THE STRUCTURE OF $\mathcal{U}\left(\mathbb{F}_{5^{k}} D_{20}\right)$

Joe Gildea
Received: 16 February 2010; Revised: 12 June 2010
Communicated by Abdullah Harmancı

Abstract

The structure of the unit group of the group algebra of the group D_{20} over any field of characteristic 5 is established in terms of split extensions of cyclic groups.

Mathematics Subject Classification (2000): 16U60, 16S84, 20C05, 15A33
Keywords: unit group, group ring, group algebra, dihedral, cyclic

1. Introduction

Let $K G$ denote the group algebra $K G$ of the group G over the field K and $\mathcal{U}(K G)$ denote the unit group of $K G$. The homomorphism $\varepsilon: K G \longrightarrow K$ given by $\varepsilon\left(\sum_{g \in G} a_{g} g\right)=\sum_{g \in G} a_{g}$ is called the augmentation mapping of $K G$. It is well known that $\mathcal{U}(K G)=V(K G) \times \mathcal{U}(K)$ where $V(K G)$ is the units of augmentation 1. Currently there exists techniques to find the decomposition of $K G$ and hence the structure of $\mathcal{U}(K G)$ when the the characteristic of the field K does not divide the order of the group G. See [9] for further details on group algebras. However very little is known about $\mathcal{U}(K G)$ when the characteristic of the field K is p and the order of the group is $a p^{m}$ where p is a prime, $(a, p)=1$ and $a, m \in \mathbb{N}_{0}$.

It is well known that if G is a finite p-group and K is a field of characteristic p, then $V(K G)$ is a finite p-group of order $|K|^{|G|-1}$. Let $\mathbb{F}_{p^{k}}$ is the Galois field of p^{k}-elements. A basis for $V\left(\mathbb{F}_{p} G\right)$ is determined where \mathbb{F}_{p} is the Galois field of p elements and G is an abelian p-group in [10] and a basis for $V_{*}(F G)$ is established where F is any field of characteristic p and G is an abelian p-group in [1] where $V_{*}(F G)$ are the unitary units of $V(F G)$. Also in [2], there are conditions provided when $V_{*}(F G)$ is normal in $V(F G)$.

Let $D_{2 p^{m}}$ be the dihedral group of order $2 p^{m}$ where p is a prime and $m \in \mathbb{N}_{0}$. In [3] and [6], the structure of $\mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right)$ and $\mathcal{U}\left(\mathbb{F}_{5^{k}} D_{10}\right)$ are established in terms of split extensions of elementary abelian groups. The order of $\mathcal{U}\left(\mathbb{F}_{p^{k}} D_{2 p^{m}}\right)$ is determined to be $p^{2 k\left(p^{m}-1\right)}\left(p^{k}-1\right)^{2}$ in [5].

Let $J(K G)$ and denote the jacobson radical of $K G$ and $Z(G)$ denote the center of G. In [11], it is shown that \mathcal{V}_{1} and $\mathcal{V}_{1} / Z\left(\mathcal{V}_{1}\right)$ are elementary abelian 3-groups where $\mathcal{V}_{1}=1+J\left(\mathbb{F}_{3^{k}} D_{6}\right)$. In [8], it is also shown that $\mathcal{U}\left(\mathbb{F}_{5^{k}} D_{10}\right) / \mathcal{V}_{2} \cong C_{5^{k}-1}{ }^{2}, \mathcal{V}_{2}$ is nilpotent of class 4 and $Z\left(\mathcal{V}_{2}\right) \cong C_{5}{ }^{3 k}$ where $\mathcal{V}_{2}=1+J\left(\mathbb{F}_{5^{k}} D_{10}\right)$ and C_{n} is the cyclic group of order n. Our main result is:

Theorem 1.1. $V\left(\mathbb{F}_{5^{k}} D_{20}\right) \cong\left(\left(C_{5}{ }^{10 k} \rtimes C_{5}{ }^{4 k}\right) \rtimes C_{5}{ }^{2 k}\right) \rtimes C_{5^{k}-1}{ }^{3}$.

