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Abstract. Let R be a prime ring with char(R) 6= 2 and σ, τ be commut-

ing endomorphisms of R. In the present paper we show that under certain

conditions on R every Jordan (σ, τ)-higher derivation on R is a (σ, τ)-higher
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1. Introduction

Let R be a ring with center Z(R), and σ, τ be endomorphisms of R. En-

domorphisms σ, τ are said to be commuting endomorphisms if στ = τσ. The

set of natural numbers including 0 will be denoted by IN and [·, ·] denotes the

usual commutator operator. An additive mapping d: R → R is said to be a

derivation (resp. Jordan derivation) on R if d(ab) = d(a)b + ad(b) (resp. d(a2) =

d(a)a + ad(a)) holds for all a, b ∈ R. An additive mapping d: R → R is called a

(σ, τ)-derivation (resp. Jordan (σ, τ)-derivation) on R if d(ab) = d(a)τ(b)+σ(a)d(b)

(resp. d(a2) = d(a)τ(a) + σ(a)d(a)) holds for all a, b ∈ R. Of course a (1, 1)-

derivation (resp. Jordan (1, 1)-derivation) is a derivation (resp. Jordan derivation)

on R, where 1 is the identity map on R. For an example of a (σ, τ)-derivation

which is not a derivation let R =

{(
a b

0 c

)
| a, b, c ∈ ZZ

}
. Define σ, τ : R → R

such that σ

((
a b

0 c

))
=

(
a 0

0 0

)
and τ

((
a b

0 c

))
=

(
0 0

0 c

)
, then

clearly σ, τ are endomorphisms of R. Now define a map d: R → R such that

d

((
a b

0 c

))
=

(
a 0

0 0

)
. Then it can be seen that d is a (σ, τ)-derivation on
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R which is not a derivation on R.

Obviously, every derivation is a Jordan derivation on R but the converse need

not be true in general. However, in 1957, I.N. Herstein [11] proved that on a prime

ring with char(R) 6= 2 every Jordan derivation is a derivation. Later on, this result

was extended by several authors (see [2] and [3] where further references can be

found). M. Bres̆ar and J. Vukman [4] extended this result for (σ, τ)-derivations.

The concept of derivation was extended to higher derivation by F. Hasse and

F.K. Schmidt [10] (see [1] and [9] for an historical account and applications). Let

D = {dn}n∈IN be a family of additive mappings dn: R → R. Following Hasse and

Schmidt [10], D is said to be a higher derivation (resp. Jordan higher derivation)

on R if d0 = IR (the identity map on R) and dn(ab) =
∑

i+j=n

di(a)dj(b) (resp.

dn(a2) =
∑

i+j=n

di(a)dj(a)) for all a, b ∈ R and for each n ∈ IN .

In an attempt to generalize Herstein’s result for higher derivations, C. Haetinger

[8] proved that on a prime ring with char(R) 6= 2 every Jordan higher derivation is

a higher derivation (see [6] and [7] for English versions). Now, the main purpose of

this paper is to extend this result for (σ, τ)-higher derivations in rings.

2. Preliminaries and Main Results

Motivated by the existence of (σ, τ)-derivations in rings we shall introduce the

notion of (σ, τ)-higher derivation in rings as follows. Let R be a ring and D =

{fn}n∈IN be a family of maps fn: R → R. Then D is said to be a (σ, τ)-higher

derivation (resp. Jordan (σ, τ)-higher derivation) where σ, τ are endomorphisms on

R if:

(i) f0 = IR;

(ii) fn(a + b) = fn(a) + fn(b);

(iii) fn(ab) =
∑

i+j=n

fi(σn−i(a))fj(τn−j(b))

(resp. fn(a2) =
∑

i+j=n

fi(σn−i(a))fj(τn−j(a)), for all a, b ∈ R and for each n ∈ IN .

We pause to look at an example of a (σ, τ)-higher derivation on R.

Example 2.1. Let R be an algebra over field of rationals IQ and σ, τ be endomor-

phisms of R. Define dn = δn

n! , for all n ∈ IN , where δ is a (σ, τ)-derivation on R

such that δσ = σδ and δτ = τδ. Consider the sequence D = {dn}n∈IN ; we shall

show that D is (σ, τ)-higher derivation. We shall use induction on n to prove the

claim:
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• For n = 0, d0(ab) = δ0(ab)
0! = ab.

• For n = 1,

d1(ab) = δ1(ab)
1! = δ(ab) = σ(a)δ(b) + δ(a)τ(b) = σ(a)d1(b) + d1(a)τ(b).

• For n = 2,

d2(ab) = δ2(ab)
2! = δ

2 (δ(ab)) = δ
2 (σ(a)δ(b) + δ(a)τ(b)) =

= 1
2 (σ2(a)δ2(b) + σ(δ(a))δ(τ(b)) + δ(σ(a))τ(δ(b)) + δ2(a)τ2(b)) =

= σ2(a) δ2(b))
2! + δ(σ(a))δ(τ(b)) + δ2(a)

2! τ2(b) =

= σ2(a)d2(b) + d1(σ(a))d1(τ(b)) + d2(a)τ2(b).

