WHEN IS THE SET OF INTERMEDIATE RINGS A FINITE BOOLEAN ALGEBRA

Ahmed Ayache
Received: 27 January 2010; Revised: 9 June 2010
Communicated by Abdullah Harmancı

Abstract

Let $R \subset S$ be an extension of integral domains with identity such that R is not a field and R is integrally closed in S. We determine necessary and sufficient conditions so that the set of intermediate rings [R, S] between R and S is a finite boolean algebra. Several cases are treated, specially when S is the quotient field of R or when R is a Krull domain.

Mathematics Subject Classification (2000): Primary 13BO2; secondary: 13C15, 13A18, 13B25, 13E05

Keywords: Boolean algebra, normal pair, minimal overring, maximal chain

1. Introduction

Throughout this paper, $R \subset S$ is supposed to be an extension of integral domains with identity such that R is not a field and R is integrally closed in S. We denote by $q f(R)$ the quotient field of R, by $\operatorname{Spec}(R)$ the set of all prime ideals of R and by $\operatorname{Max}(R)=\left\{M_{i}: i \in I\right\}$ the set of all maximal ideals of R. We also denote by [$R, S]$ the set of all intermediate rings between R and S, and by $\operatorname{Supp}(S / R)$ the set of all prime ideals Q of R such that $Q S=S$.

If $T_{1}, T_{2}, \ldots, T_{n} \in[R, S]$, we denote by $\prod_{i=1}^{n} T_{i}$ the smallest intermediate ring between R and S containing $\bigcup_{i=1}^{n} T_{i}$. It is obvious that every element of $\prod_{i=1}^{n} T_{i}$ can be expressed as a finite sum of the form $\sum t_{1} t_{2} \cdots t_{n}$, where $t_{i} \in T_{i}$.

Finally, if $\Gamma=\left\{T_{i}: i \in I\right\}$ is a non-empty set of intermediate rings between R and S, and each $T \in[R, S]$ can be written as $\prod_{i \in J} T_{i}$ for some finite subset J of I, we say that $[R, S]$ is generated by Γ. By convention, we may suppose that $R=\prod_{i \in \varnothing} T_{i}$.

Let us recall some needed definitions:

[^0]A pair of rings (R, S) is said to be a normal pair provided that each $T \in[R, S]$ is integrally closed in S. These pairs where first defined and studied by E. D. Davis [3]. He proved that if R is local, then (R, S) is a normal pair if and only if there exists a divided prime ideal P of R (i.e, $P R_{P}=P$) such that $S=R_{P}$ and R / P is a valuation ring [3, Theorem 1]. Several other characterizations of such pairs are settled in [2]:

Proposition 1.1. [2, Theorems 2.5, 2.10, Lemma 2.9] If R is integrally closed in S, then the following conditions are equivalent:
(i) (R, S) is a normal pair.
(ii) For each $T \in[R, S], \operatorname{Spec}(T)=\{P T: P T \subset T, P \in \operatorname{Spec}(R)\}$.
(iii) For each $T \in[R, S]$, $\operatorname{Spec}(T) \rightarrow \operatorname{Spec}(R)$ is injective.
(iv) For each $T \in[R, S]$, and for each $Q \in \operatorname{Spec}(T)$; set $P=Q \cap R$, then $R_{P}=T_{Q}$.
(v) For each $T \in[R, S], T=\bigcap_{P \in \operatorname{Spec}(R), P T \subset T} R_{P}$.

In particular, if R is local, the above conditions are equivalent to the following:
(vi) For all $s \in S, s \in R$ or $s^{-1} \in R$.

A boolean algebra B is a bounded distributive lattice $(B, \curlywedge, \curlyvee)$ with unary operation ' $: B \longrightarrow B$ such that $a \curlywedge a^{\prime}=1$ and $a \curlyvee a^{\prime}=0$, where 0 is the least element and 1 is the greatest element. Boolean algebras arise in variety of areas of mathematics and computer science.

