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Abstract. Let R ⊂ S be an extension of integral domains with identity

such that R is not a field and R is integrally closed in S. We determine

necessary and sufficient conditions so that the set of intermediate rings

[R, S] between R and S is a finite boolean algebra. Several cases are

treated, specially when S is the quotient field of R or when R is a Krull

domain.
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1. Introduction

Throughout this paper, R ⊂ S is supposed to be an extension of integral domains

with identity such that R is not a field and R is integrally closed in S. We denote

by qf(R) the quotient field of R, by Spec(R) the set of all prime ideals of R and

by Max(R) = {Mi : i ∈ I} the set of all maximal ideals of R. We also denote by

[R,S] the set of all intermediate rings between R and S, and by Supp(S/R) the set

of all prime ideals Q of R such that QS = S.

If T1, T2, . . . , Tn ∈ [R,S], we denote by
n∏

i=1

Ti the smallest intermediate ring

between R and S containing
n⋃

i=1

Ti. It is obvious that every element of
n∏

i=1

Ti can

be expressed as a finite sum of the form
∑

t1t2 · · · tn, where ti ∈ Ti.

Finally, if Γ = {Ti : i ∈ I} is a non-empty set of intermediate rings between R

and S, and each T ∈ [R, S] can be written as
∏
i∈J

Ti for some finite subset J of I, we

say that [R, S] is generated by Γ. By convention, we may suppose that R =
∏

i∈∅
Ti.

Let us recall some needed definitions:
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A pair of rings (R, S) is said to be a normal pair provided that each T ∈ [R, S]

is integrally closed in S. These pairs where first defined and studied by E. D. Davis

[3]. He proved that if R is local, then (R,S) is a normal pair if and only if there

exists a divided prime ideal P of R (i.e, PRP = P ) such that S = RP and R/P is

a valuation ring [3, Theorem 1]. Several other characterizations of such pairs are

settled in [2]:

Proposition 1.1. [2, Theorems 2.5, 2.10, Lemma 2.9] If R is integrally closed in

S, then the following conditions are equivalent:

(i) (R, S) is a normal pair.

(ii) For each T ∈ [R, S], Spec(T ) = {PT : PT ⊂ T, P ∈ Spec(R)}.
(iii) For each T ∈ [R, S], Spec(T ) → Spec(R) is injective.

(iv) For each T ∈ [R,S], and for each Q ∈ Spec(T ); set P = Q ∩ R, then

RP = TQ.

(v) For each T ∈ [R, S], T =
⋂

P∈Spec(R),PT⊂T RP .

In particular, if R is local, the above conditions are equivalent to the

following:

(vi) For all s ∈ S, s ∈ R or s−1 ∈ R.

A boolean algebra B is a bounded distributive lattice (B, f, g) with unary op-

eration ′ : B −→ B such that a f a′ = 1 and a g a′ = 0, where 0 is the least

element and 1 is the greatest element. Boolean algebras arise in variety of areas of

mathematics and computer science.

Our main purpose is to investigate under which conditions ([R, S], .,∩) is a finite

boolean algebra. Among other equivalent assertions, we find that ([R,S], .,∩) is

a boolean algebra with cardinality 2n if and only if (R,S) is a normal pair and

Supp(S/R) consists of n maximal ideals; or equivalently, there is a maximal chain

R0 = R ⊂ R1 ⊂ R2 ⊂ ... ⊂ Rn = S of length n and every prime ideal of Supp(S/R)

is maximal (Theorem 3.2). If S is the quotient field of R, we find that ([R,S], .,∩) is

a boolean algebra with cardinality 2n if and only if R is a 1-dimensional semi-local

Prüfer ring with n maximal ideals (Corollary 3.4). If R is a Krull domain and [R, S]

is finite, we establish that ([R, S], .,∩) is a boolean algebra of cardinality 2n, where

n is the number of low maximal ideals of R such that MS = S (Corollary 3.6).

