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ABSTRACT. Let R be a prime ring with char(R) # 2 and o, 7 be commut-
ing endomorphisms of R. In the present paper we show that under certain
conditions on R every Jordan (o, 7)-higher derivation on R is a (o, 7)-higher

derivation on R.
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1. Introduction

Let R be a ring with center Z(R), and o, 7 be endomorphisms of R. En-
domorphisms o, 7 are said to be commuting endomorphisms if o7 = 7o. The
set of natural numbers including 0 will be denoted by IN and [, -] denotes the
usual commutator operator. An additive mapping d: R — R is said to be a
derivation (vesp. Jordan derivation) on R if d(ab) = d(a)b + ad(b) (resp. d(a?®) =
d(a)a + ad(a)) holds for all a,b € R. An additive mapping d: R — R is called a
(o, 7)-derivation (resp. Jordan (o, T)-derivation) on R if d(ab) = d(a)7(b)+o(a)d(b)
(resp. d(a?) = d(a)T(a) + o(a)d(a)) holds for all a,b € R. Of course a (1,1)-
derivation (resp. Jordan (1,1)-derivation) is a derivation (resp. Jordan derivation)

on R, where 1 is the identity map on R. For an example of a (o, 7)-derivation

a b

which is not a derivation let R = {( 0 ) | a,b,c € Z} Define o, 7: R — R

c

s[5 ) (5 D)ol )<

clearly o,7 are endomorphisms of R. Now define a map d: R — R such that

a b a 0 . . —
d 0 = 00 ) Then it can be seen that d is a (o, 7)-derivation on
c
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R which is not a derivation on R.

Obviously, every derivation is a Jordan derivation on R but the converse need
not be true in general. However, in 1957, I.N. Herstein [11] proved that on a prime
ring with char(R) # 2 every Jordan derivation is a derivation. Later on, this result
was extended by several authors (see [2] and [3] where further references can be
found). M. Bresar and J. Vukman [4] extended this result for (o, 7)-derivations.

The concept of derivation was extended to higher derivation by F. Hasse and
F.K. Schmidt [10] (see [1] and [9] for an historical account and applications). Let
D = {d,}new be a family of additive mappings d,,: R — R. Following Hasse and
Schmidt [10], D is said to be a higher derivation (resp. Jordan higher derivation)

on R if dy = Ig (the identity map on R) and d,(ab) = > d;(a)d;(b) (resp.
i+j=n
dn(a?) = Y di(a)dj(a)) for all a,b € R and for each n € IN.
i+j=n
In an attempt to generalize Herstein’s result for higher derivations, C. Haetinger

[8] proved that on a prime ring with char(R) # 2 every Jordan higher derivation is
a higher derivation (see [6] and [7] for English versions). Now, the main purpose of

this paper is to extend this result for (o, 7)-higher derivations in rings.

2. Preliminaries and Main Results

Motivated by the existence of (o, 7)-derivations in rings we shall introduce the
notion of (o, 7)-higher derivation in rings as follows. Let R be a ring and D =
{fn}nemw be a family of maps f,: R — R. Then D is said to be a (o, T)-higher
derivation (resp. Jordan (o, T)-higher derivation) where o, T are endomorphisms on
R if:

(i) fo = Ir;

(i) fala +0) = fu(a) + fn(b);

(iii) fn(ab) = ig: nfi(U”_i(a))fj(T"_j(b))

(resp. fn(a®)= > fi(c"7"(a))f;j(" 7 (a)), for all a,b € R and for each n € IN.
i+j=n

We pause to look at an example of a (o, 7)-higher derivation on R.