• Now suppose that dn = δn

n! defines a (σ, τ)-higher derivation on R for each

m < n.

Consider dn(ab) = δn(ab)
n! = 1

nδ
(

δn−1(ab)
(n−1)!

)
= 1

nδ(dn−1(ab)). Applying the hypothe-

sis of induction on dn−1, we have

dn(ab) = δ
n

n−1∑
j=0

dj(σn−1−j(a))dn−1−jτ
i(b) = δ

n

n−1∑
j=0

δj

j! (σ
n−1−j(a)) δn−1−j

(n−1−j)! (τ
j(b)) =

= 1
n

n−1∑
j=0

{
σ(δj(σn−1−j(a)))

j!
δn−j(τj(b))
(n−1−j)! + δj+1(σn−1−j(a))

j!
τ(δn−1−j(τj(b)))

(n−1−j)!

}
=

= 1
n

n−1∑
j=0

{
dj(σn−j(a))dn−j(τ j(b))(n− j) + dj+1(σn−1−j(a))dn−1−j(τ j+1(b))(j + 1)

}
=

=
n−1∑
j=0

dj(σn−j(a))dn−j(τ j(b))− 1
n

n−2∑
j=0

dj(σn−j(a))dn−j(τ j(b))j−

− 1
ndn−1(σ(a))d1(τn−1(b))(n− 1) + 1

n

n∑
l=2

dl(σn−l(a))dn−l(τ l(b))(l − 1)+

+ 1
n

n∑
l=1

dl(σn−l(a))dn−l(τ l(b)).

Simplifying further this equality we get,

dn(ab) =
n−1∑
j=0

dj(σn−j(a))dn−j(τ j(b))− 1
n

n−2∑
j=2

dj(σn−j(a))dn−j(τ j(b))j−

− 1
nd1(σn−1(a))dn−1(τ(b))− dn−1(σ(a))d1(τn−1(b) + 1

ndn−1(σ(a))d1(τn−1(b))+

+ 1
n

n−2∑
l=2

dl(σn−l(a))dn−l(τ l(b))l + dn(a)τn(b) + dn−1(σ(a))d1(τn−1(b))−

− 1
ndn−1(σ(a))d1(τn−1(b))− 1

n

n∑
l=2

dl(σn−l(a))dn−l(τ l(b))+

+ 1
n

n∑
l=2

dl(σn−l(a))dn−l(τ l(b)) + 1
nd1(σn−1(a))dn−1(τ(b)) =

=
n∑

j=0

dj(σn−j(a))dn−j(τ j(b)).

Thus, the family D = {dn}n∈IN , where dn = δn

n! , defines a (σ, τ)-higher derivation

on R.

The above definitions suggest that every (σ, τ)-higher derivation on R is a Jordan

(σ, τ)-higher derivation on R but the converse need not be true in general. It is
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also worth mentioning that in the above example if δ is assumed to be a Jordan

(σ, τ)-derivation on R which is not a (σ, τ)-derivation on R, then it is equaly easy

to find a Jordan (σ, τ)-higher derivation on R which is not a (σ, τ)-higher derivation

on R.

In the present paper we explore the converse part of this problem and find the

condition on R under which a Jordan (σ, τ)-higher derivation on R becomes (σ, τ)-

higher derivation on R. In fact, the main results of the present paper are as follows:

Theorem 2.2. Let R be a 2-torsion-free ring and σ, τ be commuting endomor-

phisms of R such that τ is one-one and onto. If R has a commutator which is not a

right zero divisor, then every Jordan (σ, τ)-higher derivation on R is a (σ, τ)-higher

derivation on R.

Theorem 2.3. Let R be a non-commutative prime ring with char(R) 6= 2 and σ, τ

be commuting endomorphisms of R such that τ is one-one and onto. Then, every

Jordan (σ, τ)-higher derivation on R is a (σ, τ)-higher derivations on R.

Note that Theorem 2.2 above seems similar to [5, Theorem 1.3] for Jordan gen-

eralized higher derivations and Lie ideals.

For every fixed n ∈ IN and for each a, b ∈ R we denote by Φn(a, b) the element

of R defined by

Φn(a, b) = fn(ab)−
∑

i+j=n

fi(σn−i(a))fj(τn−j(b)).

It is straightforward to see that if Φn(a, b) = 0 then D = {fn}n∈IN is a (σ, τ)-higher

derivation on R.

In order to develop the proofs of the above theorems, we begin with the following

known lemmas:

Lemma 2.4. ([12, Lemma 3.10 ]) Let R be a prime ring with char(R) 6= 2 and

suppose that a, b ∈ R such that arb + bra = 0 for all r ∈ R. Then either a = 0 or

b = 0.

Lemma 2.5. ([4, Lemma 4]) Let G and H be the additive groups and let R be a

2-torsion-free ring. Let f : G × G → R and g: G × G → R be biadditive maps.

