and suppose that $a, b \in R$ such that arb b bra $=0$ for all $r \in R$. Then either $a=0$ or $b=0$.

Lemma 2.5. ([4, Lemma 4]) Let G and H be the additive groups and let R be a 2-torsion-free ring. Let $f: G \times G \rightarrow R$ and $g: G \times G \rightarrow R$ be biadditive maps. Suppose that for each pair $a, b \in G$ either $f(a, b)=0$ or $g(a, b)^{2}=0$ then in this case either $f(a, b)=0$ or $g(a, b)^{2}=0$ for all $a, b \in G$.

Now we prove the following:
Lemma 2.6. Let R be ring and $D=\left\{f_{n}\right\}_{n \in N}$ be a Jordan (σ, τ)-higher derivation, where σ, τ are commuting endomorphisms on R. Then for all $a, b, c \in R$ and each fixed $n \in I N$ we have;
(i) $f_{n}(a b+b a)=\sum_{i+j=n}\left(f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(b)\right)+f_{i}\left(\sigma^{n-i}(b)\right) f_{j}\left(\tau^{n-j}(a)\right)\right)$.

If R is a 2-torsion-free ring then,
(ii) $f_{n}(a b a)=\sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)$;
(iii) $f_{n}(a b c+c b a)=\sum_{i+j+k=n}\left(f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(c)\right)+f_{i}\left(\sigma^{n-i}(c)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)\right.$, for all $a, b, c \in R$.

Proof. (i) For $a, b \in R, n \in I N$ we have, $f_{n}\left(a^{2}\right)=\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(a)\right)$.
So by linearizing the above relation on a we obtain

$$
\begin{aligned}
f_{n}\left((a+b)^{2}\right)= & \sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a+b)\right) f_{j}\left(\tau^{n-j}(a+b)\right)= \\
= & \sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)+\sigma^{n-i}(b)\right) f_{j}\left(\tau^{n-j}(a)+\tau^{n-j}(b)\right)= \\
= & \sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(a)\right)+\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(b)\right)+ \\
& +\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(b)\right) f_{j}\left(\tau^{n-j}(a)\right)+\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(b)\right) f_{j}\left(\tau^{n-j}(b)\right),
\end{aligned}
$$

for all $a, b \in R$.

Again;

$$
\begin{aligned}
f_{n}\left((a+b)^{2}\right)= & f_{n}\left(a^{2}+a b+b a+b^{2}\right)=f_{n}\left(a^{2}\right)+f_{n}(a b+b a)+f_{n}\left(b^{2}\right)= \\
= & f_{n}(a b+b a)+\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(a)\right)+ \\
& +\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(b)\right) f_{j}\left(\tau^{n-j}(b)\right),
\end{aligned}
$$

for all $a, b \in R$.

Comparing the two expressions and reordering the indices we obtain the required result.
(ii) Using (i) and replacing b by $a b+b a$ we see that, for $\omega=a(a b+b a)+(a b+b a) a$,

$$
\begin{aligned}
f_{n}(\omega)= & f_{n}(a(a b+b a)+(a b+b a) a)= \\
= & \sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(a b+b a)\right) \sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a b+b a)\right) f_{j}\left(\tau^{n-j}(a)\right)= \\
= & \sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right)\left(\sum_{r+s=j} f_{r}\left(\sigma^{j-r} \tau^{n-j}(a)\right) f_{s}\left(\tau^{j-s} \tau^{n-j}(b)\right)+\right. \\
& \left.+\sum_{r+s=j} f_{r}\left(\sigma^{j-r} \tau^{n-j}(b)\right) f_{s}\left(\tau^{j-s} \tau^{n-j}(a)\right)\right)+ \\
& +\sum_{i+j=n}\left(\sum_{k+l=i} f_{k}\left(\sigma^{i-k} \sigma^{n-i}(a)\right) f_{l}\left(\tau^{i-l} \sigma^{n-i}(b)\right)+\right. \\
& \left.+\sum_{k+l=i} f_{k}\left(\sigma^{i-k} \sigma^{n-i}(b)\right) f_{l}\left(\tau^{i-l} \sigma^{n-i}(a)\right)\right) f_{j}\left(\tau^{n-j}(a)\right)= \\
= & \sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) \sum_{r+s=j} f_{r}\left(\sigma^{j-r} \tau^{n-j}(a)\right) f_{s}\left(\tau^{j-s} \tau^{n-j}(b)\right)+ \\
& +\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) \sum_{r+s=j} f_{r}\left(\sigma^{j-r} \tau^{n-j}(b)\right) f_{s}\left(\tau^{j-s} \tau^{n-j}(a)\right)+ \\
& +\sum_{i+j=n} \sum_{k+l=i} f_{k}\left(\sigma^{i-k} \sigma^{n-i}(a)\right) f_{l}\left(\tau^{i-l} \sigma^{n-i}(b)\right) f_{j}\left(\tau^{n-j}(a)\right)+ \\
& +\sum_{i+j=n} \sum_{k+l=i} f_{k}\left(\sigma^{i-k} \sigma^{n-i}(b)\right) f_{l}\left(\tau^{i-l} \sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(a)\right) .
\end{aligned}
$$