Example 2.1. Let R be an algebra over field of rationals @ and o, 7 be endomor-
phisms of R. Define d,, = ‘%, for all n € IN, where § is a (o, 7)-derivation on R
such that o = o6 and é7 = 70. Consider the sequence D = {d, }necv; we shall
show that D is (o, 7)-higher derivation. We shall use induction on n to prove the

claim:
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e For n =0, dy(ab) = 60(()'!119) = ab.
e Forn=1,
dy (ab) = 2 — §(ab) = o(a)3(b) + 6(a)r(b) = o(a)dy (b) + dy(a)T(b).
e Forn =2,
da(ab) = L = 3(5(ab)) = §(0(a)d(b) + 8(a)T (b)) =
(0%(a)62(b) + 0(8(a))(7(b)) + 8(0(a))T(8(b)) + 6 (a)7> (b)) =
= 02(a) "8 1 §(a(a))d(r(b)) + TE272(b) =
= 02(a)da(b) + da (@) (7(b >>+d2< )72(b).

1
2
o

e Now suppose that d,, ‘;—‘ defines a (o, 7)-higher derivation on R for each
m < n.
Consider d,,(ab) = f;,lb) 15 (5Zn11';l,7 ) = 1§(dp—1(ab)). Applying the hypothe-
sis of induction on d,,_1, we have
n—1 . . — J _ n—1—j )
dp(ab) = 2 Zo dj (0" (a))dn 1T (b) = £ Zo S (o" (@) =y (T (b)) =
j=
n—1
_ 1 o(§ (g™ I (a))) "I (b)) | ST (e I (a)) 76" I (A (B)))
= ;0{ 7 i T 7 T }
n—1 . . ) . )
= . 0 {d;j(0" 7 (a))dn—j (7 (D)) (n = j) + djs1 (0" (a))dn1—; (7771 (D)) (5 + 1)} =
i=
n—1 n—2
= Odj( "(a))dn— (77 (b)) — 5 Odj(U” (a))dn—; (77 (b))j—
]: =

—dn-1(0(a)di (T (b)) (n — 1) + >~ di(0™ ! (@))da (7 (B)) (L~ 1)+
+5 Z dy(0" ! (a))dn—i(7'(b)).

Simplifying further thls equality we get,

dn(ab) = Eo dj (0" (a))dn—; (T (D)) — 3 X dj (0" (a))dn—j (77 (b))5~
Ly (0" 1 (@)1 (7(8)) — 1 (0(0))ds (71 (B) + Ly (@) (7" (B))+
'S Ao @) O+ ) (1) + (@) (77 )~

Thus, the family D = {d,, }ne v, where d,, =
on R.

defines a (o, 7)-higher derivation

nlv

The above definitions suggest that every (o, 7)-higher derivation on R is a Jordan

(0, 7)-higher derivation on R but the converse need not be true in general. It is



68 MOHAMMAD ASHRAF, ALMAS KHAN AND CLAUS HAETINGER

also worth mentioning that in the above example if § is assumed to be a Jordan
(0, 7)-derivation on R which is not a (o, 7)-derivation on R, then it is equaly easy
to find a Jordan (o, 7)-higher derivation on R which is not a (o, 7)-higher derivation
on R.

In the present paper we explore the converse part of this problem and find the
condition on R under which a Jordan (o, 7)-higher derivation on R becomes (o, 7)-

higher derivation on R. In fact, the main results of the present paper are as follows:

Theorem 2.2. Let R be a 2-torsion-free ring and o, T be commuting endomor-
phisms of R such that T is one-one and onto. If R has a commutator which is not a
right zero divisor, then every Jordan (o, T)-higher derivation on R is a (o, 7)-higher

derivation on R.

Theorem 2.3. Let R be a non-commutative prime ring with char(R) # 2 and o, T
be commuting endomorphisms of R such that T is one-one and onto. Then, every

Jordan (o, T)-higher derivation on R is a (o, 7)-higher derivations on R.

Note that Theorem 2.2 above seems similar to [5, Theorem 1.3] for Jordan gen-

eralized higher derivations and Lie ideals.

For every fixed n € IN and for each a,b € R we denote by ®,(a,b) the element
of R defined by
®(a,b) = falab) = Y filo™ (@) f3(7" 7 (b))
i+j=n
It is straightforward to see that if ®,,(a,b) = 0 then D = {f, }nemw is a (o, 7)-higher

derivation on R.

