WHEN IS THE SET OF INTERMEDIATE RINGS A FINITE BOOLEAN ALGEBRA

Ahmed Ayache

Received: 27 January 2010; Revised: 9 June 2010 Communicated by Abdullah Harmancı

ABSTRACT. Let $R \subset S$ be an extension of integral domains with identity such that R is not a field and R is integrally closed in S. We determine necessary and sufficient conditions so that the set of intermediate rings [R, S] between R and S is a finite boolean algebra. Several cases are treated, specially when S is the quotient field of R or when R is a Krull domain.

Mathematics Subject Classification (2000): Primary 13BO2; secondary: 13C15, 13A18, 13B25, 13E05

Keywords: Boolean algebra, normal pair, minimal overring, maximal chain

1. Introduction

Throughout this paper, $R \subset S$ is supposed to be an extension of integral domains with identity such that R is not a field and R is integrally closed in S. We denote by qf(R) the quotient field of R, by Spec(R) the set of all prime ideals of R and by $Max(R) = \{M_i : i \in I\}$ the set of all maximal ideals of R. We also denote by [R, S] the set of all intermediate rings between R and S, and by Supp(S/R) the set of all prime ideals Q of R such that QS = S.

If $T_1, T_2, \ldots, T_n \in [R, S]$, we denote by $\prod_{i=1}^n T_i$ the smallest intermediate ring between R and S containing $\bigcup_{i=1}^n T_i$. It is obvious that every element of $\prod_{i=1}^n T_i$ can be expressed as a finite sum of the form $\sum t_1 t_2 \cdots t_n$, where $t_i \in T_i$.

Finally, if $\Gamma = \{T_i : i \in I\}$ is a non-empty set of intermediate rings between Rand S, and each $T \in [R, S]$ can be written as $\prod_{i \in J} T_i$ for some finite subset J of I, we say that [R, S] is generated by Γ . By convention, we may suppose that $R = \prod_{i \in \mathcal{A}} T_i$.

Let us recall some needed definitions:

This work was supported by the Deanship of Scientific Research, University of Bahrain (project No. 14/2009).

AHMED AYACHE

A pair of rings (R, S) is said to be a normal pair provided that each $T \in [R, S]$ is integrally closed in S. These pairs where first defined and studied by E. D. Davis [3]. He proved that if R is local, then (R, S) is a normal pair if and only if there exists a divided prime ideal P of R (i.e, $PR_P = P$) such that $S = R_P$ and R/P is a valuation ring [3, Theorem 1]. Several other characterizations of such pairs are settled in [2]:

Proposition 1.1. [2, Theorems 2.5, 2.10, Lemma 2.9] If R is integrally closed in S, then the following conditions are equivalent:

- (i) (R, S) is a normal pair.
- (ii) For each $T \in [R, S]$, $Spec(T) = \{PT : PT \subset T, P \in Spec(R)\}$.
- (iii) For each $T \in [R, S]$, $Spec(T) \rightarrow Spec(R)$ is injective.
- (iv) For each $T \in [R, S]$, and for each $Q \in Spec(T)$; set $P = Q \cap R$, then $R_P = T_Q$.
- (v) For each $T \in [R, S]$, $T = \bigcap_{P \in Spec(R), PT \subset T} R_P$. In particular, if R is local, the above conditions are equivalent to the following:
- (vi) For all $s \in S$, $s \in R$ or $s^{-1} \in R$.

A boolean algebra B is a bounded distributive lattice (B, λ, γ) with unary operation $': B \longrightarrow B$ such that $a \downarrow a' = 1$ and $a \uparrow a' = 0$, where 0 is the least element and 1 is the greatest element. Boolean algebras arise in variety of areas of mathematics and computer science.