Using,

$$
\begin{aligned}
& \sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) \sum_{r+s=j} f_{r}\left(\sigma^{j-r} \tau^{n-j}(b)\right) f_{s}\left(\tau^{j-s} \tau^{n-j}(a)\right)+ \\
& +\sum_{i+j=n} \sum_{k+l=i} f_{k}\left(\sigma^{i-k} \sigma^{n-i}(a)\right) f_{l}\left(\tau^{i-l} \sigma^{n-i}(b)\right) f_{j}\left(\tau^{n-j}(a)\right)= \\
= & 2 \sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(a)\right),
\end{aligned}
$$

we obtain,

$$
\begin{align*}
f_{n}(\omega)= & f_{n}(a(a b+b a)+(a b+b a) a)= \\
= & \sum_{i+j=n} \sum_{r+s=j} f_{i}\left(\sigma^{n-i}(a)\right) f_{r}\left(\sigma^{j-r} \tau^{n-j}(a)\right) f_{s}\left(\tau^{n-s}(b)\right)+ \\
& +2 \sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)+ \tag{1}\\
& +\sum_{i+j=n} \sum_{k+l=i} f_{k}\left(\sigma^{n-k}(b)\right) f_{l}\left(\tau^{i-l} \sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(a)\right) .
\end{align*}
$$

On the other hand,

$$
f_{n}(a(a b+b a)+(a b+b a) a)=f_{n}\left(\left(a^{2} b+b a^{2}\right)+2 a b a\right)=f_{n}\left(a^{2} b+b a^{2}\right)+2 f_{n}(a b a) .
$$

Now, from (i) and using the fact that $D=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a Jordan (σ, τ)-higher derivation,

$$
\begin{align*}
f_{n}(\omega)= & f_{n}(a(a b+b a)+(a b+b a) a)=f_{n}\left(a^{2} b+b a^{2}\right)+f_{n}(2 a b a)= \\
= & \sum_{i+j=n} f_{i}\left(\sigma^{n-i}\left(a^{2}\right)\right) f_{j}\left(\tau^{n-j}(b)\right)+\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(b)\right) f_{j}\left(\tau^{n-j}\left(a^{2}\right)\right)+2 f_{n}(a b a)= \\
= & 2 f_{n}(a b a)+\sum_{i+j=n} \sum_{r+s=i} f_{r}\left(\sigma^{i-r} \sigma^{n-i}(a)\right) f_{s}\left(\tau^{i-s} \sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(b)\right)+ \\
& +\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(b)\right) \sum_{k+l=j} f_{k}\left(\sigma^{j-k} \tau^{n-j}(a)\right) f_{l}\left(\tau^{n-l}(a)\right)= \\
= & \sum_{r+s+j=n} f_{r}\left(\sigma^{n-r}(a)\right) f_{s}\left(\tau^{r} \sigma^{j}(a)\right) f_{j}\left(\tau^{n-j}(b)\right) \sum_{i+k+l=n} f_{i}\left(\sigma^{n-i}(b)\right) f_{k}\left(\sigma^{l} \tau^{k+l}(a)\right) f_{l}\left(\tau^{n-l}(a)\right)+ \tag{2}\\
& +2 f_{n}(a b a) .
\end{align*}
$$

Comparing the above two equations (1) and (2) and reordering the indices and using the fact that $\operatorname{char}(R) \neq 2$ we get the required result.
(iii) Linearizing the above result, we have

$$
\begin{align*}
\gamma= & f_{n}((a+c) b(a+c))= \\
= & \sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(a+c)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(a+c)\right)= \\
= & \left.\sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k} a\right)\right) \sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(c)\right)+ \\
& +\sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(c)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(a)\right) \sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(c)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(c)\right)= \\
= & f_{n}(a b a)+\sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(c)\right)+ \\
& +\sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(c)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)+f_{n}(c b c) . \tag{3}
\end{align*}
$$

Again,

$$
\begin{equation*}
\gamma=f_{n}(a+c) b(a+c)=f_{n}(a b a)+f_{n}(a b c+c b a)+f_{n}(c b c) . \tag{4}
\end{equation*}
$$

Comparing (3) and (4) and using the fact that $\operatorname{char}(R) \neq 2$ we get the required result.

Lemma 2.7. Let R be a 2-torsion-free ring, and σ, τ be commuting endomorphisms of R. Let $D=\left\{f_{n}\right\}_{n \in N}$ be a Jordan (σ, τ)-higher derivation of R. If $\Phi_{m}(a, b)=0$, for each $m<n$ and for all $a, b \in R$, then
(i) $\Phi_{n}(a, b) \tau^{n}[a, b]=0$, for all $a, b \in R$;
(ii) $\Phi_{n}(a, b) \tau^{n}(r) \tau^{n}[b, a]+\sigma^{n}[b, a] \sigma^{n}(r) \phi_{n}(a, b)=0$, for all $r, a, b \in R$.

Proof. (i) Take $\xi=(a b(a b)+(a b) b a)$. Then, $f_{n}(\xi)=f_{n}(a b(a b)+(a b) b a)$. Using Lemma 2.6 (iii) we have,