In order to develop the proofs of the above theorems, we begin with the following

known lemmas:

Lemma 2.4. ([12, Lemma 3.10 |) Let R be a prime ring with char(R) # 2 and
suppose that a,b € R such that arb+ bra =0 for all v € R. Then either a =0 or
b=0.

Lemma 2.5. ([4, Lemma 4]) Let G and H be the additive groups and let R be a
2-torsion-free ring. Let f: G X G — R and g: G x G — R be biadditive maps.
Suppose that for each pair a,b € G either f(a,b) = 0 or g(a,b)? = 0 then in this
case either f(a,b) =0 or g(a,b)?> =0 for all a,b € G.
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Now we prove the following:

Lemma 2.6. Let R be ring and D = {f,},,c v be a Jordan (o, T)-higher derivation,
where o, T are commuting endomorphisms on R. Then for all a,b,c € R and each
fired n € IN we have;

(i) fn(ab+ba) = ,}; (fi(o""a)) f5 ("7 (b)) + fila™* (b)) f5 (7" (a))).
If R is a 2-torsz'0]n-free ring then,
(i) fn(aba) = . % file" (@) f5(a* 7 (b)) fiu (7" * (a));
i+j+k=n
(iti) fn(abctcba) = . _%: (fi(a" = (@) f5 ("7 (0)) fr (7" () + (0" () fi (o7 (1) fi (7"~ (a)),

for all a,b,c € R.

Proof. (i) For a,b € R, n € IN we have, f,(a*)= > fi(c" %(a))fj(r" I (a)).
i+j=n
So by linearizing the above relation on a we obtain:

fulla+ b)) = 5 o™ et D) kb)) =
=D AT + o)) + ) -
= 2 HeT@SET@ B e @) 6)
+ 2 @O @)+ S e )L E ),
for all a,b € R. ’ !
Again;
falla+0)%) = fula®+ab+ba+0*) = fu(a®) + fu(ab+ ba) + fn(b*) =
= falab+ba)+ 3 filom a)f (T (@)
+ 2 R OSI0),

for all a,b € R.

Comparing the two expressions and reordering the indices we obtain the required

result.
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(#3) Using (¢) and replacing b by ab+ ba we see that, for w = a(ab+ba) + (ab+ba)a,

falw) = fo(a(ab+ ba) + (ab+ ba)a) =
= ig::n fi(a" (@) f5(r" (ab + ba)) ig::n fi(a"*(ab + ba)) f;(" (a))
= Y Ao (@) ( S 0T @) fu (I ()
i+j=n r4s=j
+ HZS::j fr(Uj_TT"_j(b))fs(Tj_sT"_j(a))> +

+ X | X Sl a) fi(r e (b)) +

i+j=n \ k+l=1i

> fk<ai—ka”—i<b>>fl(ri-la"-%a))) fi( (@) =

k+l=1
= X file"a) X firlo? (@) fo(TI T () +
i+j=n r+s=j

+ 3 file" @) X firlo? T I()) fu(TI ST () +

i+j=n r4+s=j

+ 2 2 ful@ o a) ilr o (0)) £ (7 (a)+

i+j=n ktl=i

+ X X ful@ e ) filr e @) f5(7 7 (a))-

i+j=n k+l=i

Using,

> file" @) X fe(e? T I(D) fo(T T (a)+

i+j=n r4+s=j

+ 2 2 ful@ e a) filr e (B) £ (77 (a) =

i+j=n k-+l=i

= 2 > fila"Ha)fi (e () fi(r"F(a)),

i+jtk=n

we obtain,

folw) = fo(a(ab+ ba) + (ab+ ba)a) =
= X X file"a) (07T (@) fo (7R (b)) +

i+j=nr+s=j

F25 e @)t ) @) S
ER S Al ) A @) (@)

i+j=nk+l=i

On the other hand,
fn(a(ab+ ba) + (ab + ba)a) = f,((a*b + ba?) + 2aba) = fn(a®b+ ba?) + 2f, (aba).