The proofs are mostly based on the notion of Kaplansky ideal transforms. Recall

that the Kaplansky ideal transform ΩR(I) of an ideal I of R is an overring of R

defined by

ΩR(I) = {x ∈ qf(R) : ∀y ∈ I, xyn ∈ R for some integer n ≥ 1}.
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We frequently write Ω(I) instead of ΩR(I), when no confusion is possible. Note

that ΩR(I) can be simply expressed in terms of localizations of R by

ΩR(I) =
⋂
{RP : P ∈ Spec(R), P + I}.

Further properties of such transform can be found in details in [4].

2. Preliminary results

We say that R ⊂ S is a minimal extension if [R, S] contains only R and S.

Because R is not a field and R is assumed to be integrally closed in S, then (R,S)

is obviously a normal pair. The following useful characterization due to A. Jaballah

precises the relationship between these two concepts. We label it as Lemma 2.1 for

the sake of reference.

Lemma 2.1. [5, Lemma 3.2] The following conditions are equivalent:

(i) R ⊂ S is a minimal extension.

(ii) (R, S) is a normal pair and Supp(S/R) consists of a maximal ideal of R.

It is clear that, if R ⊂ S is a minimal extension, then [R,S] is generated by

Γ = {S}. In this section, we will generalize Lemma 2.1 by considering the case

where [R, S] is generated by a non-empty set Γ = {Ti : i ∈ I} of incomparable

intermediate rings. We start by two preparatory Lemmas.

Lemma 2.2. If [R,S] is generated by a non-empty set Γ = {Ti : i ∈ I} of incom-

parable intermediate rings, then

(i) Each Ti is a minimal overring of R.

(ii) S is an overring of R.

(iii) I is finite.

Proof. (i) If there is a proper intermediate ring T between R and Ti, then T =∏
j∈J

Tj for some non-empty finite subset J of I. Then Tj ⊆ Ti for each j ∈ J , but

this is false since by assumption, the rings in Γ are incomparable. Thus R ⊂ Ti is

a minimal extension.

(ii) According to Lemma 2.1, (R, Ti) is a normal pair and Supp(R/Ti) consists

of one maximal ideal Mi. By application of Proposition 1.1, Ti can be expressed as

Ti =
⋂

QTi⊂Ti

RQ =
⋂

Q/∈Supp(Ti/R)

RQ =
⋂

Q6=Mi

RQ = Ω(Mi)

Moreover, RMi ⊂ (Ti)Mi is a minimal extension [1, Proposition 2.2]. Since (RMi , (Ti)Mi)

is a normal pair, there is a prime ideal Pi of R such that Pi ⊂ Mi and (Ti)Mi =
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(RMi
)PiRMi

= RPi
[3, Theorem 1]. Now, we have S =

∏
i∈K

Ti for some non-empty

finite subset K of I, so we can present S as

S =
∏

i∈K

Ω(Mi) ⊆ Ω(
∏

i∈K

Mi) =
⋂

Q6=Mi,i∈K

RQ

In particular, we deduce that S is an overring of R.

(iii) If K 6= I, we can consider an intermediate ring Tl = Ω(Ml) for some

l ∈ I − K. As S ⊆ RMl
, it follows that RMl

⊂ (Tl)Ml
= RPl

⊆ SMl
⊆ RMl

, a

contradiction. Thus I = K is a finite set. ¤

We will denote I = {1, 2, . . . , n}. It follows that, if [R,S] is generated by a

set Γ = {Ti : 1 ≤ i ≤ n} of incomparable intermediate rings, then each Ti is the

Kaplansky ideal transform Ti = Ω(Mi) of a unique maximal ideal Mi of R such

that MiTi = Ti. We will use frequently this fact along this line.

Lemma 2.3. Let (R, S) be a normal pair and M1, M2, . . ., Mk maximal ideals in

Supp(S/R). Set Ti = Ω(Mi) and T =
k∏

i=1

Ti, then

(i) Ti is a minimal overring of S.

(ii) T = Ω(
k∏

i=1

Mi) and Supp(T/R) = {Mi : 1 ≤ i ≤ k}.