$$
\begin{align*}
f_{n}(\xi)= & \sum_{i+j+k=n}\left(f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(a b)\right)+f_{i}\left(\sigma^{n-i}(a b)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)=\right. \\
= & \sum_{i+j=n, k=0} f_{i}\left(\sigma^{n-i}(a) f_{j}\left(\tau^{n-j}(b)\right) \tau^{n}(a b)+\sum_{i+j=0, k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{n} \tau^{i}(b)\right) f_{n}(a b)+\right. \\
& +\sum_{0<i+j, k \leq n-1}^{i+j+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(a b)\right)= \\
& +\sum_{j+k=n, i=0}^{j+i} \sigma^{n}(a b) f_{j}\left(\sigma^{n-j}(b)\right) f_{k}\left(\tau^{n-k}(a)+\sum_{j+k=0, i=n} f_{n}(a b) f_{j}\left(\sigma^{k} \tau^{n}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)+\right. \\
& +\sum_{0<i, j+k \leq n-1} f_{i}\left(\sigma^{n-i}(a b)\right) f_{j}\left(\sigma^{k} \tau^{i}(b) f_{k}\left(\tau^{n-k}(a)\right)=\right. \\
= & \sum_{i+j=n}^{i+j+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(b)\right) \tau^{n}(a b)+\sigma^{n}(a b) f_{n}(a b)+ \\
& +\sum_{0<i+j, u+r \leq n-1}^{i+j+u+r=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{u+r} \tau^{i}(b)\right) f_{u}\left(\sigma^{r} \tau^{i+j}(a)\right) f_{r}\left(\tau^{n-r}(b)\right)+ \\
& +\sigma^{n}(a b) \sum_{j+k=n}^{i+j} f_{j}\left(\sigma^{n-j}(b)\right) f_{k}\left(\tau^{n-k}(a)+f_{n}(a b) \tau^{n}(b a)+\right. \\
& +\sum_{0<l+t, j+k \leq n-1}^{l+t+j+k=n} f_{l}\left(\sigma^{n-l}(a)\right) f_{t}\left(\tau^{l} \sigma^{j+k}(b)\right) f_{j}\left(\sigma^{k} \tau^{l+t}(b)\right) f_{k}\left(\tau^{n-k}(a)\right) . \tag{5}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
f_{n}(\xi)= & f_{n}\left((a b)^{2}+\left(a b^{2} a\right)\right)= \\
= & \sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a b)\right) f_{j}\left(\tau^{n-j}(a b)+\sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{k} \tau^{i}\left(b^{2}\right)\right) f_{k}\left(\tau^{n-k}(a)\right)=\right. \\
= & f_{n}(a b)\left(\tau^{n}(a b)+\sigma^{n}(a b) f_{n}(a b)+\sum_{i+j=n}^{0<i, j \leq n-1} f_{i}\left(\sigma^{n-i}(a b)\right) f_{j}\left(\tau^{n-j}(a b)\right)+\right. \\
& +\sum_{i+p+q+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{p}\left(\sigma^{q+k} \tau^{i}(b)\right) f_{q}\left(\tau^{i+p} \sigma^{k}(b)\right) f_{k}\left(\tau^{n-k}(a)\right) .
\end{aligned}
$$

Using, $\Phi_{m}(a, b)=0$, for all $m<n$:

$$
\begin{align*}
f_{n}(\xi)= & f_{n}(a b) \tau^{n}(a b)+\sigma^{n}(a b) f_{n}(a b)+ \\
& +\sum_{0<u+r, l+t \leq n-1}^{0+\sum_{n}} f_{u}\left(\sigma^{n-u}(a)\right) f_{r}\left(\tau^{u} \sigma^{l+t}(b)\right) f_{l}\left(\sigma^{t} \tau^{u+r}(a)\right) f_{t}\left(\tau^{n-t}(b)\right)+ \\
& +\sum_{i+p=n}^{u+r+l+t=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{p}\left(\tau^{n-p}(b)\right) \tau^{n}(b a)+\sigma^{n}(a b) \sum_{q+k=n} f_{q}\left(\sigma^{n-q}(b)\right) f_{k}\left(\sigma^{n-k}(a)\right)+ \\
& +\sum_{i+i+p, q+k \leq n-1} \sum_{i}\left(\sigma^{n-i}(a)\right) f_{p}\left(\sigma^{q+k} \tau^{i}(b)\right) f_{q}\left(\tau^{i+p} \sigma^{k}(b)\right) f_{k}\left(\tau^{n-k}(a)\right) . \tag{6}
\end{align*}
$$

Comparing the two equations (5) and (6) we get $\Phi_{n}(a, b) \tau^{n}[a, b]=0$, for all $a, b \in R$.
(ii) Suppose, $\chi=a b r b a+b a r a b$, where $a, b, r \in R$. Then by the Lemma 2.6 (ii), we obtain:

$$
\begin{align*}
f_{n}(\chi)= & f_{n}(a(b r b) a)+f_{n}(b(a r a) b)= \\
= & \sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{k} \tau^{i}(b r b)\right) f_{k}\left(\tau^{n-k}(a)\right)+f_{i}\left(\sigma^{n-i}(b)\right) f_{j}\left(\sigma^{k} \tau^{i}(a r a)\right) f_{k}\left(\tau^{n-k}(b)\right)= \\
= & \sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(a)\right)\left(\sum_{l+t+u=j} f_{l}\left(\sigma^{j-l} \sigma^{k} \tau^{i}(b)\right) f_{t}\left(\sigma^{u} \tau^{l} \sigma^{k} \tau^{i}(r)\right) f_{u}\left(\tau^{j-u} \sigma^{k} \tau^{i}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)+\right. \\
& +\sum_{i+j+k=n} f_{i}\left(\sigma^{n-i}(b)\right)\left(\sum_{l+t+u=j} f_{l}\left(\sigma^{j-l} \sigma^{k} \tau^{i}(a)\right) f_{t}\left(\sigma^{u} \tau^{l} \sigma^{k} \tau^{i}(r)\right) f_{u}\left(\tau^{j-u} \sigma^{k} \tau^{i}(a)\right) f_{k}\left(\tau^{n-k}(b)\right)=\right. \\
= & \sum_{i+l+t u+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\sigma^{t+u+k} \tau^{i}(b)\right) f_{t}\left(\sigma^{u+k} \tau^{i+l}(r)\right) f_{u}\left(\tau^{i+l+t} \sigma^{k}(b) f_{k}\left(\tau^{n-k}(a)\right)+\right. \\
& +\sum_{i+l+t+u+k=n} f_{i}\left(\sigma^{n-i}(b)\right) f_{l}\left(\sigma^{t+u+k} \tau^{i}(a)\right) f_{t}\left(\sigma^{u+k} \tau^{i+l}(r)\right) f_{u}\left(\tau^{i+l+t} \sigma^{k}(a)\right) f_{k}\left(\tau^{n-k}(b)\right) . \tag{7}
\end{align*}
$$