Our main purpose is to investigate under which conditions $([R, S], ., \cap)$ is a finite boolean algebra. Among other equivalent assertions, we find that $([R, S], ., \cap)$ is a boolean algebra with cardinality 2^{n} if and only if (R, S) is a normal pair and $\operatorname{Supp}(S / R)$ consists of n maximal ideals; or equivalently, there is a maximal chain $R_{0}=R \subset R_{1} \subset R_{2} \subset \ldots \subset R_{n}=S$ of length n and every prime ideal of $\operatorname{Supp}(S / R)$ is maximal (Theorem 3.2). If S is the quotient field of R, we find that ($[R, S], ., \cap$) is a boolean algebra with cardinality 2^{n} if and only if R is a 1 -dimensional semi-local Prüfer ring with n maximal ideals (Corollary 3.4). If R is a Krull domain and $[R, S]$ is finite, we establish that $([R, S], ., \cap)$ is a boolean algebra of cardinality 2^{n}, where n is the number of low maximal ideals of R such that $M S=S$ (Corollary 3.6).

The proofs are mostly based on the notion of Kaplansky ideal transforms. Recall that the Kaplansky ideal transform $\Omega_{R}(I)$ of an ideal I of R is an overring of R defined by

$$
\Omega_{R}(I)=\left\{x \in q f(R): \forall y \in I, x y^{n} \in R \text { for some integer } n \geq 1\right\}
$$

We frequently write $\Omega(I)$ instead of $\Omega_{R}(I)$, when no confusion is possible. Note that $\Omega_{R}(I)$ can be simply expressed in terms of localizations of R by

$$
\Omega_{R}(I)=\bigcap\left\{R_{P}: P \in \operatorname{Spec}(R), P \nsupseteq I\right\} .
$$

Further properties of such transform can be found in details in [4].

2. Preliminary results

We say that $R \subset S$ is a minimal extension if $[R, S]$ contains only R and S. Because R is not a field and R is assumed to be integrally closed in S, then (R, S) is obviously a normal pair. The following useful characterization due to A. Jaballah precises the relationship between these two concepts. We label it as Lemma 2.1 for the sake of reference.

Lemma 2.1. [5, Lemma 3.2] The following conditions are equivalent:
(i) $R \subset S$ is a minimal extension.
(ii) (R, S) is a normal pair and $\operatorname{Supp}(S / R)$ consists of a maximal ideal of R.

It is clear that, if $R \subset S$ is a minimal extension, then $[R, S]$ is generated by $\Gamma=\{S\}$. In this section, we will generalize Lemma 2.1 by considering the case where $[R, S]$ is generated by a non-empty set $\Gamma=\left\{T_{i}: i \in I\right\}$ of incomparable intermediate rings. We start by two preparatory Lemmas.

Lemma 2.2. If $[R, S]$ is generated by a non-empty set $\Gamma=\left\{T_{i}: i \in I\right\}$ of incomparable intermediate rings, then
(i) Each T_{i} is a minimal overring of R.
(ii) S is an overring of R.
(iii) I is finite.

Proof. (i) If there is a proper intermediate ring T between R and T_{i}, then $T=$ $\prod_{j \in J} T_{j}$ for some non-empty finite subset J of I. Then $T_{j} \subseteq T_{i}$ for each $j \in J$, but this is false since by assumption, the rings in Γ are incomparable. Thus $R \subset T_{i}$ is a minimal extension.
(ii) According to Lemma 2.1, $\left(R, T_{i}\right)$ is a normal pair and $\operatorname{Supp}\left(R / T_{i}\right)$ consists of one maximal ideal M_{i}. By application of Proposition 1.1, T_{i} can be expressed as

$$
T_{i}=\bigcap_{Q T_{i} \subset T_{i}} R_{Q}=\bigcap_{Q \notin \operatorname{Supp}\left(T_{i} / R\right)} R_{Q}=\bigcap_{Q \neq M_{i}} R_{Q}=\Omega\left(M_{i}\right)
$$