Now, from (i) and using the fact that D = {f,}nen is a Jordan (o, 7)-higher
derivation,
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fow) = ful(a(ab+ba) + (ab+ba)a) = fn(a®b + ba?) + fn(2aba) =
= HJZ:H fio" ™ (@®)) f(7"77 (b)) + ﬂZ:n fia" 7 (0))f5 (777 (a%)) + 2fn(aba) =

= 2fa(aba) + 3 3 fr(0TT0" T @) fo(T 00" T (@) £ (7 () +

i+j=nr4+s=i

+ 2 fi(U”"'(b))kg::,fk(aj"“T”‘j(a))fz(T"‘l(a)):

i+j=n

= X fle" @) (o (@) () S file" T ) fule' T (0) fulr" T (a))+

rtst+j=n i+k+l=n
+2fn(aba).
(2)

Comparing the above two equations (1) and (2) and reordering the indices and

using the fact that char(R) # 2 we get the required result.
(#i1) Linearizing the above result, we have

v = falla+c)blatc)) =
= X [file"Ha+ o) fi(d* T O) (7" a+ ) =

i+j+k=n

= X file" ) S B (" Fa) X file™ (@) fi (0" (b)) (R (e)+

i+j+k=n i+jtk=n

+ X file" )@ ) fe(r (@) X filo"TH(e) fi(oR T (B)) fir (7" (e))

it+j+k=n it+j+k=n

= falaba)+ 32 file"H(a)fi(o" T (B)) (" F (e))+

i+j+k=n

+ X fild" () fi (0" (0)) fe (T (@) + fu(cbo).

i+j+k=n
(3)

Again,
v = fala+ e)bla+ c) = fn(aba) + fn(abe+ cba) + frn(che). (4)

Comparing (3) and (4) and using the fact that char(R) # 2 we get the required
result. 0

Lemma 2.7. Let R be a 2-torsion-free ring, and o, T be commuting endomorphisms
of R. Let D = {fn}nemw be a Jordan (o, T)-higher derivation of R. If ®,,(a,b) =0,
for each m < n and for all a,b € R, then

(i) ®,(a,b)7™[a,b] =0, for all a,b € R;

(i1) @n(a,b)T™(r)T"[b,a] + o™[b,alo™(r)én(a,b) =0, for all r,a,b € R.

Proof. (i) Take £ = (ab(ab) + (ab)ba). Then, f,(§) = fn(ab(ab) + (ab)ba). Using

Lemma 2.6 (4ii) we have,
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(&) = ,+%Z (file™ (@) £(*7"(0)) fi(T™ " (ab)) + fi(o™ " (ab)) f; (o7 (b)) fu (7"~ (a)) =
= X file"Ha)fi(r @) ab) + 3 file" (@) fi(0" T (b)) fu(ab)+
i+j=n,k=0 i+j=0,k=n

0<itj,k<n—1 4 '
+ X fld" (@) fi(e" T (0) fi(T"F(ab)) =

i+j+k=n

+ T o@LE IO @ S @) e 0 @)+
éz’:j-tg;g_l j+k=0,i=n

bY@ T 0 i (@) =
= 5 RO @) )T (ab) + 0" @) fa(ab)+
’ {);?Jrj,qurSnfl

+ 2 filo" (@) f5(eH (b)) ful0" T (a)) £r (77T (B)) 4+

i+j+utr=n

+om(ab) Y fi(0" I (O)fu(r" (@) + fulab)T" (ba) +
0<l+t,ji:];£1

+ 2 fla™Ha) fu('a?HE (b)) f5 (" (D)) fi (7" (a)).