Again consider $f_{n}(\chi)=f_{n}((a b) r(b a)+(b a) r(a b))$. Applying Lemma 2.6 (iii);

$$
\begin{equation*}
f_{n}(\chi)=\sum_{p+q+s=n}\left(f_{i}\left(\sigma^{n-p}(a b)\right) f_{q}\left(\sigma^{s} \tau^{p}(r)\right) f_{s}\left(\tau^{n-s}(b a)\right)+f_{p}\left(\sigma^{n-p}(b a)\right) f_{q}\left(\sigma^{s} \tau^{p}(r)\right) f_{s}\left(\tau^{n-s}(a b)\right)\right. \tag{8}
\end{equation*}
$$

Equating (7) and (8) we find that;

$$
\begin{align*}
0= & \sum_{p+q+s=n} f_{p}\left(\sigma^{n-p}(a b)\right) f_{q}\left(\sigma^{s} \tau^{p}(r)\right) f_{s}\left(\tau^{n-s}(b a)\right)- \\
& -\sum_{i+l+t+u+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\sigma^{t+u+k} \tau^{i}(b)\right) f_{t}\left(\sigma^{u+k} \tau^{i+l}(r)\right) f_{u}\left(\tau^{i+l+t} \sigma^{k}(b) f_{k}\left(\tau^{n-k}(a)\right)+\right. \\
& +\sum_{p+q+s=n} f_{p}\left(\sigma^{n-p}(b a)\right) f_{q}\left(\sigma^{s} \tau^{p}(r)\right) f_{s}\left(\tau^{n-s}(a b)\right)- \\
& -\sum_{i+l+t+u+k=n} f_{i}\left(\sigma^{n-i}(b)\right) f_{l}\left(\sigma^{t+u+k} \tau^{i}(a)\right) f_{t}\left(\sigma^{u+k} \tau^{i+l}(r)\right) f_{u}\left(\tau^{i+l+t} \sigma^{k}(a)\right) f_{k}\left(\tau^{n-k}(b)\right) . \tag{9}
\end{align*}
$$

Initially calculating the first term of the right hand side of (9);

$$
\begin{aligned}
& \sum_{p+s=n} f_{p}\left(\sigma^{n-p}(a b)\right) f_{q}\left(\sigma^{s} \tau^{p}(r)\right) f_{s}\left(\tau^{n-s}(b a)\right)= \\
= & \sum_{p+s=n} f_{p}\left(\sigma^{n-p}(a b)\right) \sigma^{s} \tau^{p}(r) f_{s}\left(\tau^{n-s}(b a)\right)+\sum_{p+s=n-1} f_{p}\left(\sigma^{n-p}(a b)\right) f_{1}\left(\sigma^{s} \tau^{p}(r)\right) f_{s}\left(\tau^{n-s}(b a)\right)+ \\
& +\cdots+\sum_{p+s=1} f_{p}\left(\sigma^{n-p}(a b)\right) f_{n-1}\left(\sigma^{s} \tau^{p}(r)\right) f_{s}\left(\tau^{n-s}(b a)\right)+ \\
& +\sum_{p+s=0} f_{p}\left(\sigma^{n-p}(a b)\right) f_{n}\left(\sigma^{s} \tau^{p}(r)\right) f_{s}\left(\tau^{n-s}(b a)\right)= \\
= & f_{n}(a b) \tau^{n}(r) \tau^{n}(b a)+\sigma^{n}(a b) \sigma^{n}(r) f_{n}(b a)+ \\
& +\sum_{p+s=n} f_{p}\left(\sigma^{n-p}(a b)\right) \sigma^{s} \tau^{p}(r) f_{s}\left(\tau^{n-s}(b a)\right)+\sum_{p+s=n-1}^{p, s \leq n-1} f_{p}\left(\sigma^{n-p}(a b)\right) f_{1}\left(\sigma^{s} \tau^{p}(r)\right) f_{s}\left(\tau^{n-s}(b a)\right)+ \\
& +\cdots+f_{1}\left(\sigma^{n-1}(a b)\right) f_{n-1}(\tau(r)) \tau^{n}(b a)+\sigma^{n}(a b) f_{n-1}(\sigma(r)) f_{1}\left(\tau^{n-1}(b a)\right)+\sigma^{n}(a b) f_{n}(r) \tau^{n}(b a) .
\end{aligned}
$$

Using the hypothesis that $\Phi_{m}(a, b)=0$, for all $m<n$.