Moreover, $R_{M_{i}} \subset\left(T_{i}\right)_{M_{i}}$ is a minimal extension [1, Proposition 2.2]. Since $\left(R_{M_{i}},\left(T_{i}\right)_{M_{i}}\right)$ is a normal pair, there is a prime ideal P_{i} of R such that $P_{i} \subset M_{i}$ and $\left(T_{i}\right)_{M_{i}}=$
$\left(R_{M_{i}}\right)_{P_{i} R_{M_{i}}}=R_{P_{i}}\left[3\right.$, Theorem 1]. Now, we have $S=\prod_{i \in K} T_{i}$ for some non-empty finite subset K of I, so we can present S as

$$
S=\prod_{i \in K} \Omega\left(M_{i}\right) \subseteq \Omega\left(\prod_{i \in K} M_{i}\right)=\bigcap_{Q \neq M_{i}, i \in K} R_{Q}
$$

In particular, we deduce that S is an overring of R.
(iii) If $K \neq I$, we can consider an intermediate ring $T_{l}=\Omega\left(M_{l}\right)$ for some $l \in I-K$. As $S \subseteq R_{M_{l}}$, it follows that $R_{M_{l}} \subset\left(T_{l}\right)_{M_{l}}=R_{P_{l}} \subseteq S_{M_{l}} \subseteq R_{M_{l}}$, a contradiction. Thus $I=K$ is a finite set.

We will denote $I=\{1,2, \ldots, n\}$. It follows that, if $[R, S]$ is generated by a set $\Gamma=\left\{T_{i}: 1 \leq i \leq n\right\}$ of incomparable intermediate rings, then each T_{i} is the Kaplansky ideal transform $T_{i}=\Omega\left(M_{i}\right)$ of a unique maximal ideal M_{i} of R such that $M_{i} T_{i}=T_{i}$. We will use frequently this fact along this line.

Lemma 2.3. Let (R, S) be a normal pair and $M_{1}, M_{2}, \ldots, M_{k}$ maximal ideals in $\operatorname{Supp}(S / R)$. Set $T_{i}=\Omega\left(M_{i}\right)$ and $T=\prod_{i=1}^{k} T_{i}$, then
(i) T_{i} is a minimal overring of S.
(ii) $T=\Omega\left(\prod_{i=1}^{k} M_{i}\right)$ and $\operatorname{Supp}(T / R)=\left\{M_{i}: 1 \leq i \leq k\right\}$.

Proof. (i) Let H be an intermediate ring between R and $T_{i}=\bigcap_{Q \neq M_{i}} R_{Q}$. For every prime ideal $Q \neq M_{i}$ of R, we have $R_{Q} \subseteq H_{Q} \subseteq R_{Q}$, thus $R_{Q}=H_{Q}$ and $Q H \subset H$. Therefore, either $\operatorname{Supp}(H / R)=\varnothing$, so $H=R$; or $\operatorname{Supp}(H / R)=\left\{M_{i}\right\}$, so $H=\bigcap_{Q H \subset H} R_{Q}=\bigcap_{Q \neq M_{i}} R_{Q}=T_{i}$.
(ii) Because of $M_{i} T_{i}=T_{i}$ for each $i \in\{1,2, \ldots, k\}$, then $M_{i} T=T$. It follows that $\left\{M_{i}: 1 \leq i \leq k\right\} \subseteq \operatorname{Supp}(T / R)$. To show the reverse containment, notice that

$$
T=\prod_{i=1}^{k} \Omega\left(M_{i}\right) \subseteq \Omega\left(\bigcap_{i=1}^{k} M_{i}\right)=\bigcap_{Q \neq M_{i}, 1 \leq i \leq k} R_{Q}
$$

Therefore, if Q is a prime ideal of R which does not belong to $\left\{M_{i}: 1 \leq i \leq k\right\}$, then $T \subseteq R_{Q}$. Thus $Q T \subset T$ and $Q \notin \operatorname{Supp}(T / R)$.

Hence $\operatorname{Supp}(T / R)=\left\{M_{i}: 1 \leq i \leq k\right\}$ and

$$
T=\bigcap_{Q T \subset T} R_{Q}=\bigcap_{Q \notin \operatorname{Supp}(T / R)} R_{Q}=\bigcap_{Q \neq M_{i}, 1 \leq i \leq k} R_{Q}=\Omega\left(\prod_{i=1}^{k} M_{i}\right)
$$

We are able to provide the generalization of Lemma 2.1:

Theorem 2.4. The following conditions are equivalent:
(i) $[R, S]$ is generated by a finite non-empty set $\Gamma=\left\{T_{i}: 1 \leq i \leq n\right\}$ of incomparable intermediate rings.
(ii) (R, S) is a normal pair and $\operatorname{Supp}(S / R)$ consists of n maximal ideals of R.