Our main purpose is to investigate under which conditions $([R, S], ., \cap)$ is a finite boolean algebra. Among other equivalent assertions, we find that $([R, S], ., \cap)$ is a boolean algebra with cardinality 2^n if and only if (R, S) is a normal pair and Supp(S/R) consists of n maximal ideals; or equivalently, there is a maximal chain $R_0 = R \subset R_1 \subset R_2 \subset ... \subset R_n = S$ of length n and every prime ideal of Supp(S/R)is maximal (Theorem 3.2). If S is the quotient field of R, we find that $([R, S], ., \cap)$ is a boolean algebra with cardinality 2^n if and only if R is a 1-dimensional semi-local Prüfer ring with n maximal ideals (Corollary 3.4). If R is a Krull domain and [R, S]is finite, we establish that $([R, S], ., \cap)$ is a boolean algebra of cardinality 2^n , where n is the number of low maximal ideals of R such that MS = S (Corollary 3.6).

The proofs are mostly based on the notion of Kaplansky ideal transforms. Recall that the Kaplansky ideal transform $\Omega_R(I)$ of an ideal I of R is an overring of R defined by

$$\Omega_R(I) = \{ x \in qf(R) : \forall y \in I, xy^n \in R \text{ for some integer } n \ge 1 \}.$$

We frequently write $\Omega(I)$ instead of $\Omega_R(I)$, when no confusion is possible. Note that $\Omega_R(I)$ can be simply expressed in terms of localizations of R by

$$\Omega_R(I) = \bigcap \{ R_P : P \in Spec(R), P \not\supseteq I \}.$$

Further properties of such transform can be found in details in [4].

2. Preliminary results

We say that $R \subset S$ is a minimal extension if [R, S] contains only R and S. Because R is not a field and R is assumed to be integrally closed in S, then (R, S) is obviously a normal pair. The following useful characterization due to A. Jaballah precises the relationship between these two concepts. We label it as Lemma 2.1 for the sake of reference.

Lemma 2.1. [5, Lemma 3.2] The following conditions are equivalent:

- (i) $R \subset S$ is a minimal extension.
- (ii) (R, S) is a normal pair and Supp(S/R) consists of a maximal ideal of R.

It is clear that, if $R \subset S$ is a minimal extension, then [R, S] is generated by $\Gamma = \{S\}$. In this section, we will generalize Lemma 2.1 by considering the case where [R, S] is generated by a non-empty set $\Gamma = \{T_i : i \in I\}$ of incomparable intermediate rings. We start by two preparatory Lemmas.

Lemma 2.2. If [R, S] is generated by a non-empty set $\Gamma = \{T_i : i \in I\}$ of incomparable intermediate rings, then

- (i) Each T_i is a minimal overring of R.
- (ii) S is an overring of R.
- (iii) I is finite.

Proof. (i) If there is a proper intermediate ring T between R and T_i , then $T = \prod_{j \in J} T_j$ for some non-empty finite subset J of I. Then $T_j \subseteq T_i$ for each $j \in J$, but this is false since by assumption, the rings in Γ are incomparable. Thus $R \subset T_i$ is a minimal extension.

(ii) According to Lemma 2.1, (R, T_i) is a normal pair and $Supp(R/T_i)$ consists of one maximal ideal M_i . By application of Proposition 1.1, T_i can be expressed as

$$T_i = \bigcap_{QT_i \subset T_i} R_Q = \bigcap_{Q \notin Supp(T_i/R)} R_Q = \bigcap_{Q \neq M_i} R_Q = \Omega(M_i)$$

Moreover, $R_{M_i} \subset (T_i)_{M_i}$ is a minimal extension [1, Proposition 2.2]. Since $(R_{M_i}, (T_i)_{M_i})$ is a normal pair, there is a prime ideal P_i of R such that $P_i \subset M_i$ and $(T_i)_{M_i} =$

AHMED AYACHE

 $(R_{M_i})_{P_i R_{M_i}} = R_{P_i}$ [3, Theorem 1]. Now, we have $S = \prod_{i \in K} T_i$ for some non-empty finite subset K of I, so we can present S as

$$S = \prod_{i \in K} \Omega(M_i) \subseteq \Omega(\prod_{i \in K} M_i) = \bigcap_{Q \neq M_i, i \in K} R_Q$$

In particular, we deduce that S is an overring of R.