$$
\begin{aligned}
= & f_{n}(a b) \tau^{n}(r b a)+\sigma^{n}(a b r) f_{n}(b a)+ \\
& +\sum_{p, s=n-1} \sum_{p+s=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{p-j} \sigma^{n-p}(b)\right) \sigma^{s} \tau^{p}(r) \sum_{u+k=s} f_{u}\left(\sigma^{s-u} \tau^{n-s}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)+ \\
& +\sum_{p+s=n-1} \sum_{i+j=p} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{p-j} \sigma^{n-p}(b)\right) f_{1}\left(\sigma^{s} \tau^{p}(r)\right) \sum_{u+k=s} f_{u}\left(\sigma^{s-u} \tau^{n-s}(b)\right) f_{k}\left(\tau^{s-k} \tau^{n-s}(a)\right)+ \\
& +\cdots+\sum_{i+j=1} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{1-j} \sigma^{n-1}(b)\right) f_{n-1}(\tau(r)) \tau^{n}(b a)+ \\
& +\sigma^{n}(a b) f_{n-1}(\sigma(r))\left(\sum_{u+k=1} f_{u}\left(\sigma^{1-u} \tau^{n-1}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)\right)+\sigma^{n}(a b) f_{n}(r) \tau^{n}(b a)= \\
= & f_{n}(a b) \tau^{n}(r b a)+\sigma^{n}(a b r) f_{n}(b a)+ \\
& +\sum_{i+j, u+k \leq n-1}^{i+j+u+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{i} \sigma^{u+k}(b)\right) \sigma^{u+k} \tau^{i+j}(r) f_{u}\left(\sigma^{k} \tau^{i+j}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)+ \\
& +\sum_{i+j+u+k=n-1} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{i} \sigma^{u+k+1}(b)\right) f_{1}\left(\sigma^{u+k} \tau^{i+j}(r)\right) f_{u}\left(\sigma^{k} \tau^{i+j+1}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)+ \\
& +\cdots+f_{1}\left(\sigma^{n-1}(a)\right) \tau \sigma^{n-1}(b) f_{n-1}(\tau(r)) \tau^{n}(b a)+\sigma^{n}(a) f_{1}\left(\sigma^{n-1}(b)\right) f_{n-1}(\tau(r)) \tau^{n}(b a)+ \\
& \left.+\sigma^{n}(a b) f_{n-1}(\sigma(r)) f_{1}\left(\tau^{n-1}(b)\right) \tau^{n}(a)+\sigma^{n}(a b) f_{n-1}(\sigma(r)) \sigma \tau^{n-1}(b)\right) f_{1}\left(\tau^{n-1}(a)\right)+ \\
& +\sigma^{n}(a b) f_{n}(r) \tau^{n}(b a) .
\end{aligned}
$$

Similiarly the second term of the right hand side of (9) reduces to,

$$
\begin{aligned}
& =\sum_{i+l+t+u+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\sigma^{t+u+k} \tau^{i}(b)\right) f_{t}\left(\sigma^{u+k} \tau^{i+l}(r)\right) f_{u}\left(\tau^{i+l+t} \sigma^{k}(b) f_{k}\left(\tau^{n-k}(a)\right)=\right. \\
& =\sum_{i+l+u+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\sigma^{u+k} \tau^{i}(b)\right) \sigma^{u+k} \tau^{i+l}(r) f_{u}\left(\tau^{i+l} \sigma^{k}(b)\right) f_{k}\left(\sigma^{n-k}(a)\right)+ \\
& \quad+\sum_{i+l+u+k=n-1} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\sigma^{1+u+k} \tau^{i}(b)\right) f_{1}\left(\sigma^{u+k} \tau^{i+l}(r)\right) f_{u}\left(\tau^{i+l+1} \sigma^{k}(b)\right) f_{k}\left(\sigma^{n-k}(a)\right)+ \\
& \\
& +\cdots+\sum_{i+l+u+k=1} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\sigma^{n-1+u+k} \tau^{i}(b)\right) f_{n-1}\left(\sigma^{u+k} \tau^{i+l}(r)\right) f_{u}\left(\tau^{i+l+n-1}(b)\right) f_{k}\left(\sigma^{n-k}(a)\right)+ \\
& \quad+\sum_{i+l+u+k=0} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\sigma^{n+u+k} \tau^{i}(b)\right) f_{n}\left(\sigma^{u+k} \tau^{i+l}(r)\right) f_{u}\left(\tau^{i+l+n}(b)\right) f_{k}\left(\sigma^{n-k}(a)\right)= \\
& =\sum_{u+k=n}^{\left.\sigma^{n}(a b) \sigma^{n}(r) f_{u}\left(\sigma^{n-u}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)+\sum_{i+l=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\tau^{n-l}(b)\right) \tau^{n}(r)\right) \tau^{n}(b a)+} \\
& \quad+\sum_{i+l, u+k \leq n-1}^{i+l+u+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\sigma^{u+k} \tau^{i}(b)\right) \sigma^{u+k} \tau^{i+l}(r) f_{u}\left(\tau^{i+l} \sigma^{k}(b)\right) f_{k}\left(\sigma^{n-k}(a)\right)+ \\
& \quad+\sum_{i+l+u+k=n-1} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\sigma^{1+u+k} \tau^{i}(b)\right) f_{1}\left(\sigma^{u+k} \tau^{i+l}(r)\right) f_{u}\left(\tau^{1+i+l} \sigma^{k}(b)\right) f_{k}\left(\sigma^{n-k}(a)\right)+ \\
& \quad+\cdots+f_{1}\left(\sigma^{n-1}(a)\right) \sigma^{n-1} \tau(b) f_{n-1}(\tau(r)) \tau^{n}(b a)+\sigma^{n}(a) f_{1}\left(\sigma^{n-1}(b)\right) f_{n-1}(\tau(r)) \tau^{n}(b a)+ \\
& \quad+\sigma^{n}(a b) f_{n-1}(\sigma(r)) \tau^{n-1} \sigma(b) f_{1}\left(\tau^{n-1}(a)\right)+\sigma^{n}(a b) f_{n-1}(\sigma(r)) f_{1}\left(\tau^{n-1} \sigma(b)\right) \tau^{n}(a)+ \\
& \quad+\sigma^{n}(a) \sigma^{n}(b) f_{n}(r) \tau^{n}(b) \tau^{n}(a)= \\
& \sum_{u+k=n} \sigma^{n}(a b r) f_{u}\left(\sigma^{n-u}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)+\sum_{i+l=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\tau^{n-l}(b)\right) \tau^{n}(r b a)+ \\
& \quad+\sum_{i+l, u+k \leq n-1}^{i+l+u+k=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\sigma^{u+k} \tau^{i}(b)\right) \sigma^{u+k} \tau^{i+l}(r) f_{u}\left(\tau^{i+l} \sigma^{k}(b)\right) f_{k}\left(\sigma^{n-k}(a)\right)+ \\
& \quad+\sum_{i+l+u+k=n-1} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\sigma^{1+u+k} \tau^{i}(b)\right) f_{1}\left(\sigma^{u+k} \tau^{i+l}(r)\right) f_{u}\left(\tau^{1+i+l} \sigma^{k}(b)\right) f_{k}\left(\sigma^{n-k}(a)\right)+ \\
& \quad+\cdots+f_{1}\left(\sigma^{n-1}(a)\right) \sigma^{n-1} \tau(b) f_{n-1}(\tau(r)) \tau^{n}(b a)+\sigma^{n}(a) f_{1}\left(\sigma^{n-1}(b)\right) f_{n-1}(\tau(r)) \tau^{n}(b a)+ \\
& \quad+\sigma^{n}(a b) f_{n-1}(\sigma(r)) \tau^{n-1} \sigma(b) f_{1}\left(\tau^{n-1}(a)\right)+\sigma^{n}(a b) f_{n-1}(\sigma(r)) f_{1}\left(\tau^{n-1} \sigma(b)\right) \tau^{n}(a)+ \\
& \quad+\sigma^{n}(a b) f_{n}(r) \tau^{n}(b a) .
\end{aligned}
$$