Suppose that for each pair a, b ∈ G either f(a, b) = 0 or g(a, b)2 = 0 then in this

case either f(a, b) = 0 or g(a, b)2 = 0 for all a, b ∈ G.
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Now we prove the following:

Lemma 2.6. Let R be ring and D = {fn}n∈IN be a Jordan (σ, τ)-higher derivation,

where σ, τ are commuting endomorphisms on R. Then for all a, b, c ∈ R and each

fixed n ∈ IN we have;

(i) fn(ab + ba) =
∑

i+j=n

(fi(σn−i(a))fj(τn−j(b)) + fi(σn−i(b))fj(τn−j(a))).

If R is a 2-torsion-free ring then,

(ii) fn(aba) =
∑

i+j+k=n

fi(σn−i(a))fj(σkτ i(b))fk(τn−k(a));

(iii) fn(abc+cba) =
∑

i+j+k=n

(fi(σ
n−i(a))fj(σ

kτ i(b))fk(τn−k(c))+fi(σ
n−i(c))fj(σ

kτ i(b))fk(τn−k(a)),

for all a, b, c ∈ R.

Proof. (i) For a, b ∈ R, n ∈ IN we have, fn(a2) =
∑

i+j=n

fi(σn−i(a))fj(τn−j(a)).

So by linearizing the above relation on a we obtain:

fn((a + b)2) =
∑

i+j=n

fi(σn−i(a + b))fj(τn−j(a + b)) =

=
∑

i+j=n

fi(σn−i(a) + σn−i(b))fj(τn−j(a) + τn−j(b)) =

=
∑

i+j=n

fi(σn−i(a))fj(τn−j(a)) +
∑

i+j=n

fi(σn−i(a))fj(τn−j(b))+

+
∑

i+j=n

fi(σn−i(b))fj(τn−j(a)) +
∑

i+j=n

fi(σn−i(b))fj(τn−j(b)),

for all a, b ∈ R.

Again;

fn((a + b)2) = fn(a2 + ab + ba + b2) = fn(a2) + fn(ab + ba) + fn(b2) =

= fn(ab + ba) +
∑

i+j=n

fi(σn−i(a))fj(τn−j(a))+

+
∑

i+j=n

fi(σn−i(b))fj(τn−j(b)),

for all a, b ∈ R.

Comparing the two expressions and reordering the indices we obtain the required

result.
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(ii) Using (i) and replacing b by ab+ba we see that, for ω = a(ab+ba)+(ab+ba)a,

fn(ω) = fn(a(ab + ba) + (ab + ba)a) =

=
∑

i+j=n

fi(σn−i(a))fj(τn−j(ab + ba))
∑

i+j=n

fi(σn−i(ab + ba))fj(τn−j(a)) =

=
∑

i+j=n

fi(σn−i(a))

(
∑

r+s=j

fr(σj−rτn−j(a))fs(τ j−sτn−j(b))+

+
∑

r+s=j

fr(σj−rτn−j(b))fs(τ j−sτn−j(a))

)
+

+
∑

i+j=n

(
∑

k+l=i

fk(σi−kσn−i(a))fl(τ i−lσn−i(b))+

+
∑

k+l=i

fk(σi−kσn−i(b))fl(τ i−lσn−i(a))

)
fj(τn−j(a)) =

=
∑

i+j=n

fi(σn−i(a))
∑

r+s=j

fr(σj−rτn−j(a))fs(τ j−sτn−j(b))+

+
∑

i+j=n

fi(σn−i(a))
∑

r+s=j

fr(σj−rτn−j(b))fs(τ j−sτn−j(a))+

+
∑

i+j=n

∑
k+l=i

fk(σi−kσn−i(a))fl(τ i−lσn−i(b))fj(τn−j(a))+

+
∑

i+j=n

∑
k+l=i

fk(σi−kσn−i(b))fl(τ i−lσn−i(a))fj(τn−j(a)).

Using,

∑
i+j=n

fi(σn−i(a))
∑

r+s=j

fr(σj−rτn−j(b))fs(τ j−sτn−j(a))+

+
∑

i+j=n

∑
k+l=i

fk(σi−kσn−i(a))fl(τ i−lσn−i(b))fj(τn−j(a)) =

= 2
∑

i+j+k=n

fi(σn−i(a))fj(σkτ i(b))fk(τn−k(a)),

we obtain,

fn(ω) = fn(a(ab + ba) + (ab + ba)a) =

=
∑

i+j=n

∑
r+s=j

fi(σn−i(a))fr(σj−rτn−j(a))fs(τn−s(b))+

+2
∑

i+j+k=n

fi(σn−i(a))fj(σkτ i(b))fk(τn−k(a))+

+
∑

i+j=n

∑
k+l=i

fk(σn−k(b))fl(τ i−lσn−i(a))fj(τn−j(a)).

(1)

On the other hand,

fn(a(ab + ba) + (ab + ba)a) = fn((a2b + ba2) + 2aba) = fn(a2b + ba2) + 2fn(aba).