Proof. (i) Let H be an intermediate ring between R and Ti =
⋂

Q6=Mi

RQ. For

every prime ideal Q 6= Mi of R, we have RQ ⊆ HQ ⊆ RQ, thus RQ = HQ and

QH ⊂ H. Therefore, either Supp(H/R) = ∅, so H = R; or Supp(H/R) = {Mi},
so H =

⋂
QH⊂H

RQ =
⋂

Q6=Mi

RQ = Ti.

(ii) Because of MiTi = Ti for each i ∈ {1, 2, . . . , k}, then MiT = T . It follows

that {Mi : 1 ≤ i ≤ k} ⊆ Supp(T/R). To show the reverse containment, notice that

T =
k∏

i=1

Ω(Mi) ⊆ Ω(
k⋂

i=1

Mi) =
⋂

Q6=Mi,1≤i≤k

RQ

Therefore, if Q is a prime ideal of R which does not belong to {Mi : 1 ≤ i ≤ k},
then T ⊆ RQ. Thus QT ⊂ T and Q /∈ Supp(T/R).

Hence Supp(T/R) = {Mi : 1 ≤ i ≤ k} and

T =
⋂

QT⊂T

RQ =
⋂

Q/∈Supp(T/R)

RQ =
⋂

Q6=Mi,1≤i≤k

RQ = Ω(
k∏

i=1

Mi).

¤

We are able to provide the generalization of Lemma 2.1:
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Theorem 2.4. The following conditions are equivalent:

(i) [R,S] is generated by a finite non-empty set Γ = {Ti : 1 ≤ i ≤ n} of

incomparable intermediate rings.

(ii) (R, S) is a normal pair and Supp(S/R) consists of n maximal ideals of R.

Proof. (i) ⇒ (ii) Since [R, S] is generated by Γ = {Ti : 1 ≤ i ≤ n}, then S can be

written as S =
n∏

i=1

Ti. In light of [3, Introduction], to prove that (R, S) is a normal

pair, it suffices to show that (RM , SM ) is a normal pair for each maximal ideal M

of R. For each i, we have RM = (Ti)M or RM ⊂ (Ti)M is a minimal extension.

But, according to [1, Theorem 1.2], we know that RM has at most one minimal

overring, then two cases may occur:

- If RM = (Ti)M for each i ∈ {1, 2, . . . , n}, then SM =
n∏

i=1

(Ti)M = RM , so

(RM , SM ) is clearly a normal pair.

- If RM ⊂ (Tj)M is a minimal extension for a unique j ∈ {1, 2, . . . , n}, then

SM =
n∏

i=1

(Ti)M = (Tj)M , so RM ⊂ SM is a minimal extension. As RM is integrally

closed in SM , then (RM , SM ) is a normal pair.

Since each Ti is a minimal overring of R, then Ti = Ω(Mi) for a maximal ideal

Mi of R such that MiTi = Ti and MiS = S for each i ∈ {1, 2, . . . , n}. Thus,

according to Lemma 2.3, we have Supp(S/R) = {M1,M2, . . . ,Mn}.
(ii) ⇒ (i) Suppose that (R,S) is a normal pair such that Supp(S/R) consists

of n maximal ideals M1, M2,. . . , Mn. Set Ti = Ω(Mi) and Γ = {Ti : 1 ≤ i ≤ n}.
Since each Ti is a minimal overring of R, Lemma 2.3, then the elements of Γ are

incomparable. It remains to show that Γ generates [R, S]. Let T ∈ [R, S]. Then

Supp(T/R) ⊆ Supp(S/R). Therefore, if Supp(T/R) = {Mi : i ∈ J} for some

subset J of {1, 2, . . . , n}, then

T =
⋂

QT⊂T

RQ =
⋂

Q/∈Supp(T/R)

RQ =
⋂

Q 6=Mi,i∈J

RQ = Ω(
∏

i∈J

Mi).

Again from Lemma 2.3, we get

T = Ω(
∏

i∈J

Mi) =
∏

i∈J

Ω(Mi) =
∏

i∈J

Ti.