Proof. $(i) \Rightarrow(i i)$ Since $[R, S]$ is generated by $\Gamma=\left\{T_{i}: 1 \leq i \leq n\right\}$, then S can be written as $S=\prod_{i=1}^{n} T_{i}$. In light of [3, Introduction], to prove that (R, S) is a normal pair, it suffices to show that $\left(R_{M}, S_{M}\right)$ is a normal pair for each maximal ideal M of R. For each i, we have $R_{M}=\left(T_{i}\right)_{M}$ or $R_{M} \subset\left(T_{i}\right)_{M}$ is a minimal extension. But, according to [1, Theorem 1.2], we know that R_{M} has at most one minimal overring, then two cases may occur:

- If $R_{M}=\left(T_{i}\right)_{M}$ for each $i \in\{1,2, \ldots, n\}$, then $S_{M}=\prod_{i=1}^{n}\left(T_{i}\right)_{M}=R_{M}$, so (R_{M}, S_{M}) is clearly a normal pair.
- If $R_{M} \subset\left(T_{j}\right)_{M}$ is a minimal extension for a unique $j \in\{1,2, \ldots, n\}$, then $S_{M}=\prod_{i=1}^{n}\left(T_{i}\right)_{M}=\left(T_{j}\right)_{M}$, so $R_{M} \subset S_{M}$ is a minimal extension. As R_{M} is integrally closed in S_{M}, then $\left(R_{M}, S_{M}\right)$ is a normal pair.

Since each T_{i} is a minimal overring of R, then $T_{i}=\Omega\left(M_{i}\right)$ for a maximal ideal M_{i} of R such that $M_{i} T_{i}=T_{i}$ and $M_{i} S=S$ for each $i \in\{1,2, \ldots, n\}$. Thus, according to Lemma 2.3, we have $\operatorname{Supp}(S / R)=\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$.
$(i i) \Rightarrow(i)$ Suppose that (R, S) is a normal pair such that $\operatorname{Supp}(S / R)$ consists of n maximal ideals $M_{1}, M_{2}, \ldots, M_{n}$. Set $T_{i}=\Omega\left(M_{i}\right)$ and $\Gamma=\left\{T_{i}: 1 \leq i \leq n\right\}$. Since each T_{i} is a minimal overring of R, Lemma 2.3, then the elements of Γ are incomparable. It remains to show that Γ generates $[R, S]$. Let $T \in[R, S]$. Then $\operatorname{Supp}(T / R) \subseteq \operatorname{Supp}(S / R)$. Therefore, if $\operatorname{Supp}(T / R)=\left\{M_{i}: i \in J\right\}$ for some subset J of $\{1,2, \ldots, n\}$, then

$$
T=\bigcap_{Q T \subset T} R_{Q}=\bigcap_{Q \notin \operatorname{Supp}(T / R)} R_{Q}=\bigcap_{Q \neq M_{i}, i \in J} R_{Q}=\Omega\left(\prod_{i \in J} M_{i}\right) .
$$

Again from Lemma 2.3, we get

$$
T=\Omega\left(\prod_{i \in J} M_{i}\right)=\prod_{i \in J} \Omega\left(M_{i}\right)=\prod_{i \in J} T_{i} .
$$

3. Boolean algebra

Lemma 3.1. Suppose that $[R, S]$ is generated by a finite set $\Gamma=\left\{T_{i}: 1 \leq i \leq n\right\}$ of incomparable intermediate rings. Let φ be the function from the power set $P(I)$ of $I=\{1,2, \ldots, n\}$ to $[R, S]$ that maps \varnothing to R and any non-empty subset J of I
to $\prod_{i \in J} T_{i}$. Then φ is bijective, and satisfies the following properties for every two subsets J and K of I :
(i) $J \subseteq K$ if and only if $\varphi(J) \subseteq \varphi(K)$.
(ii) $\varphi(J \cup K)=\varphi(J) \varphi(K)$.
(iii) $\varphi(J \cap K)=\varphi(J) \cap \varphi(K)$.