(iii) If $K \neq I$, we can consider an intermediate ring $T_l = \Omega(M_l)$ for some $l \in I - K$. As $S \subseteq R_{M_l}$, it follows that $R_{M_l} \subset (T_l)_{M_l} = R_{P_l} \subseteq S_{M_l} \subseteq R_{M_l}$, a contradiction. Thus I = K is a finite set.

We will denote $I = \{1, 2, ..., n\}$. It follows that, if [R, S] is generated by a set $\Gamma = \{T_i : 1 \leq i \leq n\}$ of incomparable intermediate rings, then each T_i is the Kaplansky ideal transform $T_i = \Omega(M_i)$ of a unique maximal ideal M_i of R such that $M_i T_i = T_i$. We will use frequently this fact along this line.

Lemma 2.3. Let (R, S) be a normal pair and M_1, M_2, \ldots, M_k maximal ideals in Supp(S/R). Set $T_i = \Omega(M_i)$ and $T = \prod_{i=1}^k T_i$, then (i) T_i is a minimal overring of S.

- (ii) $T = \Omega(\prod_{i=1}^{k} M_i)$ and $Supp(T/R) = \{M_i : 1 \le i \le k\}.$

Proof. (i) Let H be an intermediate ring between R and $T_i = \bigcap_{Q \neq M_i} R_Q$. For every prime ideal $Q \neq M_i$ of R, we have $R_Q \subseteq H_Q \subseteq R_Q$, thus $R_Q = H_Q$ and $QH \subset H$. Therefore, either $Supp(H/R) = \emptyset$, so H = R; or $Supp(H/R) = \{M_i\}$, so $H = \bigcap_{QH \subset H} R_Q = \bigcap_{Q \neq M_i} R_Q = T_i.$

(ii) Because of $M_i T_i = T_i$ for each $i \in \{1, 2, ..., k\}$, then $M_i T = T$. It follows that $\{M_i : 1 \leq i \leq k\} \subseteq Supp(T/R)$. To show the reverse containment, notice that

$$T = \prod_{i=1}^{k} \Omega(M_i) \subseteq \Omega(\bigcap_{i=1}^{k} M_i) = \bigcap_{Q \neq M_i, 1 \le i \le k} R_Q$$

Therefore, if Q is a prime ideal of R which does not belong to $\{M_i : 1 \le i \le k\}$, then $T \subseteq R_Q$. Thus $QT \subset T$ and $Q \notin Supp(T/R)$.

Hence $Supp(T/R) = \{M_i : 1 \le i \le k\}$ and

$$T = \bigcap_{QT \subset T} R_Q = \bigcap_{Q \notin Supp(T/R)} R_Q = \bigcap_{Q \neq M_i, 1 \le i \le k} R_Q = \Omega(\prod_{i=1}^k M_i).$$

We are able to provide the generalization of Lemma 2.1:

Theorem 2.4. The following conditions are equivalent:

- (i) [R, S] is generated by a finite non-empty set $\Gamma = \{T_i : 1 \le i \le n\}$ of incomparable intermediate rings.
- (ii) (R, S) is a normal pair and Supp(S/R) consists of n maximal ideals of R.

Proof. $(i) \Rightarrow (ii)$ Since [R, S] is generated by $\Gamma = \{T_i : 1 \le i \le n\}$, then S can be written as $S = \prod_{i=1}^{n} T_i$. In light of [3, Introduction], to prove that (R, S) is a normal pair, it suffices to show that (R_M, S_M) is a normal pair for each maximal ideal M of R. For each i, we have $R_M = (T_i)_M$ or $R_M \subset (T_i)_M$ is a minimal extension. But, according to [1, Theorem 1.2], we know that R_M has at most one minimal overring, then two cases may occur:

- If $R_M = (T_i)_M$ for each $i \in \{1, 2, ..., n\}$, then $S_M = \prod_{i=1}^n (T_i)_M = R_M$, so (R_M, S_M) is clearly a normal pair.

- If $R_M \subset (T_j)_M$ is a minimal extension for a unique $j \in \{1, 2, ..., n\}$, then $S_M = \prod_{i=1}^n (T_i)_M = (T_j)_M$, so $R_M \subset S_M$ is a minimal extension. As R_M is integrally closed in S_M , then (R_M, S_M) is a normal pair.