I+t+j+k=n
(5)

On the other hand,

fa€) = ful(ab)® + (ab?a)) =
> fila"Hab) fi(7" I (ab) + X0 filo" T a) fi (ot T (6%)) S (7" (a) =

e 0iggnmt
Sal@b)(r(ab) + 0" (@) fulab) + 32 Sl b ST (b))
X S @) e ) (P ) Sl (@),

i+pt+qtk=n

Using, ®,,,(a,b) = 0, for all m < n:

fn(f) = fn(ab)Tn(ab)+an(ab)fn(ab)+
O<u+rl+t<n—1

+ > Fula™ (@) o (o TH (D) fila ' T4 (@) fo(77H (D) +

u+t+r+l+t=n A
+i%::nfi(U"’l(a))fp(T"’p(b))T"(ba)+U”(ab) +Zk:: fa(o"=4(b)) fr(0™* (a))+

0<i+p,q+k<n—1 ) ) )
+ > fila" (@) fp (o (b)) fo (TP (D)) fi (7 * ().

i+pt+gtk=n
(6)

Comparing the two equations (5) and (6) we get ®,(a,b)7"[a,b] = 0, for all
a,b € R.
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(#i) Suppose, x = abrba + barab, where a,b,r € R. Then by the Lemma 2.6 (ii),
we obtain:

fn(x) = fula(brb)a) + fu(b(ara)b) =
- %2 fila™ (@) i (@ 7 (b)) fio (7" (@) + fi(a™ (1) fi (o7 (ara)) fi(7"* (b)) =
X fi@" @) X file? e T (0) fe(o T o T () fu(77 T o T () i (77 () +
it+j+k=n I+tt+u=j

)
+ X fle"TO) X file? o T (@) fu(ot T o T () fu (T 0 T (@) fu (7T (B)) =

itjt+k=n I+ttu=j

fi(a" T a) file TR (B)) fi (o TR () fu (P R (0) fi (77 () +

i+l+tt+utk=n

+ X e O file TR (@) (0 T () fu (1 0 () fu (7 TR (D))

i+l+t+utk=n
(7)

Again consider f,(x) = fn((ab)r(ba) + (ba)r(ad)). Applying Lemma 2.6 (7ii);

Fa00 = Y (fila" P (ab) fo (7P (1) fo (7" (ba)) 4 fo (0" 7 (ba)) fo (0°77 (1) fs (7 (ab)).

pt+qt+s=n
(8)

Equating (7) and (8) we find that;

0 = > [fpla"P(ab)) fo(a°TP(r)) fo(7""(ba))—

pF+q+s=n

- X file" ) filaTHRT0)) fi (o TR () fu (T oM (D) fi (77 M (@) +
i+l+t+ut+k=n

+ 2 fplo"P(ba) fy(o TP (1) fo (7" (ab)) —

PF+q+s=n

- X fila"O) fileTEET (@) (o TR (r) fu (T R (@) i (7R (D))
i+l+t+ut+k=n (9)

Initially calculating the first term of the right hand side of (9);
> fo(o"TP(ab)) fa(o° TP (r)) fs (7775 (ba)) =

ptg+s=n

= 2 [fp(@"P(ab)o* P (r) fs(7" 2 (ba)) + 32 fu(a"P(ab)) fi(oTP(r)) fs (77 (ba)) +

p+s=n pts=n—1

oot X fe0"P(ab) fama (0T (r)) fo (77 (ba))+

p+s=1

+ 2 [0 (ab) fu (TP (1)) (775 (ba)) =

p+s=0

= fa(ab)T™(r)7"(ba) + c™(ab)a™ (1) fn(ba)+
+ > fp(a" P(ab))o* TP (r) fs(7" % (ba)) + ’ S fol0™P(ab)) fi(o* TP (1)) fo (77 (ba))+

p+s=n p+s=n—1

+o At fi(e" T (ab)) fooa (7(r) 77 (ba) + 0™ (ab) fa-1 () S1 (7" (ba) + 0™ (ab) fu (r) 7" (ba).
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Using the hypothesis that ®,,(a,b) =0, for all m < n.