Define a circulant matrix over R to be

$$
\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
a_{n} & a_{1} & a_{2} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{1} & \ldots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{2} & a_{3} & a_{4} & \cdots & a_{1}
\end{array}\right)
$$

where $a_{i} \in R$. For further details on circulant matrices see Davis [4].

If $G=\left\{g_{1}, \ldots, g_{n}\right\}$, then denote by $M(G)$ the matrix $\left(g_{i}{ }^{-1} g_{j}\right)$ where $i, j=$ $1, \ldots, n$. Similarly, if $w=\sum_{i=1}^{n} \alpha_{g_{i}} g_{i} \in R G$ where R is a ring, then denote by $M(R G, w)$ the matrix $\left(\alpha_{g_{i}-1} g_{j}\right)$, which is called the $R G$-matrix of w.

Theorem 1.2. (see [7]) Let G be a finite group of order n. There is a ring isomorphism between $R G$ and the $n \times n G$-matrices over R, which is given by $\sigma: w \mapsto M(R G, w)$.

Let $\kappa=\sum_{i=0}^{4} x^{2 i}\left(\alpha_{i+1}+\alpha_{i+6} x^{5}+\alpha_{i+11} y+\alpha_{i+16} x^{5} y\right) \in \mathbb{F}_{5^{k}} D_{20}$ where $a_{i} \in \mathbb{F}_{5^{k}}$, then

$$
\sigma(\kappa)=\left(\begin{array}{cccc}
A & B & C & D \\
B & A & D & C \\
C^{T} & D^{T} & A^{T} & B^{T} \\
D^{T} & C^{T} & B^{T} & A^{T}
\end{array}\right)
$$

where $A=\operatorname{circ}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right), B=\operatorname{circ}\left(\alpha_{6}, \alpha_{7}, \alpha_{8}, \alpha_{9}, \alpha_{10}\right)$, $C=\operatorname{circ}\left(\alpha_{11}, \alpha_{12}, \alpha_{13}, \alpha_{14}, \alpha_{15}\right)$ and $D=\operatorname{circ}\left(\alpha_{16}, \alpha_{17}, \alpha_{18}, \alpha_{19}, \alpha_{20}\right)$.

Proposition 1.3. (see [5]) Let $A=\operatorname{circ}\left(a_{0}, a_{2}, \ldots, a_{p^{m}-1}\right)$, where $a_{i} \in \mathbb{F}_{p^{k}}, p$ is a prime and $m \in \mathbb{N}_{0}$. Then

$$
\operatorname{det}(A)=\sum_{i=0}^{p^{m}-1} a_{i}{ }^{p^{m}}
$$

Proof of Main Theorem. Define the group epimorphism

$$
\begin{gathered}
\theta: \mathcal{U}\left(\mathbb{F}_{5^{k}} D_{20}\right) \longrightarrow \mathcal{U}\left(\mathbb{F}_{5^{k}}\left(C_{2} \times C_{2}\right)\right) \text { given by } \\
\sum_{i=0}^{4} x^{2 i}\left(\alpha_{i+1}+\alpha_{i+6} x^{5}+\alpha_{i+11} y+\alpha_{i+16} x^{5} y\right) \longmapsto \sum_{i=0}^{4}\left(\alpha_{i+1}+\alpha_{i+6} \bar{x}+\alpha_{i+11} \bar{y}+\alpha_{i+16} \bar{x} \bar{y}\right)
\end{gathered}
$$

where $C_{2} \times C_{2}=\left\langle\bar{x}, \bar{y} \mid \bar{x}^{2}=\bar{y}^{2}=1 \overline{x y}=\overline{y x}\right\rangle$. Let

$$
\psi: \mathcal{U}\left(\mathbb{F}_{5^{k}}\left(C_{2} \times C_{2}\right)\right) \longrightarrow \mathcal{U}\left(\mathbb{F}_{5^{k}} D_{20}\right)
$$