Since each T_i is a minimal overring of R, then $T_i = \Omega(M_i)$ for a maximal ideal M_i of R such that $M_iT_i = T_i$ and $M_iS = S$ for each $i \in \{1, 2, ..., n\}$. Thus, according to Lemma 2.3, we have $Supp(S/R) = \{M_1, M_2, ..., M_n\}$.

 $(ii) \Rightarrow (i)$ Suppose that (R, S) is a normal pair such that Supp(S/R) consists of n maximal ideals M_1, M_2, \ldots, M_n . Set $T_i = \Omega(M_i)$ and $\Gamma = \{T_i : 1 \le i \le n\}$. Since each T_i is a minimal overring of R, Lemma 2.3, then the elements of Γ are incomparable. It remains to show that Γ generates [R, S]. Let $T \in [R, S]$. Then $Supp(T/R) \subseteq Supp(S/R)$. Therefore, if $Supp(T/R) = \{M_i : i \in J\}$ for some subset J of $\{1, 2, \ldots, n\}$, then

$$T = \bigcap_{QT \subset T} R_Q = \bigcap_{Q \notin Supp(T/R)} R_Q = \bigcap_{Q \neq M_i, i \in J} R_Q = \Omega(\prod_{i \in J} M_i).$$

Again from Lemma 2.3, we get

$$T = \Omega(\prod_{i \in J} M_i) = \prod_{i \in J} \Omega(M_i) = \prod_{i \in J} T_i.$$

3. Boolean algebra

Lemma 3.1. Suppose that [R, S] is generated by a finite set $\Gamma = \{T_i : 1 \le i \le n\}$ of incomparable intermediate rings. Let φ be the function from the power set P(I)of $I = \{1, 2, ..., n\}$ to [R, S] that maps \emptyset to R and any non-empty subset J of I to $\prod_{i \in J} T_i$. Then φ is bijective, and satisfies the following properties for every two subsets J and K of I:

- (i) $J \subseteq K$ if and only if $\varphi(J) \subseteq \varphi(K)$.
- (ii) $\varphi(J \cup K) = \varphi(J)\varphi(K).$
- (iii) $\varphi(J \cap K) = \varphi(J) \cap \varphi(K).$

Proof. In view of Theorem 2.4, Supp(S/R) consists of n maximal ideals of R, namely M_1, M_2, \ldots, M_n .

(i) Set $H = \varphi(J)$ and $L = \varphi(K)$. It is clear that $J \subseteq K$ implies $H \subseteq L$. Conversely, if $H \subseteq L$, then $Supp(H/R) \subseteq Supp(L/R)$. But, by Lemma 2.3, we have $Supp(H/R) = \{M_i : i \in J\}$ while $Supp(L/R) = \{M_i : i \in K\}$. Hence $J \subseteq K$. In particular, this shows that φ is injective. As φ is also onto by hypothesis on [R, S], then φ is bijective.

(ii) Since $(T_i)^2 = T_i$ for every $i \in \{1, 2, \dots, n\}$, we have

$$\varphi(J \cup K) = \prod_{i \in J \cup K} T_i = (\prod_{i \in J} T_i)(\prod_{i \in K} T_i) = \varphi(J).\varphi(K)$$

(iii) This assertion is obvious if there is a containment between J and K. Suppose that $J \not\subseteq K$ and $K \not\subseteq J$. Let $L = J \cap K$ (eventually, we may have $L = \emptyset$). Since the maximal ideals $(M_i)_{1 \leq i \leq n}$ are comaximal ideals, then $\prod_{i \in J \setminus K} M_i$ and $\prod_{i \in K \setminus J} M_i$ are also comaximal ideals. It results that

$$\begin{split} \varphi(J) \cap \varphi(K) &= (\prod_{i \in J} T_i) \cap (\prod_{i \in K} T_i) \\ &= \Omega(\prod_{i \in J} M_i) \cap \Omega(\prod_{i \in K} M_i) & \text{by Lemma 2.3} \\ &= \Omega(\prod_{i \in J} M_i + \prod_{i \in K} M_i) & [4, \text{Lemma 3.1}] \\ &= \Omega[\prod_{i \in L} M_i (\prod_{i \in J \setminus K} M_i + \prod_{i \in K \setminus J} M_i)] \\ &= \Omega(\prod_{i \in L} M_i) \\ &= \prod_{i \in L} \Omega(M_i) & \text{by Lemma 2.3} \\ &= \prod_{i \in L} T_i = \varphi(L) \end{split}$$

We are ready to provide the main theorem of this paper.