¤

3. Boolean algebra

Lemma 3.1. Suppose that [R, S] is generated by a finite set Γ = {Ti : 1 ≤ i ≤ n}
of incomparable intermediate rings. Let ϕ be the function from the power set P (I)

of I = {1, 2, . . . , n} to [R,S] that maps ∅ to R and any non-empty subset J of I
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to
∏
i∈J

Ti. Then ϕ is bijective, and satisfies the following properties for every two

subsets J and Kof I:

(i) J ⊆ K if and only if ϕ(J) ⊆ ϕ(K).

(ii) ϕ(J ∪K) = ϕ(J)ϕ(K).

(iii) ϕ(J ∩K) = ϕ(J) ∩ ϕ(K).

Proof. In view of Theorem 2.4, Supp(S/R) consists of n maximal ideals of R,

namely M1,M2, . . . , Mn.

(i) Set H = ϕ(J) and L = ϕ(K). It is clear that J ⊆ K implies H ⊆ L.

Conversely, if H ⊆ L, then Supp(H/R) ⊆ Supp(L/R). But, by Lemma 2.3, we

have Supp(H/R) = {Mi : i ∈ J} while Supp(L/R) = {Mi : i ∈ K}. Hence J ⊆ K.

In particular, this shows that ϕ is injective. As ϕ is also onto by hypothesis on

[R,S], then ϕ is bijective.

(ii) Since (Ti)2 = Ti for every i ∈ {1, 2, . . . , n}, we have

ϕ(J ∪K) =
∏

i∈J∪K

Ti = (
∏

i∈J

Ti)(
∏

i∈K

Ti) = ϕ(J).ϕ(K)

(iii) This assertion is obvious if there is a containment between J and K. Suppose

that J * K and K * J . Let L = J ∩K (eventually, we may have L = ∅). Since

the maximal ideals (Mi)1≤i≤n are comaximal ideals, then
∏

i∈J\K
Mi and

∏
i∈K\J

Mi

are also comaximal ideals. It results that

ϕ(J) ∩ ϕ(K) = (
∏

i∈J

Ti) ∩ (
∏

i∈K

Ti)

= Ω(
∏

i∈J

Mi) ∩ Ω(
∏

i∈K

Mi) by Lemma 2.3

= Ω(
∏

i∈J

Mi +
∏

i∈K

Mi) [4, Lemma 3.1]

= Ω[
∏

i∈L

Mi(
∏

i∈J\K
Mi +

∏

i∈K\J
Mi)]

= Ω(
∏

i∈L

Mi)

=
∏

i∈L

Ω(Mi) by Lemma 2.3

=
∏

i∈L

Ti = ϕ(L)

¤

We are ready to provide the main theorem of this paper.
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Theorem 3.2. The following conditions are equivalent for an integer n ≥ 1:

(i) ([R, S], .,∩) is a boolean algebra with cardinality 2n.

(ii) [R,S] is generated by a set Γ = {Ti : 1 ≤ i ≤ n} of incomparable inter-

mediate rings.

(iii) (R, S) is a normal pair and Supp(S/R) consists of n maximal ideals.

(iv) Supp(S/R) ⊆ Max(R) and |[R, S]| = 2n.

(v) Supp(S/R) ⊆ Max(R), and there is a maximal chain R0 = R ⊂ R1 ⊂
R2 ⊂ ... ⊂ Rn = S of length n.

Proof. (i) ⇒ (ii) It is known that, if ([R, S], .,∩) is a finite boolean algebra with

cardinality 2n, then it is isomorphic to a boolean algebra of type (P (I),∪,∩), where

P (I) is the power set of a finite set I with cardinality n. Let Ψ:P (I) −→ [R, S] be

such an isomorphism, and set Ti = Ψ({i}) for every i ∈ I. As the sets ({i})i∈I are

incomparable, then the Ti’s, for i ∈ I are incomparable. Moreover, if T ∈ [R,S],

T 6= R, then T = Ψ(J) for some non-empty subset J of I. Thus

T = Ψ(
⋃

i∈J

{i}) =
∏

i∈J

Ψ({i}) =
∏

i∈J

Ti.