Now, substracting the two terms and using the hypothesis that $\sigma \tau=\tau \sigma$ their difference yields;

$$
\begin{aligned}
& f_{n}(a b) \tau^{n}(r b a)-\sigma^{n}(a b r) \sum_{u+k=n} f_{u}\left(\sigma^{n-u}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)+ \\
& +\sigma^{n}(a b r) f_{n}(b a)-\sum_{i+l=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\tau^{n-l}(b)\right) \tau^{n}(r b a)= \\
= & \sigma^{n}(a b r)\left(f_{n}(b a)-\sum_{u+k=n} f_{u}\left(\sigma^{n-u}(b)\right) f_{k}\left(\tau^{n-k}(a)\right)\right)+ \\
& +\left(f_{n}(a b)-\sum_{i+l=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{l}\left(\tau^{n-l}(b)\right)\right) \tau^{n}(r b a)= \\
= & \sigma^{n}(a b r) \Phi_{n}(b, a)+\Phi_{n}(a, b) \tau^{n}(r b a) .
\end{aligned}
$$

Similarly, the difference of the last two terms of equation (9) yields

$$
\begin{aligned}
& \sigma^{n}(b a r) \Phi_{n}(a, b)+\Phi_{n}(b, a) \tau^{n}(r a b) . \text { Thus, (9) becomes } \\
& \begin{aligned}
0 & =\sigma^{n}(a b r) \Phi_{n}(b, a)+\Phi_{n}(a, b) \tau^{n}(r b a)+\sigma^{n}(b a r) \Phi_{n}(a, b)+\Phi_{n}(b, a) \tau^{n}(r a b)= \\
& =\Phi_{n}(a, b) \tau^{n}(r) \tau^{n}[b, a]+\sigma^{n}[b, a] \sigma^{n}(r) \Phi_{n}(a, b) .
\end{aligned}
\end{aligned}
$$

In view of Lemma $2.6(i)$, it is easy to see that the function Φ defined in the beginning of this section is antisymmetric. For any $a, b \in R, n \in I N$ we have, $f_{n}(a b)+f_{n}(b a)=f_{n}(a b+b a)=\sum_{i+j=n}\left(f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(b)\right)+f_{i}\left(\sigma^{n-i}(b)\right) f_{j}\left(\tau^{n-j}(a)\right)\right)$ or, $f_{n}(a b)-\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(b)\right)=-\left(f_{n}(b a)-\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(b)\right) f_{j}\left(\tau^{n-j}(a)\right)\right.$ or, $\Phi_{n}(a, b)=-\Phi_{n}(b, a)$.

It can also be seen that the function Φ is additive in both the arguments, i.e., for $a, b, c \in R, n \in I N$ consider,

$$
\begin{aligned}
& \Phi_{n}(a, b+c)=f_{n}(a(b+c))-\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(b+c)\right)= \\
= & f_{n}(a b)-\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(b)\right)+f_{n}(a c)-\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\tau^{n-j}(c)\right)= \\
= & \Phi_{n}(a, b)+\Phi_{n}(a, c) .
\end{aligned}
$$

Analogously, it can also be be shown that $\Phi_{n}(a+b, c)=\Phi_{n}(a, c)+\Phi_{n}(b, c)$.