Now, from (i) and using the fact that D = {fn}n∈IN is a Jordan (σ, τ)-higher
derivation,
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fn(ω) = fn(a(ab + ba) + (ab + ba)a) = fn(a2b + ba2) + fn(2aba) =

=
∑

i+j=n

fi(σ
n−i(a2))fj(τ

n−j(b)) +
∑

i+j=n

fi(σ
n−i(b))fj(τ

n−j(a2)) + 2fn(aba) =

= 2fn(aba) +
∑

i+j=n

∑
r+s=i

fr(σ
i−rσn−i(a))fs(τ

i−sσn−i(a))fj(τ
n−j(b))+

+
∑

i+j=n

fi(σ
n−i(b))

∑
k+l=j

fk(σj−kτn−j(a))fl(τ
n−l(a)) =

=
∑

r+s+j=n

fr(σ
n−r(a))fs(τ

rσj(a))fj(τ
n−j(b))

∑
i+k+l=n

fi(σ
n−i(b))fk(σlτk+l(a))fl(τ

n−l(a))+

+2fn(aba).

(2)

Comparing the above two equations (1) and (2) and reordering the indices and

using the fact that char(R) 6= 2 we get the required result.

(iii) Linearizing the above result, we have

γ = fn((a + c)b(a + c)) =

=
∑

i+j+k=n

fi(σn−i(a + c))fj(σkτ i(b))fk(τn−k(a + c)) =

=
∑

i+j+k=n

fi(σn−i(a))fj(σkτ i(b))fk(τn−ka))
∑

i+j+k=n

fi(σn−i(a))fj(σkτ i(b))fk(τn−k(c))+

+
∑

i+j+k=n

fi(σn−i(c))fj(σkτ i(b))fk(τn−k(a))
∑

i+j+k=n

fi(σn−i(c))fj(σkτ i(b))fk(τn−k(c)) =

= fn(aba) +
∑

i+j+k=n

fi(σn−i(a))fj(σkτ i(b))fk(τn−k(c))+

+
∑

i+j+k=n

fi(σn−i(c))fj(σkτ i(b))fk(τn−k(a)) + fn(cbc).

(3)

Again,

γ = fn(a + c)b(a + c) = fn(aba) + fn(abc + cba) + fn(cbc). (4)

Comparing (3) and (4) and using the fact that char(R) 6= 2 we get the required

result. ¤

Lemma 2.7. Let R be a 2-torsion-free ring, and σ, τ be commuting endomorphisms

of R. Let D = {fn}n∈IN be a Jordan (σ, τ)-higher derivation of R. If Φm(a, b) = 0,

for each m < n and for all a, b ∈ R, then

(i) Φn(a, b)τn[a, b] = 0, for all a, b ∈ R;

(ii) Φn(a, b)τn(r)τn[b, a] + σn[b, a]σn(r)φn(a, b) = 0, for all r, a, b ∈ R.

Proof. (i) Take ξ = (ab(ab) + (ab)ba). Then, fn(ξ) = fn(ab(ab) + (ab)ba). Using

Lemma 2.6 (iii) we have,
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fn(ξ) =
∑

i+j+k=n

(fi(σn−i(a))fj(σkτ i(b))fk(τn−k(ab)) + fi(σn−i(ab))fj(σkτ i(b))fk(τn−k(a)) =

=
∑

i+j=n,k=0

fi(σn−i(a)fj(τn−j(b))τn(ab) +
∑

i+j=0,k=n

fi(σn−i(a))fj(σnτ i(b))fn(ab)+

+
0<i+j,k≤n−1∑

i+j+k=n

fi(σn−i(a))fj(σkτ i(b))fk(τn−k(ab)) =

+
∑

j+k=n,i=0

σn(ab)fj(σn−j(b))fk(τn−k(a) +
∑

j+k=0,i=n

fn(ab)fj(σkτn(b))fk(τn−k(a))+

+
0<i,j+k≤n−1∑

i+j+k=n

fi(σn−i(ab))fj(σkτ i(b)fk(τn−k(a)) =

=
∑

i+j=n

fi(σn−i(a))fj(τn−j(b))τn(ab) + σn(ab)fn(ab)+

+
0<i+j,u+r≤n−1∑

i+j+u+r=n

fi(σn−i(a))fj(σu+rτ i(b))fu(σrτ i+j(a))fr(τn−r(b))+

+σn(ab)
∑

j+k=n

fj(σn−j(b))fk(τn−k(a) + fn(ab)τn(ba)+

+
0<l+t,j+k≤n−1∑

l+t+j+k=n

fl(σn−l(a))ft(τ lσj+k(b))fj(σkτ l+t(b))fk(τn−k(a)).

(5)

On the other hand,

fn(ξ) = fn((ab)2 + (ab2a)) =

=
∑

i+j=n

fi(σn−i(ab))fj(τn−j(ab) +
∑

i+j+k=n

fi(σn−i(a))fj(σkτ i(b2))fk(τn−k(a)) =

= fn(ab)(τn(ab) + σn(ab)fn(ab) +
0<i,j≤n−1∑

i+j=n

fi(σn−i(ab))fj(τn−j(ab))+

+
∑

i+p+q+k=n

fi(σn−i(a))fp(σq+kτ i(b))fq(τ i+pσk(b))fk(τn−k(a)).