Theorem 3.2. The following conditions are equivalent for an integer $n \ge 1$:

- (i) $([R, S], ., \cap)$ is a boolean algebra with cardinality 2^n .
- (ii) [R,S] is generated by a set $\Gamma = \{T_i : 1 \le i \le n\}$ of incomparable intermediate rings.
- (iii) (R, S) is a normal pair and Supp(S/R) consists of n maximal ideals.
- (iv) $Supp(S/R) \subseteq Max(R)$ and $|[R,S]| = 2^n$.
- (v) $Supp(S/R) \subseteq Max(R)$, and there is a maximal chain $R_0 = R \subset R_1 \subset R_2 \subset ... \subset R_n = S$ of length n.

Proof. $(i) \Rightarrow (ii)$ It is known that, if $([R, S], ., \cap)$ is a finite boolean algebra with cardinality 2^n , then it is isomorphic to a boolean algebra of type $(P(I), \cup, \cap)$, where P(I) is the power set of a finite set I with cardinality n. Let $\Psi:P(I) \longrightarrow [R, S]$ be such an isomorphism, and set $T_i = \Psi(\{i\})$ for every $i \in I$. As the sets $(\{i\})_{i \in I}$ are incomparable, then the T_i 's, for $i \in I$ are incomparable. Moreover, if $T \in [R, S]$, $T \neq R$, then $T = \Psi(J)$ for some non-empty subset J of I. Thus

$$T = \Psi(\bigcup_{i \in J} \{i\}) = \prod_{i \in J} \Psi(\{i\}) = \prod_{i \in J} T_i.$$

(ii) \Rightarrow (i) By virtue of Lemma 3.1, we deduce that $([R, S], ., \cap)$ is a distributive lattice with least element R and greatest element S. In addition, this lattice is complemented. Indeed, if $T = \prod_{i \in J} T_i \in [R, S]$, where $J \subseteq \{1, 2, ..., n\}$, then $T' = \prod_{i \notin J} T_i \in [R, S]$ is the complement of T, since

$$T \cap T' = \varphi(J) \cap \varphi(I - J) = \varphi(J \cap (I - J)) = \varphi(\emptyset) = R,$$

and

$$T.T' = \varphi(J).\varphi(I - J) = \varphi(J \cup (I - J)) = \varphi(I) = S.$$

Thus $([R, S], ., \cap)$ is a boolean algebra with cardinality 2^n .

(ii) \Leftrightarrow (iii) results from Theorem 2.4.

(i) \Rightarrow (iv) and (v) Since (ii) and (iii) hold, we can say that Supp(S/R) consists of *n* maximal ideals M_1, M_2, \ldots, M_n , and [R, S] is generated by $\Gamma = \{T_i = \Omega(M_i) : 1 \le i \le n\}$. Now, if $R_j = \prod_{1 \le i \le j} T_i$, then

$$R_0=R\subset R_1\subset R_2\subset \ldots \subset R_n=S$$

is a maximal chain of length n. Indeed, if $T = \prod_{i \in J} T_i$ is an intermediate ring between R_j and R_{j+1} and different from R_j and R_{j+1} , where $J \subseteq \{1, 2, ..., n\}$, then $\{1, 2, ..., j\} \subset J \subset \{1, 2, ..., j, j+1\}$ by Lemma 3.1, a contradiction.

AHMED AYACHE

 $(\mathbf{v}) \Rightarrow (\mathbf{i}\mathbf{i}\mathbf{i})$ Assume that $Supp(S/R) \subseteq Max(R)$, and there is a maximal chain $R_0 = R \subset R_1 \subset R_2 \subset \ldots \subset R_n = S$ of length n.