Proof of Theorem 2.2. Let $x, y \in R$ be the fixed elements of R such that $c[x, y]=0 \Longrightarrow c=0$ for every $c \in R$.

We'll prove the result by induction on n. We know that for $n=0, \Phi_{0}(a, b)=0$. Hence proceeding by induction we can assume that $\Phi_{m}(a, b)=0$ for all $m<n$. Using Lemma 2.7 (i) we have

$$
\begin{equation*}
\Phi_{n}(a, b)\left[\tau^{n}(a), \tau^{n}(b)\right]=0, \text { for all } a, b \in R . \tag{10}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\Phi_{n}(x, y)=0 . \tag{11}
\end{equation*}
$$

Replacing, a by $a+x$, in (10) we get

$$
\begin{equation*}
\Phi_{n}(x, b)\left[\tau^{n}(a), \tau^{n}(b)\right]+\Phi_{n}(a, b)\left[\tau^{n}(x), \tau^{n}(b)\right]=0, \text { for all } a, b \in R \tag{12}
\end{equation*}
$$

Replace b by $b+y$ in (12). Then

$$
\begin{align*}
0= & \Phi_{n}(a, b)\left[\tau^{n}(x), \tau^{n}(y)\right]+\Phi_{n}(a, y)\left[\tau^{n}(x), \tau^{n}(b)\right]+ \\
& +\Phi_{n}(a, y)\left[\tau^{n}(x), \tau^{n}(y)\right]+\Phi_{n}(x, b)\left[\tau^{n}(a), \tau^{n}(y)\right], \text { for all } a, b \in R . \tag{13}
\end{align*}
$$

Replacing a by x in (13) and using (11) we obtain

$$
\begin{equation*}
\Phi_{n}(x, b)\left[\tau^{n}(x), \tau^{n}(y)\right]=0, \text { for all } b \in R . \tag{14}
\end{equation*}
$$

Again replace b by y in (12) and use (11) to get $\Phi_{n}(a, y)\left[\tau^{n}(x), \tau^{n}(y)\right]=0$, for every $a \in R$. Hence,

$$
\begin{equation*}
\Phi_{n}(a, y)=0, \text { for all } a \in R \tag{15}
\end{equation*}
$$

Combining (13), (14) and (15) we have that $\Phi_{n}(a, b)\left[\tau^{n}(x), \tau^{n}(y)\right]=0$, and so $\Phi_{n}(a, b)=0$, for all $a, b \in R$.

Some special cases of the above theorem are themselves of great interest and we list them as corollaries:

Corollary 2.8. Let R be a 2 -torsion-free ring. If R has a commutator which is not a right zero divisor of R then every Jordan higher derivation on R is a higher derivation on R.

Corollary 2.9. Let R be a 2 -torsion-free ring and σ, τ be the commuting endomorphisms of R such that τ is one-one and onto. If R has a commutator which is not a zero divisor then every Jordan (σ, τ) - derivation on R is $a(\sigma, \tau)$-derivation on R.

Proof of Theorem 2.3. Given that R is non-commutative. Now we'll proceed by induction on n. We know that for $n=0, \Phi_{0}(a, b)=0$. Hence, we may assume that $\Phi_{m}(a, b)=0$ for all $m<n$.
Using Lemma 2.7 (ii) we have

$$
\Phi_{n}(a, b) \tau^{n}(r) \tau^{n}[a, b]+\sigma^{n}[a, b] \sigma^{n}(r) \Phi_{n}(a, b)=0, \text { for all } a, b, r \in R
$$

Now, multiplying the above equation by $\tau^{n}[a, b]$ from the right and using Lemma 2.7 (i), we have

$$
\Phi_{n}(a, b) \tau^{n}(r) \tau^{n}[a, b] \tau^{n}[a, b]=0, \text { for all } a, b, r \in R
$$

Since τ is invertible, the above equation gives

$$
\tau^{-n}\left(\Phi_{n}(a, b)\right) r([a, b])^{2}=0, \text { for all } a, b, r \in R
$$

Now, by primeness of R for each fixed $a, b \in R$, either $\Phi_{n}(a, b)=0$ or $[a, b]^{2}=0$. Using Lemma 2.5 either $\Phi_{n}(a, b)=0$ or $[a, b]^{2}=0$, for all $a, b \in R$. Suppose that $[a, b]^{2}=0$, for all $a, b \in R$. Now let $t \in R$ such that $t^{2}=0$. Replacing b by t in the latter identity and using the fact that $t^{2}=0$, we find that $(a t)^{2}+(t a)^{2}-t a^{2} t=0$. This implies that $(t a)^{2} t=0$ i.e., $(t a)^{3}=0$ for all $a \in R$. Thus $t R$ is a nonzero nil right ideal satisfying $z^{3}=0$ for all $z \in t R$. By Lemma 1.1 of [12] R has a nonzero nilpotent ideal. But since, R is prime we find that $t R=\{0\}$ and hence, $t=0$. Thus $[a, b]^{2}=0$ for all $a, b \in R$ shows that $[a, b]=0$ for all $a, b \in R$. Hence R is commutative, a contradiction. Therefore, $\Phi_{n}(a, b)=0$ for all $a, b \in R$.

In the hypothesis of the above theorem, if the underlying ring is arbitrary prime, then for $\sigma=\tau$ we can prove the following:

Theorem 2.10. Let R be a prime ring with char $(R) \neq 2$ and σ be an automorphism on R. Then every Jordan (σ, σ)-higher derivation on R is a (σ, σ)-higher derivation on R.