Using, Φm(a, b) = 0, for all m < n:

fn(ξ) = fn(ab)τn(ab) + σn(ab)fn(ab)+

+
0<u+r,l+t≤n−1∑

u+r+l+t=n

fu(σn−u(a))fr(τuσl+t(b))fl(σtτu+r(a))ft(τn−t(b))+

+
∑

i+p=n

fi(σn−i(a))fp(τn−p(b))τn(ba) + σn(ab)
∑

q+k=n

fq(σn−q(b))fk(σn−k(a))+

+
0<i+p,q+k≤n−1∑

i+p+q+k=n

fi(σn−i(a))fp(σq+kτ i(b))fq(τ i+pσk(b))fk(τn−k(a)).

(6)

Comparing the two equations (5) and (6) we get Φn(a, b)τn[a, b] = 0, for all

a, b ∈ R.
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(ii) Suppose, χ = abrba + barab, where a, b, r ∈ R. Then by the Lemma 2.6 (ii),
we obtain:

fn(χ) = fn(a(brb)a) + fn(b(ara)b) =

=
∑

i+j+k=n

fi(σ
n−i(a))fj(σ

kτ i(brb))fk(τn−k(a)) + fi(σ
n−i(b))fj(σ

kτ i(ara))fk(τn−k(b)) =

=
∑

i+j+k=n

fi(σ
n−i(a))(

∑
l+t+u=j

fl(σ
j−lσkτ i(b))ft(σ

uτ lσkτ i(r))fu(τ j−uσkτ i(b))fk(τn−k(a))+

+
∑

i+j+k=n

fi(σ
n−i(b))(

∑
l+t+u=j

fl(σ
j−lσkτ i(a))ft(σ

uτ lσkτ i(r))fu(τ j−uσkτ i(a))fk(τn−k(b)) =

=
∑

i+l+t+u+k=n

fi(σ
n−i(a))fl(σ

t+u+kτ i(b))ft(σ
u+kτ i+l(r))fu(τ i+l+tσk(b)fk(τn−k(a))+

+
∑

i+l+t+u+k=n

fi(σ
n−i(b))fl(σ

t+u+kτ i(a))ft(σ
u+kτ i+l(r))fu(τ i+l+tσk(a))fk(τn−k(b)).

(7)

Again consider fn(χ) = fn((ab)r(ba) + (ba)r(ab)). Applying Lemma 2.6 (iii);

fn(χ) =
∑

p+q+s=n

(fi(σn−p(ab))fq(σsτp(r))fs(τn−s(ba))+fp(σn−p(ba))fq(σsτp(r))fs(τn−s(ab)).

(8)

Equating (7) and (8) we find that;

0 =
∑

p+q+s=n
fp(σn−p(ab))fq(σsτp(r))fs(τn−s(ba))−

− ∑
i+l+t+u+k=n

fi(σn−i(a))fl(σt+u+kτ i(b))ft(σu+kτ i+l(r))fu(τ i+l+tσk(b)fk(τn−k(a))+

+
∑

p+q+s=n
fp(σn−p(ba))fq(σsτp(r))fs(τn−s(ab))−

− ∑
i+l+t+u+k=n

fi(σn−i(b))fl(σt+u+kτ i(a))ft(σu+kτ i+l(r))fu(τ i+l+tσk(a))fk(τn−k(b)).

(9)

Initially calculating the first term of the right hand side of (9);∑
p+q+s=n

fp(σn−p(ab))fq(σ
sτp(r))fs(τ

n−s(ba)) =

=
∑

p+s=n

fp(σn−p(ab))σsτp(r)fs(τ
n−s(ba)) +

∑
p+s=n−1

fp(σn−p(ab))f1(σ
sτp(r))fs(τ

n−s(ba))+

+ · · ·+ ∑
p+s=1

fp(σn−p(ab))fn−1(σ
sτp(r))fs(τ

n−s(ba))+

+
∑

p+s=0

fp(σn−p(ab))fn(σsτp(r))fs(τ
n−s(ba)) =

= fn(ab)τn(r)τn(ba) + σn(ab)σn(r)fn(ba)+

+
∑

p+s=n

fp(σn−p(ab))σsτp(r)fs(τ
n−s(ba)) +

p,s≤n−1∑
p+s=n−1

fp(σn−p(ab))f1(σ
sτp(r))fs(τ

n−s(ba))+

+ · · ·+ f1(σ
n−1(ab))fn−1(τ(r))τn(ba) + σn(ab)fn−1(σ(r))f1(τ

n−1(ba)) + σn(ab)fn(r)τn(ba).
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Using the hypothesis that Φm(a, b) = 0, for all m < n.
= fn(ab)τn(rba) + σn(abr)fn(ba)+

+
p,s≤n−1∑
p+s=n

∑
i+j=p

fi(σ
n−i(a))fj(τ

p−jσn−p(b))σsτp(r)
∑

u+k=s

fu(σs−uτn−s(b))fk(τn−k(a))+

+
∑

p+s=n−1

∑
i+j=p

fi(σ
n−i(a))fj(τ

p−jσn−p(b))f1(σ
sτp(r))