First, we will prove that (R, S) is a normal pair. According to [3, Introduction], it suffices to show that (R_M, S_M) is a normal pair for every maximal ideal M of R. Let M be a maximal ideal of R. Then

$$R_M = (R_o)_M \subseteq (R_1)_M \subseteq \dots \subseteq (R_n)_M = S_M$$

is a chain between R_M and S_M such that either $(R_i)_M = (R_{i+1})_M$ or $(R_i)_M \subset (R_{i+1})_M$ is a minimal extension. By refining this last chain, we obtain a finite maximal chain between R_M and S_M . Without loss of generality, we may suppose that R is local with maximal ideal M. It is clear that (R, R_1) is a normal pair, since by assumption R is supposed to be integrally closed in S (so in R_1) and $R \subset R_1$ is a minimal extension. Therefore, there is a prime ideal P of R such that $P \subset M$ and $R_1 = R_P$ [3, Theorem 1]. Thus R_1 is also local. In the other way, $R_1 = R_P$ is integrally closed in S_P (so in R_2) and $R_1 \subset R_2$ is a minimal extension. It results that (R_1, R_2) is a normal pair and R_2 is local. Likewise, we can establish that (R_i, R_{i+1}) is a normal pair and R_{i+1} is local for each $0 \leq i \leq n-1$. Consequently, if $z \in S = R_n$, then $z \in R_{n-1}$ or $z^{-1} \in R_{n-1}$ (Proposition 1.1 (vi)). Progressively, we find that $z \in R_i$ or $z^{-1} \in R_i$ for each $0 \leq i \leq n$, and again Proposition 1(vi) ensures that (R, S) is a normal pair.

Now, we will prove that Supp(S/R) consists of n maximal ideals. Since (R_i, R_{i+1}) is a minimal extension, then $Supp(R_{i+1}/R_i)$ consists of a unique prime ideal Q_i of R_i (Lemma 2.1). By virtue of Proposition 1.1 (ii), we have $Q_i = H_i R_i$ for some prime ideal H_i of R. We claim that

$$Supp(S/R) = \{H_0, H_1, \dots, H_{n-1}\}.$$

Indeed, if $Q \in Supp(S/R)$, then $QR_0 = Q$ and $QR_n = R_n$. Let *i* be the first index $i \geq 1$ such that $QR_i = R_i$. We necessarily have $QR_{i-1} \subset R_{i-1}$ and $QR_{i-1} \in Supp(R_i/R_{i-1})$. Thus $QR_{i-1} = Q_{i-1} = H_{i-1}R_{i-1}$. By contraction on R, we obtain $Q = H_{i-1}$ (Proposition 1.1 (iii)). So $Supp(S/R) \subseteq \{H_0, H_1, \ldots, H_{n-1}\}$. To see the reverse inclusion, it suffices to note that $Q_iR_{i+1} = R_{i+1}$, so $H_iS = (H_iR_i)S = Q_iS = (Q_iR_{i+1})S = R_{i+1}S = S$ for each $i \in \{0, 1, \ldots, n-1\}$.

Furthermore, the H_i 's are distinct. If $H_i = H_j$ for $0 \le i < j \le n-1$, then $Q_i R_j = Q_j$, and this leads to the contradiction $Q_j = Q_j R_j = Q_i R_j = (Q_i R_{i+1}) R_j = R_{i+1} R_j = R_j$.

As by assumption $Supp(S/R) \subseteq Max(R)$, then Supp(S/R) consists of n maximal ideals.

 $(iv) \Rightarrow (v)$ Suppose that $Supp(S/R) \subseteq Max(R)$ and $|[R,S]| = 2^n$. Since [R,S] is finite, we can consider a finite maximal chain

$$R_0 = R \subset R_1 \subset R_2 \subset \ldots \subset R_m = S$$

of length m from R to S. Since the conditions (i) and (v) are actually equivalent for the integer m, we obtain $|[R, S]| = 2^m$. Henceforth, m = n.

As consequences of Theorem 3.2, we recover the following corollaries. Our first application concerns the case where R is a Prüfer ring and S is an overring of R. In this case, it is known that (R, S) is a normal pair.