Proof. Let us define $\Phi_{n}(a, b)=f_{n}(a b)-\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{n-j}(b)\right)$. For $n=0$, $\Phi_{0}(a, b)=0$ and also for $n=1, \Phi_{1}(a, b)=0$. Proceeding by induction let us assume that $\Phi_{m}(a, b)=0$, for each $m<n$. When $\sigma=\tau$ Lemma 2.7 (ii) reduces to $\Phi_{n}(a, b) \sigma^{n}(r) \sigma^{n}[b, a]+\sigma^{n}[b, a] \sigma^{n}(r) \Phi_{n}(a, b)=0$, for all $a, b \in R$. This implies that $\sigma^{-n}\left(\Phi_{n}(a, b)\right) r[b, a]+[b, a] r \sigma^{-n}\left(\Phi_{n}(a, b)\right)=0$. Using Lemma 2.4, we find that for each fixed pair $a, b \in R$ either $\Phi_{n}(a, b)=0$ or $[b, a]=0$. Now for each fixed $a \in R$, we put $A_{1}=\left\{b \in R \mid \Phi_{n}(a, b)=0\right\}$ and $A_{2}=\{b \in R \mid[b, a]=0\}$. Clearly A_{1} and A_{2} are the additive subgroups of R whose union is R. By Braurer's trick, we have either $R=A_{1}$ or $R=A_{2}$. Again using the similar procedure we can see that either $R=\left\{a \in R \mid R=A_{1}\right\}$ or $R=\left\{a \in R \mid R=A_{2}\right\}$, that is, either $\Phi_{n}(a, b)=0$ for all $a, b \in R$ or R is commutative. If R is commutative then from Lemma 2.6 (i) we can easily obtain that $f_{n}(a b)=\sum_{i+j=n} f_{i}\left(\sigma^{n-i}(a)\right) f_{j}\left(\sigma^{n-j}(b)\right)$ for all $a, b \in R$, that is, $\Phi_{n}(a, b)=0$, for all $a, b \in R$. Thus, in both the cases $\Phi_{n}(a, b)=0$, for all $a, b \in R$. This completes the proof of our theorem.

An immediate consequence of the above theorem is the following corollary which is a famous result due to Herstein;

Corollary 2.11. ([11, Theorem 3.1]) Let R be a prime ring with char $(R) \neq 2$. Then every Jordan derivation on R is a derivation on R.

The above theorem also reduces to the main theorem of [8];
Corollary 2.12. ([8, Theorem 2.1.10]) Let R be a prime ring with char $(R) \neq 2$. Then every Jordan higher derivation on R is a higher derivation on R.

In conclusion it is tempting to conjecture as follows:

Conjecture. Let R be a 2-torsion-free prime (semiprime) ring and let σ, τ be commuting endomorphisms of R such that τ is one-one and onto. Then every Jordan (σ, τ)-higher derivation of R is a (σ, τ)-higher derivation of R.

Acknowlegement. The authors are grateful to the referee for his/her valuable suggestions and useful comments.

References

[1] M. Ashraf, S. Ali and C. Haetinger, On derivations in rings and their applications, The Aligarh Bull. Math., 25(2) (2006), 79-107.
[2] M. Ashraf and N. Rehman, On Lie ideals and (σ, τ)-Jordan derivations on prime rings, Tamkang J. Math., 31(4) (2001), 247-252.
[3] M. Bres̆ar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc., 37 (1988), 321-322.
[4] M. Bres̆ar and J. Vukman, Jordan (θ, ϕ)-derivations, Glas. Mat., 26(46) (1991), 13-17.
[5] W. Cortes and C. Haetinger, Jordan generalized higher derivations and Lie ideals, Turkish J. Math., 29(1) (2005), 1-10.
[6] M. Ferrero and C. Haetinger, Higher derivations and a theorem by Herstein, Quaest. Math., 25(2) (2002), 249-257.
[7] M. Ferrero and C. Haetinger, Higher derivations of semiprime rings, Comm. Algebra, 30(5) (2002), 2321-2333.
[8] C. Haetinger, Derivações de ordem superior em anéis primos e semiprimos, Ph.D Thesis, (digital library URL http://www.lume.ufrgs.br/handle/10183/2562), IMUFRGS, UFRGS Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2000.
[9] C. Haetinger, M. Ashraf and S. Ali, Higher derivations: a survey, Int. J. of Math., Game Theory and Algebra, 14(4) (2010), (to appear).
[10] H. Hasse, Noch eine Begründung der Theorie der höheren Differentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten, J. Reine Angew. Math. (Journal für Mathematik), 177 (1936), 215-237.
[11] I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110.
[12] I.N. Herstein, Topics in Ring Theory, Univ. Chicago Press, Chicago, 1969.

Mohammad Ashraf and Almas Khan

Department of Mathematics
Aligarh Muslim University
202002 Aligarh, India
e-mails: mashraf80@hotmail.com (Mohammad Ashraf),
almasleo@gmail.com (Almas Khan)

Claus Haetinger

Center of Exact and Technological Sciences
UNIVATES University Center
95900-000, Lajeado-RS, Brazil
e-mail: chaet@univates.br
URL: http://ensino.univates.br/~ chaet

[^0]: This research is partially supported by a grant from DST (Grant No. SR/S4/MS:556/08). Some results of this paper were obtained when the third named author was visiting the Aligarh Muslim University (India) as a visitor researcher.