∑
u+k=s

fu(σs−uτn−s(b))fk(τs−kτn−s(a))+

+ · · ·+ ∑
i+j=1

fi(σ
n−i(a))fj(τ

1−jσn−1(b))fn−1(τ(r))τn(ba)+

+σn(ab)fn−1(σ(r))(
∑

u+k=1

fu(σ1−uτn−1(b))fk(τn−k(a))) + σn(ab)fn(r)τn(ba) =

= fn(ab)τn(rba) + σn(abr)fn(ba)+

+
i+j,u+k≤n−1∑
i+j+u+k=n

fi(σ
n−i(a))fj(τ

iσu+k(b))σu+kτ i+j(r)fu(σkτ i+j(b))fk(τn−k(a))+

+
∑

i+j+u+k=n−1

fi(σ
n−i(a))fj(τ

iσu+k+1(b))f1(σ
u+kτ i+j(r))fu(σkτ i+j+1(b))fk(τn−k(a))+

+ · · ·+ f1(σ
n−1(a))τσn−1(b)fn−1(τ(r))τn(ba) + σn(a)f1(σ

n−1(b))fn−1(τ(r))τn(ba)+

+σn(ab)fn−1(σ(r))f1(τ
n−1(b))τn(a) + σn(ab)fn−1(σ(r))στn−1(b))f1(τ

n−1(a))+

+σn(ab)fn(r)τn(ba).

Similiarly the second term of the right hand side of (9) reduces to,∑
i+l+t+u+k=n

fi(σ
n−i(a))fl(σ

t+u+kτ i(b))ft(σ
u+kτ i+l(r))fu(τ i+l+tσk(b)fk(τn−k(a)) =

=
∑

i+l+u+k=n

fi(σ
n−i(a))fl(σ

u+kτ i(b))σu+kτ i+l(r)fu(τ i+lσk(b))fk(σn−k(a))+

+
∑

i+l+u+k=n−1

fi(σ
n−i(a))fl(σ

1+u+kτ i(b))f1(σ
u+kτ i+l(r))fu(τ i+l+1σk(b))fk(σn−k(a))+

+ · · ·+ ∑
i+l+u+k=1

fi(σ
n−i(a))fl(σ

n−1+u+kτ i(b))fn−1(σ
u+kτ i+l(r))fu(τ i+l+n−1(b))fk(σn−k(a))+

+
∑

i+l+u+k=0

fi(σ
n−i(a))fl(σ

n+u+kτ i(b))fn(σu+kτ i+l(r))fu(τ i+l+n(b))fk(σn−k(a)) =

=
∑

u+k=n

σn(ab)σn(r)fu(σn−u(b))fk(τn−k(a)) +
∑

i+l=n

fi(σ
n−i(a))fl(τ

n−l(b))τn(r))τn(ba)+

+
i+l,u+k≤n−1∑
i+l+u+k=n

fi(σ
n−i(a))fl(σ

u+kτ i(b))σu+kτ i+l(r)fu(τ i+lσk(b))fk(σn−k(a))+

+
∑

i+l+u+k=n−1

fi(σ
n−i(a))fl(σ

1+u+kτ i(b))f1(σ
u+kτ i+l(r))fu(τ1+i+lσk(b))fk(σn−k(a))+

+ · · ·+ f1(σ
n−1(a))σn−1τ(b)fn−1(τ(r))τn(ba) + σn(a)f1(σ

n−1(b))fn−1(τ(r))τn(ba)+

+σn(ab)fn−1(σ(r))τn−1σ(b)f1(τ
n−1(a)) + σn(ab)fn−1(σ(r))f1(τ

n−1σ(b))τn(a)+

+σn(a)σn(b)fn(r)τn(b)τn(a) =

=
∑

u+k=n

σn(abr)fu(σn−u(b))fk(τn−k(a)) +
∑

i+l=n

fi(σ
n−i(a))fl(τ

n−l(b))τn(rba)+

+
i+l,u+k≤n−1∑
i+l+u+k=n

fi(σ
n−i(a))fl(σ

u+kτ i(b))σu+kτ i+l(r)fu(τ i+lσk(b))fk(σn−k(a))+

+
∑

i+l+u+k=n−1

fi(σ
n−i(a))fl(σ

1+u+kτ i(b))f1(σ
u+kτ i+l(r))fu(τ1+i+lσk(b))fk(σn−k(a))+

+ · · ·+ f1(σ
n−1(a))σn−1τ(b)fn−1(τ(r))τn(ba) + σn(a)f1(σ

n−1(b))fn−1(τ(r))τn(ba)+

+σn(ab)fn−1(σ(r))τn−1σ(b)f1(τ
n−1(a)) + σn(ab)fn−1(σ(r))f1(τ

n−1σ(b))τn(a)+

+σn(ab)fn(r)τn(ba).
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Now, substracting the two terms and using the hypothesis that στ = τσ their

difference yields;

fn(ab)τn(rba)− σn(abr)
∑

u+k=n

fu(σn−u(b))fk(τn−k(a))+

+σn(abr)fn(ba)− ∑
i+l=n

fi(σn−i(a))fl(τn−l(b))τn(rba) =

= σn(abr)(fn(ba)− ∑
u+k=n

fu(σn−u(b))fk(τn−k(a)))+

+(fn(ab)− ∑
i+l=n

fi(σn−i(a))fl(τn−l(b)))τn(rba) =

= σn(abr)Φn(b, a) + Φn(a, b)τn(rba).