Corollary 3.3. If R is a Prüfer ring and S is an overring of R, then the following conditions are equivalent for an integer $n \ge 1$:

- (i) $([R, S], ., \cap)$ is a boolean algebra with cardinality 2^n .
- (ii) Supp(S/R) consists of n maximal ideals.

Now, if R is an integrally closed domain with quotient field K, then

$$Supp(K/R) = Spec(R) - \{0\}$$

We can derive the following nice result:

Corollary 3.4. If R is integrally closed with quotient field K, then the following conditions are equivalent for an integer $n \ge 1$:

- (i) $([R, K], ., \cap)$ is a boolean algebra with cardinality 2^n .
- (ii) [R, K] is generated by a set {T_i : 1 ≤ i ≤ n} of incomparable proper overrings of R.
- (iii) R is a 1-dimensional semi-local Prüfer ring with n maximal ideals.
- (iv) dimR = 1 and $|[R, K]| = 2^n$.
- (v) dimR = 1, and there is a maximal chain $R_0 = R \subset R_1 \subset \ldots \subset R_n = K$ of length n.

The following result provides a method for building more examples of extensions $R \subset S$ such that [R, S] is a finite boolean algebra.

Corollary 3.5. Let S be an integral domain, M a maximal ideal of S, D a subring of the residue field L = S/M and $R = \varphi^{-1}(D)$ the inverse image of D by the canonical epimorphism $\varphi : S \to L$. If D is integrally closed in L, then $([R, S], ., \cap)$ is a boolean algebra with cardinality 2^n if and only if D is a 1-dimensional semi-local Prüfer ring with n maximal ideals and quotient field L. **Proof.** R is the pullback illustrated by the following square:

$$\begin{array}{cccc} R & \longrightarrow & D \\ \downarrow & & \downarrow \\ S & \longrightarrow & L = S/M \end{array}$$

Note that R is integrally closed in S. Therefore, this result is a direct consequence of Corollary 3.4 and the fact that [R, S] is generated by a set $\{T_i : 1 \le i \le n\}$ of intermediate rings between R and S if and only if [D, L] is generated by the set $\{\varphi(T_i) : 1 \le i \le n\}$ of intermediate rings between D and L.

Our last application is a significant result concerning Krull rings.

Corollary 3.6. If R is a Krull domain and [R, S] is finite, then $([R, S], ., \cap)$ is a boolean algebra of cardinality 2^n , where n is the number of height-one maximal ideals of R such that MS = S.

Proof. Since [R, S] is finite, we can consider a finite maximal chain between R and S. To apply Theorem 3.2(v), it remains to show that every prime ideal of Supp(S/R) is maximal. Let $Q \in Supp(S/R)$. Then $Q \neq (0)$ and Q is contained in a maximal ideal $M \in Supp(S/R)$. In view of Lemma 2.3, $\Omega(M)$ is a minimal overring of R. Finally, according to [1, Theorem 5.7], we necessarily have $ht_R(M) = 1$ and Q = M.

Acknowledgment. The author thanks the referee for his several helpful remarks concerning the final form of this paper.

References

- A. Ayache, Minimal overrings of an integrally closed domain, Comm. Algebra 31 (12) (2003), 5693-5714.
- [2] A. Ayache and A. Jaballah, Residually algebraic pairs of rings, Math. Z., 225 (1997), 49-65.
- [3] E. Davis, Overrings of commutative rings III: Normal pairs, Trans. Amer. Math. Soc., 182 (1973), 175-185.
- [4] M. Fontana, Kaplansky ideal transform: a survey, Advances in Commutative ring theory (Proceeding of Third Fès (Morocco) Conference on Commutative Algebra) in: *Lecture Notes in Pure and Applied Mathematics*, Vol. 205, Dekker, New York, 1999. p 51.
- [5] A. Jaballah, A lower bound for the number of intermediary rings, Comm. Algebra, 27(3) (1999), 1307-1311.

Ahmed Ayache

Department of Mathematics College of Science University Of Bahrain P. O. Box: 32038, Suhkir, Kingdom of Bahrain e-mail: aayache@sci.uob.bh; aaayache@yahoo.com