fn(ab)T™(rba) + o™ (abr) frn(ba)+

p,s<n—1

+ XY file" T a) (P Ie" TP 0)o T (r) S fu(o T T (B)) fe (T (@) +

pts=n it+j=p uthk=s

+ XX A" T@) (PP 0) (ot TP (r) 3 fulot T T T (O) fu(r T T (a)) +

pts=n—1it+j=p u+k=s

X (0" (@) f (T 0T (B)) o (T ()T (ba)+

i+j=1
o™ (ab) fn—1(a(r))( g;:lfu( Pt (0)) fe (77 (@) 4 0" (ab) fu (7)T7 (ba) =
Sfn(ab)T™(rba) 4+ o™ (abr) fr(ba)+
it uth<n—1

> file" T @) fi(T e TEO) e TR (1) fu (0T (0)) fie (7" () +

it+jtutk=n

_|_
+ X fi@" T @) (e ) fi (0 () fu (0" I (B)) fi (77 (a)) +
+

i+jtutk=n—1

ot [0 @) " () fua (T(r)) 7" (ba) + 0" (a) fir (0" T (D)) fra (7(r)) 7" (Da)+
+0" (ab) fo1(o(r) fu(7" 7 (0))7" (@) + 0" (ab) fu-1(o(r)or" 1 (b)) /1 (7" (a)) +
+o™(ab) fn(r)T™(ba).

Similiarly the second term of the right hand side of (9) reduces to,

Fil@" T @) fi(a T 0) (0 TET T () fu (T T 0 (0) fu (77 (a)) =

i+l+t+ut+k=n

Fila" T @) fi(e" T (B) o T () fu (1 0" (0)) S (0" () +

i+l+utk=n

+ X fi@" T @) file TR B) fir (0 T () fu (T T R (1)) fi (0"

)+
i+Hltut+k=n—1

a
toot X il @) filo" TR (D)) fama (0T (1)) fu (TN (0)) (0™ T (a)) +

i+l4utk=1

+ X fi@" T (@) file TR () fu (0 T ET T (1)) fu (T (0) fi (0" T (a) =

i+l4+u+k=0

%:: o™ (ab)a" (r) fu(a" " (0)) fr(7" " (a)) + _+§l:: fila" @) iz (1)) 7" (1) 7" (ba)+
i+l u+k<n—1

T L @ 0o A ) @)+
+, S A" @) il T B) fu (o ) (o () fe(o™ (@)
i+l+tutk=n—1
R0 M@)o () fos (1 (1) (ba) + 0™ a) (0" () 1<T<r>f<>
0" (aB) a1 (0 (P70 (b) o (7 (@) 4 0" (aB) a1 (0 () 2 (7 o (6)) 7" (@)
+o<> N (B) f(r)7" (B)" (a) =
T @A AT S R @) 0 o)+
+ ST o @) e ) e () fu (7R () (0 (0)+
itltutk=n
(@™ " (a))+

—*(

bY@ @A) A () fulr o 1)
i+l4uth=n—1

+o o fi(0" T (@)o" T T (0) famr (7(r)) 7" (ba) + 0" (a) f1 (0™ T (B)) fa—1 ((

+0™(ab) fa-1(o(r)) "o (b) f1 (7" (a)) + 0" (ab) fr—1(a (1)) fL (7" o (b)) 7" ()

+o"(ab) frn(r)T"(ba).
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Now, substracting the two terms and using the hypothesis that or = 70 their
difference yields;

fu(ab)r"(rba) — o™ (abr) 32 fu(d™"(0))fr (""" (a))+

ut+k=n

+o"(abr) fu(ba) = 32 fi(o" " (a)) i7" (b)) (rba) =

i+l=n

= o"(abr)(fulba) = 3 fulo"H(B))fr(7" " (a)))+

ut+k=n

+(falab) = 32 file™ H(a)) fulr"~!(b))) 7" (rba) =

i+l=n
= o"(abr)®,(b,a) + P, (a,b)T™(rba).
Similarly, the difference of the last two terms of equation (9) yields
o™ (bar)®,(a,b) + ©,,(b,a)7"(rab). Thus, (9) becomes
0 = o™(abr)®,(b,a)+ ®,(a,b)7™(rba) + c™(bar)®,(a,b) + ., (b, a)T™(rab) =
= ®&,(a,b)t(r)t"[b,a] + c™[b,a)c™ (r)P,(a,b).
(I