Similarly, the difference of the last two terms of equation (9) yields

σn(bar)Φn(a, b) + Φn(b, a)τn(rab). Thus, (9) becomes
0 = σn(abr)Φn(b, a) + Φn(a, b)τn(rba) + σn(bar)Φn(a, b) + Φn(b, a)τn(rab) =

= Φn(a, b)τn(r)τn[b, a] + σn[b, a]σn(r)Φn(a, b).
¤

In view of Lemma 2.6 (i), it is easy to see that the function Φ defined in the

beginning of this section is antisymmetric. For any a, b ∈ R, n ∈ IN we have,

fn(ab)+fn(ba) = fn(ab+ba) =
∑

i+j=n

(fi(σn−i(a))fj(τn−j(b))+fi(σn−i(b))fj(τn−j(a)))

or, fn(ab)− ∑
i+j=n

fi(σn−i(a))fj(τn−j(b)) = −(fn(ba)− ∑
i+j=n

fi(σn−i(b))fj(τn−j(a))

or, Φn(a, b) = −Φn(b, a).

It can also be seen that the function Φ is additive in both the arguments, i.e.,

for a, b, c ∈ R, n ∈ IN consider,
Φn(a, b + c) = fn(a(b + c))− ∑

i+j=n

fi(σn−i(a))fj(τn−j(b + c)) =

= fn(ab)− ∑
i+j=n

fi(σn−i(a))fj(τn−j(b)) + fn(ac)− ∑
i+j=n

fi(σn−i(a))fj(τn−j(c)) =

= Φn(a, b) + Φn(a, c).

Analogously, it can also be be shown that Φn(a + b, c) = Φn(a, c) + Φn(b, c).

Proof of Theorem 2.2. Let x, y ∈ R be the fixed elements of R such that

c[x, y] = 0 =⇒ c = 0 for every c ∈ R.

We’ll prove the result by induction on n. We know that for n = 0, Φ0(a, b) = 0.

Hence proceeding by induction we can assume that Φm(a, b) = 0 for all m < n.

Using Lemma 2.7 (i) we have

Φn(a, b)[τn(a), τn(b)] = 0, for all a, b ∈ R. (10)

In particular,

Φn(x, y) = 0. (11)
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Replacing, a by a + x, in (10) we get

Φn(x, b)[τn(a), τn(b)] + Φn(a, b)[τn(x), τn(b)] = 0, for all a, b ∈ R. (12)

Replace b by b + y in (12). Then

0 = Φn(a, b)[τn(x), τn(y)] + Φn(a, y)[τn(x), τn(b)]+

+Φn(a, y)[τn(x), τn(y)] + Φn(x, b)[τn(a), τn(y)], for all a, b ∈ R.
(13)

Replacing a by x in (13) and using (11) we obtain

Φn(x, b)[τn(x), τn(y)] = 0, for all b ∈ R. (14)

Again replace b by y in (12) and use (11) to get Φn(a, y)[τn(x), τn(y)] = 0, for every

a ∈ R. Hence,

Φn(a, y) = 0, for all a ∈ R. (15)

Combining (13), (14)and (15) we have that Φn(a, b)[τn(x), τn(y)] = 0, and so

Φn(a, b) = 0, for all a, b ∈ R. ¤

Some special cases of the above theorem are themselves of great interest and we

list them as corollaries:

Corollary 2.8. Let R be a 2-torsion-free ring. If R has a commutator which is

not a right zero divisor of R then every Jordan higher derivation on R is a higher

derivation on R.

Corollary 2.9. Let R be a 2-torsion-free ring and σ, τ be the commuting endomor-

phisms of R such that τ is one-one and onto. If R has a commutator which is not

a zero divisor then every Jordan (σ, τ)- derivation on R is a (σ, τ)−derivation on

R.

Proof of Theorem 2.3. Given that R is non-commutative. Now we’ll proceed by

induction on n. We know that for n = 0, Φ0(a, b) = 0. Hence, we may assume that

Φm(a, b) = 0 for all m < n.

Using Lemma 2.7 (ii) we have

Φn(a, b)τn(r)τn[a, b] + σn[a, b]σn(r)Φn(a, b) = 0, for all a, b, r ∈ R.

Now, multiplying the above equation by τn[a, b] from the right and using Lemma

2.7 (i), we have

Φn(a, b)τn(r)τn[a, b]τn[a, b] = 0, for all a, b, r ∈ R.
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Since τ is invertible, the above equation gives

τ−n(Φn(a, b))r([a, b])2 = 0, for all a, b, r ∈ R.