Proof. In view of Theorem 2.4, $\operatorname{Supp}(S / R)$ consists of n maximal ideals of R, namely $M_{1}, M_{2}, \ldots, M_{n}$.
(i) Set $H=\varphi(J)$ and $L=\varphi(K)$. It is clear that $J \subseteq K$ implies $H \subseteq L$. Conversely, if $H \subseteq L$, then $\operatorname{Supp}(H / R) \subseteq \operatorname{Supp}(L / R)$. But, by Lemma 2.3, we have $\operatorname{Supp}(H / R)=\left\{M_{i}: i \in J\right\}$ while $\operatorname{Supp}(L / R)=\left\{M_{i}: i \in K\right\}$. Hence $J \subseteq K$. In particular, this shows that φ is injective. As φ is also onto by hypothesis on $[R, S]$, then φ is bijective.
(ii) Since $\left(T_{i}\right)^{2}=T_{i}$ for every $i \in\{1,2, \ldots, n\}$, we have

$$
\varphi(J \cup K)=\prod_{i \in J \cup K} T_{i}=\left(\prod_{i \in J} T_{i}\right)\left(\prod_{i \in K} T_{i}\right)=\varphi(J) \cdot \varphi(K)
$$

(iii) This assertion is obvious if there is a containment between J and K. Suppose that $J \nsubseteq K$ and $K \nsubseteq J$. Let $L=J \cap K$ (eventually, we may have $L=\varnothing$). Since the maximal ideals $\left(M_{i}\right)_{1 \leq i \leq n}$ are comaximal ideals, then $\prod_{i \in J \backslash K} M_{i}$ and $\prod_{i \in K \backslash J} M_{i}$ are also comaximal ideals. It results that

$$
\begin{array}{rlrl}
\varphi(J) \cap \varphi(K) & =\left(\prod_{i \in J} T_{i}\right) \cap\left(\prod_{i \in K} T_{i}\right) & \\
& =\Omega\left(\prod_{i \in J} M_{i}\right) \cap \Omega\left(\prod_{i \in K} M_{i}\right) & & \text { by Lemma 2.3 } \\
& =\Omega\left(\prod_{i \in J} M_{i}+\prod_{i \in K} M_{i}\right) & & \\
& =\Omega\left[\prod_{i \in L} M_{i}\left(\prod_{i \in J \backslash K} M_{i}+\prod_{i \in K \backslash J} M_{i}\right)\right] & & \\
& =\Omega\left(\prod_{i \in L} M_{i}\right) & & \text { by Lemma 3.1] } \\
& =\prod_{i \in L} \Omega\left(M_{i}\right) &
\end{array}
$$

We are ready to provide the main theorem of this paper.

Theorem 3.2. The following conditions are equivalent for an integer $n \geq 1$:
(i) $([R, S], ., \cap)$ is a boolean algebra with cardinality 2^{n}.
(ii) $[R, S]$ is generated by a set $\Gamma=\left\{T_{i}: 1 \leq i \leq n\right\}$ of incomparable intermediate rings.
(iii) $\quad(R, S)$ is a normal pair and $\operatorname{Supp}(S / R)$ consists of n maximal ideals.
(iv) $\quad \operatorname{Supp}(S / R) \subseteq \operatorname{Max}(R)$ and $|[R, S]|=2^{n}$.
(v) $\quad \operatorname{Supp}(S / R) \subseteq \operatorname{Max}(R)$, and there is a maximal chain $R_{0}=R \subset R_{1} \subset$ $R_{2} \subset \ldots \subset R_{n}=S$ of length n.