In view of Lemma 2.6 (i), it is easy to see that the function ® defined in the

beginning of this section is antisymmetric. For any a,b € R, n € IN we have,

fu(ab)+fn(ba) = fu(abtba) = 35 (filo™" " (a)) f5(77 77 (b)) +fi(a™ 7" (b)) f5(7" 7 (a)))

itj=n
or, fn(ab)—ig::n file™ " a) f5(T" 7 (b)) = —(fn(ba)—ig::n fila™ = ) f;(77 7 (a))
or, ®,(a,b) = =P, (b,a).
It can also be seen that the function ® is additive in both the arguments, i.e.,
for a,b,c € R, n € IN consider,

On(a,b+c)=falalb+c)) = 3 file" " (a)f;(7" (b +0) =

1+j=n

= folab) = 32 filo" T (@) fi(7" I () + fulac) = 3 file"H(a) fi(7" 7 (e)) =

+j=n i+j=n

= &,(a,b) + P,(a,c).

Analogously, it can also be be shown that ®,,(a + b,c¢) = ®,,(a,c) + @, (b, ).

Proof of Theorem 2.2. Let z,y € R be the fixed elements of R such that
clz,y] =0 = ¢ =0 for every ¢ € R.

We'll prove the result by induction on n. We know that for n = 0, ®g(a,b) = 0.
Hence proceeding by induction we can assume that ®,,(a,b) = 0 for all m < n.

Using Lemma 2.7 (¢) we have
®,(a,b)[t"(a), " (b)] = 0,for all a,b € R. (10)

In particular,

Py (z,y) =0. (11)
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Replacing, a by a + z, in (10) we get
D, (x,0)[7"(a), 7" ()] + P (a,b)[7" (), 7" (b)] = 0, for all a,b € R. (12)

Replace b by b+ y in (12). Then

0 = @u(a,0)[7"(2), 7"(y)] + Pula,y)[r" (2), 7" (0)]+ (13)
+Pn(a,y)[r" (), 7" (y)] + Pu(x, b)[7"(a), 7" (y)], for all a,b € R.
Replacing @ by z in (13) and using (11) we obtain
O, (x,b)[7"(x), ™ (y)] =0, for all b € R. (14)

Again replace b by y in (12) and use (11) to get @, (a,y)[7"(z), 7™ (y)] = 0, for every
a € R. Hence,
D, (a,y) =0, for all @ € R. (15)

Combining (13), (14)and (15) we have that ®,(a,b)[r"(z),7"(y)] = 0, and so
®,(a,b) =0, for all a,b € R. O

Some special cases of the above theorem are themselves of great interest and we

list them as corollaries:

Corollary 2.8. Let R be a 2-torsion-free ring. If R has a commutator which is
not a right zero divisor of R then every Jordan higher derivation on R is a higher

dertvation on R.

Corollary 2.9. Let R be a 2-torsion-free ring and o, T be the commuting endomor-
phisms of R such that T is one-one and onto. If R has a commutator which is not

a zero divisor then every Jordan (o, 7)- derivation on R is a (o, T)—derivation on

R.

Proof of Theorem 2.3. Given that R is non-commutative. Now we’ll proceed by
induction on n. We know that for n = 0, ®¢(a,b) = 0. Hence, we may assume that
®,,,(a,b) =0 for all m < n.

Using Lemma 2.7 (ii) we have
@, (a,b)7"(r)7"[a,b] + ¢"[a, b]o™ (r)®,(a,b) = 0, for all a,b,r € R.