Now, by primeness of R for each fixed a, b ∈ R, either Φn(a, b) = 0 or [a, b]2 = 0.

Using Lemma 2.5 either Φn(a, b) = 0 or [a, b]2 = 0, for all a, b ∈ R. Suppose that

[a, b]2 = 0, for all a, b ∈ R. Now let t ∈ R such that t2 = 0. Replacing b by t in the

latter identity and using the fact that t2 = 0, we find that (at)2 + (ta)2 − ta2t = 0.

This implies that (ta)2t = 0 i.e., (ta)3 = 0 for all a ∈ R. Thus tR is a nonzero nil

right ideal satisfying z3 = 0 for all z ∈ tR. By Lemma 1.1 of [12] R has a nonzero

nilpotent ideal. But since, R is prime we find that tR = {0} and hence, t = 0.

Thus [a, b]2 = 0 for all a, b ∈ R shows that [a, b] = 0 for all a, b ∈ R. Hence R is

commutative, a contradiction. Therefore, Φn(a, b) = 0 for all a, b ∈ R. ¤

In the hypothesis of the above theorem, if the underlying ring is arbitrary prime,

then for σ = τ we can prove the following:

Theorem 2.10. Let R be a prime ring with char(R) 6= 2 and σ be an automorphism

on R. Then every Jordan (σ, σ)-higher derivation on R is a (σ, σ)-higher derivation

on R.

Proof. Let us define Φn(a, b) = fn(ab)− ∑
i+j=n

fi(σn−i(a))fj(σn−j(b)). For n = 0,

Φ0(a, b) = 0 and also for n = 1, Φ1(a, b) = 0. Proceeding by induction let us

assume that Φm(a, b) = 0, for each m < n. When σ = τ Lemma 2.7 (ii) reduces to

Φn(a, b)σn(r)σn[b, a] + σn[b, a]σn(r)Φn(a, b) = 0, for all a, b ∈ R. This implies that

σ−n(Φn(a, b))r[b, a] + [b, a]rσ−n(Φn(a, b)) = 0. Using Lemma 2.4, we find that for

each fixed pair a, b ∈ R either Φn(a, b) = 0 or [b, a] = 0. Now for each fixed a ∈ R,

we put A1 = {b ∈ R | Φn(a, b) = 0} and A2 = {b ∈ R | [b, a] = 0}. Clearly A1

and A2 are the additive subgroups of R whose union is R. By Braurer’s trick, we

have either R = A1 or R = A2. Again using the similar procedure we can see that

either R = {a ∈ R | R = A1} or R = {a ∈ R | R = A2}, that is, either Φn(a, b) = 0

for all a, b ∈ R or R is commutative. If R is commutative then from Lemma 2.6

(i) we can easily obtain that fn(ab) =
∑

i+j=n

fi(σn−i(a))fj(σn−j(b)) for all a, b ∈ R,

that is, Φn(a, b) = 0, for all a, b ∈ R. Thus, in both the cases Φn(a, b) = 0, for all

a, b ∈ R. This completes the proof of our theorem. ¤

An immediate consequence of the above theorem is the following corollary which

is a famous result due to Herstein;
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Corollary 2.11. ([11, Theorem 3.1]) Let R be a prime ring with char(R) 6= 2.

Then every Jordan derivation on R is a derivation on R.

The above theorem also reduces to the main theorem of [8];

Corollary 2.12. ([8, Theorem 2.1.10]) Let R be a prime ring with char(R) 6= 2.

Then every Jordan higher derivation on R is a higher derivation on R.

In conclusion it is tempting to conjecture as follows:

Conjecture. Let R be a 2-torsion-free prime (semiprime) ring and let σ, τ be com-

muting endomorphisms of R such that τ is one-one and onto. Then every Jordan

(σ, τ)-higher derivation of R is a (σ, τ)-higher derivation of R.

Acknowlegement. The authors are grateful to the referee for his/her valuable

suggestions and useful comments.

References

[1] M. Ashraf, S. Ali and C. Haetinger, On derivations in rings and their applica-

tions, The Aligarh Bull. Math., 25(2) (2006), 79-107.

[2] M. Ashraf and N. Rehman, On Lie ideals and (σ, τ)-Jordan derivations on

prime rings, Tamkang J. Math., 31(4) (2001), 247-252.

[3] M. Bres̆ar and J. Vukman, Jordan derivations on prime rings, Bull. Austral.

Math. Soc., 37 (1988), 321-322.

[4] M. Bres̆ar and J. Vukman, Jordan (θ, φ)-derivations, Glas. Mat., 26(46) (1991),

13-17.

[5] W. Cortes and C. Haetinger, Jordan generalized higher derivations and Lie

ideals, Turkish J. Math., 29(1) (2005), 1-10.

[6] M. Ferrero and C. Haetinger, Higher derivations and a theorem by Herstein,

Quaest. Math., 25(2) (2002), 249-257.

[7] M. Ferrero and C. Haetinger, Higher derivations of semiprime rings, Comm.

Algebra, 30(5) (2002), 2321-2333.

[8] C. Haetinger, Derivações de ordem superior em anéis pri-
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