Proof. $(i) \Rightarrow(i i)$ It is known that, if $([R, S], ., \cap)$ is a finite boolean algebra with cardinality 2^{n}, then it is isomorphic to a boolean algebra of type $(P(I), \cup, \cap)$, where $P(I)$ is the power set of a finite set I with cardinality n. Let $\Psi: P(I) \longrightarrow[R, S]$ be such an isomorphism, and set $T_{i}=\Psi(\{i\})$ for every $i \in I$. As the sets $(\{i\})_{i \in I}$ are incomparable, then the T_{i} 's, for $i \in I$ are incomparable. Moreover, if $T \in[R, S]$, $T \neq R$, then $T=\Psi(J)$ for some non-empty subset J of I. Thus

$$
T=\Psi\left(\bigcup_{i \in J}\{i\}\right)=\prod_{i \in J} \Psi(\{i\})=\prod_{i \in J} T_{i} .
$$

(ii) \Rightarrow (i) By virtue of Lemma 3.1, we deduce that $([R, S], ., \cap)$ is a distributive lattice with least element R and greatest element S. In addition, this lattice is complemented. Indeed, if $T=\prod_{i \in J} T_{i} \in[R, S]$, where $J \subseteq\{1,2, \ldots, n\}$, then $T^{\prime}=$ $\prod_{i \notin J} T_{i} \in[R, S]$ is the complement of T, since

$$
T \cap T^{\prime}=\varphi(J) \cap \varphi(I-J)=\varphi(J \cap(I-J))=\varphi(\varnothing)=R
$$

and

$$
T \cdot T^{\prime}=\varphi(J) \cdot \varphi(I-J)=\varphi(J \cup(I-J))=\varphi(I)=S
$$

Thus $([R, S], ., \cap)$ is a boolean algebra with cardinality 2^{n}.
(ii) \Leftrightarrow (iii) results from Theorem 2.4.
(i) \Rightarrow (iv) and (v) Since (ii) and (iii) hold, we can say that $\operatorname{Supp}(S / R)$ consists of n maximal ideals $M_{1}, M_{2}, \ldots, M_{n}$, and $[R, S]$ is generated by $\Gamma=\left\{T_{i}=\Omega\left(M_{i}\right)\right.$: $1 \leq i \leq n\}$. Now, if $R_{j}=\prod_{1 \leq i \leq j} T_{i}$, then

$$
R_{0}=R \subset R_{1} \subset R_{2} \subset \ldots \subset R_{n}=S
$$

is a maximal chain of length n. Indeed, if $T=\prod_{i \in J} T_{i}$ is an intermediate ring between R_{j} and R_{j+1} and different from R_{j} and R_{j+1}, where $J \subseteq\{1,2, \ldots, n\}$, then $\{1,2, \ldots, j\} \subset J \subset\{1,2, \ldots, j, j+1\}$ by Lemma 3.1, a contradiction.
(v) \Rightarrow (iii) Assume that $\operatorname{Supp}(S / R) \subseteq \operatorname{Max}(R)$, and there is a maximal chain $R_{0}=R \subset R_{1} \subset R_{2} \subset \ldots \subset R_{n}=S$ of length n.

First, we will prove that (R, S) is a normal pair. According to [3, Introduction], it suffices to show that $\left(R_{M}, S_{M}\right)$ is a normal pair for every maximal ideal M of R. Let M be a maximal ideal of R. Then

$$
R_{M}=\left(R_{o}\right)_{M} \subseteq\left(R_{1}\right)_{M} \subseteq \cdots \subseteq\left(R_{n}\right)_{M}=S_{M}
$$

is a chain between R_{M} and S_{M} such that either $\left(R_{i}\right)_{M}=\left(R_{i+1}\right)_{M}$ or $\left(R_{i}\right)_{M} \subset$ $\left(R_{i+1}\right)_{M}$ is a minimal extension. By refining this last chain, we obtain a finite maximal chain between R_{M} and S_{M}. Without loss of generality, we may suppose that R is local with maximal ideal M. It is clear that $\left(R, R_{1}\right)$ is a normal pair, since by assumption R is supposed to be integrally closed in S (so in R_{1}) and $R \subset R_{1}$ is a minimal extension. Therefore, there is a prime ideal P of R such that $P \subset M$ and $R_{1}=R_{P}$ [3, Theorem 1]. Thus R_{1} is also local. In the other way, $R_{1}=R_{P}$ is integrally closed in S_{P} (so in R_{2}) and $R_{1} \subset R_{2}$ is a minimal extension. It results that $\left(R_{1}, R_{2}\right)$ is a normal pair and R_{2} is local. Likewise, we can establish that $\left(R_{i}, R_{i+1}\right)$ is a normal pair and R_{i+1} is local for each $0 \leq i \leq n-1$. Consequently, if $z \in S=R_{n}$, then $z \in R_{n-1}$ or $z^{-1} \in R_{n-1}$ (Proposition 1.1 (vi)). Progressively, we find that $z \in R_{i}$ or $z^{-1} \in R_{i}$ for each $0 \leq i \leq n$, and again Proposition 1(vi) ensures that (R, S) is a normal pair.