Now, multiplying the above equation by 7"[a,b] from the right and using Lemma
2.7 (1), we have

@, (a,b)7"(r)7"[a, b]7"[a,b] = 0, for all a,b,r € R.
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Since 7 is invertible, the above equation gives
7" (®,(a,b))r([a,b])? = 0, for all a,b,” € R.

Now, by primeness of R for each fixed a,b € R, either ®,,(a,b) = 0 or [a,b]? = 0.
Using Lemma 2.5 either ®,,(a,b) = 0 or [a,b]> = 0, for all a,b € R. Suppose that
[a,b]?> = 0, for all a,b € R. Now let t € R such that t> = 0. Replacing b by ¢ in the
latter identity and using the fact that t? = 0, we find that (at)? + (ta)? — ta’t = 0.
This implies that (ta)*t = 0 i.e., (ta)® = 0 for all a € R. Thus tR is a nonzero nil
right ideal satisfying 23 = 0 for all z € tR. By Lemma 1.1 of [12] R has a nonzero
nilpotent ideal. But since, R is prime we find that tR = {0} and hence, ¢t = 0.
Thus [a,b]? = 0 for all a,b € R shows that [a,b] = 0 for all a,b € R. Hence R is

commutative, a contradiction. Therefore, ®,,(a,b) = 0 for all a,b € R. d

In the hypothesis of the above theorem, if the underlying ring is arbitrary prime,

then for ¢ = 7 we can prove the following:

Theorem 2.10. Let R be a prime ring with char(R) # 2 and o be an automorphism
on R. Then every Jordan (o, 0)-higher derivation on R is a (o, 0)-higher derivation

on R.

Proof. Let us define ®,,(a,b) = f,(ab) — > fi(6" %(a))fj(c™ 7 (b)). For n =0,
1+j=n
®p(a,b) = 0 and also for n = 1, ®1(a,b) = 0. Proceeding by induction let us

assume that @,,(a,b) = 0, for each m < n. When ¢ = 7 Lemma 2.7 (i) reduces to
@, (a,b)a™(r)o™[b, a] + o™[b,alo™ (r)®,(a,b) = 0, for all a,b € R. This implies that
o "(®,(a,b))rb, a] + [b,alro™™ (P, (a,b)) = 0. Using Lemma 2.4, we find that for
each fixed pair a,b € R either ®,,(a,b) =0 or [b,a] = 0. Now for each fixed a € R,
we put 43 = {be€ R | ®,(a,b) =0} and As = {b € R| [b,a] = 0}. Clearly A;
and As are the additive subgroups of R whose union is R. By Braurer’s trick, we
have either R = A; or R = As. Again using the similar procedure we can see that
either R={a € R|R= A1} or R={a € R| R = Ay}, that is, either ®,(a,b) =0
for all a,b € R or R is commutative. If R is commutative then from Lemma 2.6
(i) we can easily obtain that f,(ab) = > fi(6" %(a))f;j(c™ (b)) for all a,b € R,

i+j=n
that is, ®,(a,b) = 0, for all a,b € R. Thus, in both the cases ®,(a,b) = 0, for all
a,b € R. This completes the proof of our theorem. (Il

An immediate consequence of the above theorem is the following corollary which

is a famous result due to Herstein;
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Corollary 2.11. ([11, Theorem 3.1]) Let R be a prime ring with char(R) # 2.

Then every Jordan derivation on R is a derivation on R.
The above theorem also reduces to the main theorem of [8];

Corollary 2.12. ([8, Theorem 2.1.10]) Let R be a prime ring with char(R) # 2.

Then every Jordan higher derivation on R is a higher derivation on R.

In conclusion it is tempting to conjecture as follows:

Conjecture. Let R be a 2-torsion-free prime (semiprime) ring and let o, T be com-
muting endomorphisms of R such that T is one-one and onto. Then every Jordan

(o, T)-higher derivation of R is a (o, T)-higher derivation of R.
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