(ii)⇒ (i) By virtue of Lemma 3.1, we deduce that ([R, S], .,∩) is a distributive

lattice with least element R and greatest element S. In addition, this lattice is

complemented. Indeed, if T =
∏
i∈J

Ti ∈ [R,S], where J ⊆ {1, 2, . . . , n}, then T ′ =
∏
i/∈J

Ti ∈ [R,S] is the complement of T, since

T ∩ T ′ = ϕ(J) ∩ ϕ(I − J) = ϕ(J ∩ (I − J)) = ϕ(∅) = R,

and

T.T ′ = ϕ(J).ϕ(I − J) = ϕ(J ∪ (I − J)) = ϕ(I) = S.

Thus ([R, S], .,∩) is a boolean algebra with cardinality 2n.

(ii) ⇔ (iii) results from Theorem 2.4.

(i) ⇒ (iv) and (v) Since (ii) and (iii) hold, we can say that Supp(S/R) consists

of n maximal ideals M1,M2, . . . , Mn, and [R, S] is generated by Γ = {Ti = Ω(Mi) :

1 ≤ i ≤ n}. Now, if Rj =
∏

1≤i≤j

Ti, then

R0 = R ⊂ R1 ⊂ R2 ⊂ ... ⊂ Rn = S

is a maximal chain of length n. Indeed, if T =
∏
i∈J

Ti is an intermediate ring

between Rj and Rj+1 and different from Rj and Rj+1, where J ⊆ {1, 2, . . . , n},
then {1, 2, . . . , j} ⊂ J ⊂ {1, 2, . . . , j, j + 1} by Lemma 3.1, a contradiction.
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(v) ⇒ (iii) Assume that Supp(S/R) ⊆ Max(R), and there is a maximal chain

R0 = R ⊂ R1 ⊂ R2 ⊂ ... ⊂ Rn = S of length n.

First, we will prove that (R, S) is a normal pair. According to [3, Introduction],

it suffices to show that (RM , SM ) is a normal pair for every maximal ideal M of R.

Let M be a maximal ideal of R. Then

RM = (Ro)M ⊆ (R1)M ⊆ · · · ⊆ (Rn)M = SM

is a chain between RM and SM such that either (Ri)M = (Ri+1)M or (Ri)M ⊂
(Ri+1)M is a minimal extension. By refining this last chain, we obtain a finite

maximal chain between RM and SM . Without loss of generality, we may suppose

that R is local with maximal ideal M . It is clear that (R, R1) is a normal pair, since

by assumption R is supposed to be integrally closed in S (so in R1) and R ⊂ R1

is a minimal extension. Therefore, there is a prime ideal P of R such that P ⊂ M

and R1 = RP [3, Theorem 1]. Thus R1 is also local. In the other way, R1 = RP is

integrally closed in SP (so in R2) and R1 ⊂ R2 is a minimal extension. It results

that (R1, R2) is a normal pair and R2 is local. Likewise, we can establish that

(Ri, Ri+1) is a normal pair and Ri+1 is local for each 0 ≤ i ≤ n− 1. Consequently,

if z ∈ S = Rn, then z ∈ Rn−1 or z−1 ∈ Rn−1 (Proposition 1.1 (vi)). Progressively,

we find that z ∈ Ri or z−1 ∈ Ri for each 0 ≤ i ≤ n, and again Proposition 1(vi)

ensures that (R, S) is a normal pair.

Now, we will prove that Supp(S/R) consists of n maximal ideals. Since (Ri, Ri+1)

is a minimal extension, then Supp(Ri+1/Ri) consists of a unique prime ideal Qi of

Ri (Lemma 2.1). By virtue of Proposition 1.1 (ii), we have Qi = HiRi for some

prime ideal Hi of R. We claim that

Supp(S/R) = {H0, H1, . . . , Hn−1}.