Now, we will prove that $\operatorname{Supp}(S / R)$ consists of n maximal ideals. Since (R_{i}, R_{i+1}) is a minimal extension, then $\operatorname{Supp}\left(R_{i+1} / R_{i}\right)$ consists of a unique prime ideal Q_{i} of R_{i} (Lemma 2.1). By virtue of Proposition 1.1 (ii), we have $Q_{i}=H_{i} R_{i}$ for some prime ideal H_{i} of R. We claim that

$$
\operatorname{Supp}(S / R)=\left\{H_{0}, H_{1}, \ldots, H_{n-1}\right\}
$$

Indeed, if $Q \in \operatorname{Supp}(S / R)$, then $Q R_{0}=Q$ and $Q R_{n}=R_{n}$. Let i be the first index $i \geq 1$ such that $Q R_{i}=R_{i}$. We necessarily have $Q R_{i-1} \subset R_{i-1}$ and $Q R_{i-1} \in \operatorname{Supp}\left(R_{i} / R_{i-1}\right)$. Thus $Q R_{i-1}=Q_{i-1}=H_{i-1} R_{i-1}$. By contraction on R, we obtain $Q=H_{i-1}$ (Proposition 1.1 (iii)). So $\operatorname{Supp}(S / R) \subseteq\left\{H_{0}, H_{1}, \ldots, H_{n-1}\right\}$. To see the reverse inclusion, it suffices to note that $Q_{i} R_{i+1}=R_{i+1}$, so $H_{i} S=$ $\left(H_{i} R_{i}\right) S=Q_{i} S=\left(Q_{i} R_{i+1}\right) S=R_{i+1} S=S$ for each $i \in\{0,1, \ldots, n-1\}$.

Furthermore, the H_{i} 's are distinct. If $H_{i}=H_{j}$ for $0 \leq i<j \leq n-1$, then $Q_{i} R_{j}=$ Q_{j}, and this leads to the contradiction $Q_{j}=Q_{j} R_{j}=Q_{i} R_{j}=\left(Q_{i} R_{i+1}\right) R_{j}=$ $R_{i+1} R_{j}=R_{j}$.

As by assumption $\operatorname{Supp}(S / R) \subseteq \operatorname{Max}(R)$, then $\operatorname{Supp}(S / R)$ consists of n maximal ideals.
$($ iv $) \Rightarrow($ v $)$ Suppose that $\operatorname{Supp}(S / R) \subseteq \operatorname{Max}(R)$ and $|[R, S]|=2^{n}$. Since $[R, S]$ is finite, we can consider a finite maximal chain

$$
R_{0}=R \subset R_{1} \subset R_{2} \subset \ldots \subset R_{m}=S
$$

of length m from R to S. Since the conditions (i) and (v) are actually equivalent for the integer m, we obtain $|[R, S]|=2^{m}$. Henceforth, $m=n$.

As consequences of Theorem 3.2, we recover the following corollaries. Our first application concerns the case where R is a Prüfer ring and S is an overring of R. In this case, it is known that (R, S) is a normal pair.

Corollary 3.3. If R is a Prüfer ring and S is an overring of R, then the following conditions are equivalent for an integer $n \geq 1$:
(i) $([R, S], ., \cap)$ is a boolean algebra with cardinality 2^{n}.
(ii) $\operatorname{Supp}(S / R)$ consists of n maximal ideals.

Now, if R is an integrally closed domain with quotient field K, then

$$
\operatorname{Supp}(K / R)=\operatorname{Spec}(R)-\{0\} .
$$

We can derive the following nice result:
Corollary 3.4. If R is integrally closed with quotient field K, then the following conditions are equivalent for an integer $n \geq 1$:
(i) $([R, K], ., \cap)$ is a boolean algebra with cardinality 2^{n}.
(ii) $[R, K]$ is generated by a set $\left\{T_{i}: 1 \leq i \leq n\right\}$ of incomparable proper overrings of R.
(iii) R is a 1 -dimensional semi-local Prüfer ring with n maximal ideals.
(iv) $\operatorname{dim} R=1$ and $|[R, K]|=2^{n}$.
(v) $\operatorname{dim} R=1$, and there is a maximal chain $R_{0}=R \subset R_{1} \subset \ldots \subset R_{n}=K$ of length n.

The following result provides a method for building more examples of extensions $R \subset S$ such that $[R, S]$ is a finite boolean algebra.

Corollary 3.5. Let S be an integral domain, M a maximal ideal of S, D a subring of the residue field $L=S / M$ and $R=\varphi^{-1}(D)$ the inverse image of D by the canonical epimorphism $\varphi: S \rightarrow L$. If D is integrally closed in L, then $([R, S], ., \cap)$ is a boolean algebra with cardinality 2^{n} if and only if D is a 1-dimensional semi-local Prüfer ring with n maximal ideals and quotient field L.

Proof. R is the pullback illustrated by the following square:

Note that R is integrally closed in S. Therefore, this result is a direct consequence of Corollary 3.4 and the fact that $[R, S]$ is generated by a set $\left\{T_{i}: 1 \leq i \leq n\right\}$ of intermediate rings between R and S if and only if $[D, L]$ is generated by the set $\left\{\varphi\left(T_{i}\right): 1 \leq i \leq n\right\}$ of intermediate rings between D and L.

Our last application is a significant result concerning Krull rings.
Corollary 3.6. If R is a Krull domain and $[R, S]$ is finite, then $([R, S], ., \cap)$ is a boolean algebra of cardinality 2^{n}, where n is the number of height-one maximal ideals of R such that $M S=S$.

Proof. Since $[R, S]$ is finite, we can consider a finite maximal chain between R and S. To apply Theorem $3.2(\mathrm{v})$, it remains to show that every prime ideal of $\operatorname{Supp}(S / R)$ is maximal. Let $Q \in \operatorname{Supp}(S / R)$. Then $Q \neq(0)$ and Q is contained in a maximal ideal $M \in \operatorname{Supp}(S / R)$. In view of Lemma $2.3, \Omega(M)$ is a minimal overring of R. Finally, according to [1, Theorem 5.7], we necessarily have $h t_{R}(M)=1$ and $Q=M$.

Acknowledgment. The author thanks the referee for his several helpful remarks concerning the final form of this paper.

References

[1] A. Ayache, Minimal overrings of an integrally closed domain, Comm. Algebra 31 (12) (2003), 5693-5714.
[2] A. Ayache and A. Jaballah, Residually algebraic pairs of rings, Math. Z., 225 (1997), 49-65.
[3] E. Davis, Overrings of commutative rings III: Normal pairs, Trans. Amer. Math. Soc., 182 (1973), 175-185.
[4] M. Fontana, Kaplansky ideal transform: a survey, Advances in Commutative ring theory (Proceeding of Third Fès (Morocco) Conference on Commutative Algebra) in: Lecture Notes in Pure and Applied Mathematics, Vol. 205, Dekker, New York, 1999. p 51.
[5] A. Jaballah, A lower bound for the number of intermediary rings, Comm. Algebra, 27(3) (1999), 1307-1311.

Ahmed Ayache
Department of Mathematics
College of Science
University Of Bahrain
P. O. Box: 32038, Suhkir,
Kingdom of Bahrain
e-mail: aayache@sci.uob.bh;
aaayache@yahoo.com

[^0]: This work was supported by the Deanship of Scientific Research, University of Bahrain (project No. 14/2009).