Indeed, if Q ∈ Supp(S/R), then QR0 = Q and QRn = Rn. Let i be the

first index i ≥ 1 such that QRi = Ri. We necessarily have QRi−1 ⊂ Ri−1 and

QRi−1 ∈ Supp(Ri/Ri−1). Thus QRi−1 = Qi−1 = Hi−1Ri−1. By contraction on R,

we obtain Q = Hi−1 (Proposition 1.1 (iii)). So Supp(S/R) ⊆ {H0, H1, . . . , Hn−1}.
To see the reverse inclusion, it suffices to note that QiRi+1 = Ri+1, so HiS =

(HiRi)S = QiS = (QiRi+1)S = Ri+1S = S for each i ∈ {0, 1, . . . , n− 1}.
Furthermore, the Hi’s are distinct. If Hi = Hj for 0 ≤ i < j ≤ n−1, then QiRj =

Qj , and this leads to the contradiction Qj = QjRj = QiRj = (QiRi+1)Rj =

Ri+1Rj = Rj .

As by assumption Supp(S/R) ⊆ Max(R), then Supp(S/R) consists of n maximal

ideals.
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(iv)⇒ (v) Suppose that Supp(S/R) ⊆ Max(R) and |[R,S]| = 2n. Since [R, S]

is finite, we can consider a finite maximal chain

R0 = R ⊂ R1 ⊂ R2 ⊂ ... ⊂ Rm = S

of length m from R to S. Since the conditions (i) and (v) are actually equivalent

for the integer m, we obtain |[R, S]| = 2m. Henceforth, m = n. ¤

As consequences of Theorem 3.2, we recover the following corollaries. Our first

application concerns the case where R is a Prüfer ring and S is an overring of R.

In this case, it is known that (R,S) is a normal pair.

Corollary 3.3. If R is a Prüfer ring and S is an overring of R, then the following

conditions are equivalent for an integer n ≥ 1:

(i) ([R, S], .,∩) is a boolean algebra with cardinality 2n.

(ii) Supp(S/R) consists of n maximal ideals.

Now, if R is an integrally closed domain with quotient field K, then

Supp(K/R) = Spec(R)− {0}.

We can derive the following nice result:

Corollary 3.4. If R is integrally closed with quotient field K, then the following

conditions are equivalent for an integer n ≥ 1:

(i) ([R, K], .,∩) is a boolean algebra with cardinality 2n.

(ii) [R,K] is generated by a set {Ti : 1 ≤ i ≤ n} of incomparable proper over-

rings of R.

(iii) R is a 1−dimensional semi-local Prüfer ring with n maximal ideals.

(iv) dimR = 1 and |[R, K]| = 2n.

(v) dimR = 1, and there is a maximal chain R0 = R ⊂ R1 ⊂ . . . ⊂ Rn = K of

length n.

The following result provides a method for building more examples of extensions

R ⊂ S such that [R, S] is a finite boolean algebra.

Corollary 3.5. Let S be an integral domain, M a maximal ideal of S, D a subring

of the residue field L = S/M and R = ϕ−1(D) the inverse image of D by the

canonical epimorphism ϕ : S → L. If D is integrally closed in L, then ([R, S], .,∩)

is a boolean algebra with cardinality 2n if and only if D is a 1-dimensional semi-local

Prüfer ring with n maximal ideals and quotient field L.
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Proof. R is the pullback illustrated by the following square:

R −→ D

↓ ↓
S −→ L = S/M

Note that R is integrally closed in S. Therefore, this result is a direct consequence

of Corollary 3.4 and the fact that [R,S] is generated by a set {Ti : 1 ≤ i ≤ n} of

intermediate rings between R and S if and only if [D, L] is generated by the set

{ϕ(Ti) : 1 ≤ i ≤ n} of intermediate rings between D and L. ¤

Our last application is a significant result concerning Krull rings.

Corollary 3.6. If R is a Krull domain and [R, S] is finite, then ([R, S], .,∩) is

a boolean algebra of cardinality 2n, where n is the number of height-one maximal

ideals of R such that MS = S.

Proof. Since [R, S] is finite, we can consider a finite maximal chain between R

and S. To apply Theorem 3.2(v), it remains to show that every prime ideal of

Supp(S/R) is maximal. Let Q ∈ Supp(S/R). Then Q 6= (0) and Q is contained in a

maximal ideal M ∈ Supp(S/R). In view of Lemma 2.3, Ω(M) is a minimal overring

of R. Finally, according to [1, Theorem 5.7], we necessarily have htR(M) = 1 and

Q = M . ¤
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