be the group homomorphism defined by $a+b \bar{y}+c \bar{x}+d \overline{x y} \mapsto a+b x^{5}+c y+d x^{5} y$. Then $\theta \circ \psi(a+b \bar{y}+c \bar{x}+d \bar{x} \bar{y})=a+b \bar{y}+c \bar{x}+d \bar{x} \bar{y}$ and $\mathcal{U}\left(\mathbb{F}_{5^{k}} D_{20}\right)$ is a split extension of $\mathcal{U}\left(\mathbb{F}_{5^{k}}\left(C_{2} \times C_{2}\right)\right)$ by $\operatorname{ker}(\theta)$. Thus $\mathcal{U}\left(\mathbb{F}_{5^{k}} D_{20}\right) \cong H \rtimes \mathcal{U}\left(\mathbb{F}_{5^{k}}\left(C_{2} \times C_{2}\right)\right)$ where $H=$ $\operatorname{ker}(\theta)$. Let $\alpha=\sum_{i=0}^{4} x^{2 i}\left(\alpha_{i+1}+\alpha_{i+6} x^{5}+\alpha_{i+11} y+\alpha_{i+16} x^{5} y\right) \in \mathcal{U}\left(\mathbb{F}_{5^{k}} D_{20}\right)$ where $\alpha_{i} \in \mathbb{F}_{5^{k}}$. Now $\alpha \in H$ if and only if $\sum_{i=0}^{4} \alpha_{i+1}=1$ and

$$
\sum_{j=0}^{4} \alpha_{j+6}=\sum_{l=0}^{4} \alpha_{l+11}=\sum_{m=0}^{4} \alpha_{m+16}=0
$$

Thus $|H|=\left(5^{4 k}\right)^{4}=5^{16 k}$.
Lemma 1.4. H has exponent 5.

Proof. Let

$$
\begin{aligned}
h=1 & -\sum_{i=1}^{4}\left(\alpha_{i}+\alpha_{i+4} x^{5}+\alpha_{i+8} y+\alpha_{i+12} x^{5} y\right) \\
& +\sum_{i=1}^{4} x^{2 i}\left(\alpha_{i}+\alpha_{i+4} x^{5}+\alpha_{i+8} y+\alpha_{i+12} x^{5} y\right) \in H,
\end{aligned}
$$

then

$$
(\sigma(\alpha))^{5}=\left(\begin{array}{cccc}
A^{5} & 0 & 0 & 0 \\
0 & A^{5} & 0 & 0 \\
0 & 0 & \left(A^{T}\right)^{5} & 0 \\
0 & 0 & 0 & \left(A^{T}\right)^{5}
\end{array}\right)
$$

where $A=\operatorname{circ}\left(1+\sum_{i=1}^{4}\left(-\alpha_{i}\right), \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ and $\alpha_{i} \in \mathbb{F}_{5^{k}}$. Using Proposition 1,

$$
A^{5}=\left(\left(1+\sum_{i=1}^{4}\left(-\alpha_{i}\right)\right)^{5}+\sum_{i=1}^{4}\left(\alpha_{i}\right)^{5}\right) I_{5}=I_{5} .
$$

Lemma 1.5. Let T be the set of elements H of the form $1+r \sum_{i=0}^{4} i x^{2 i} y$ where $r \in \mathbb{F}_{5^{k}}$. Then $T \cong C_{5}{ }^{k}$.
Proof. Let $\alpha=1+r \sum_{i=0}^{4} i x^{2 i} y \in T$ and $\beta=1+s \sum_{i=0}^{4} i x^{2 i} y \in T$ where $r, s \in \mathbb{F}_{5^{k}}$. Then

$$
\alpha \beta=1+(r+s) \sum_{i=0}^{4} i x^{2 i} y \in T \text {. }
$$

Thus T is closed under multiplication. It can easily be shown that T is abelian.
Lemma 1.6. $\left|N_{H}(T)\right|=5^{14 k}$.
Proof. $N_{H}(T)=\left\{h \in H \mid T^{h}=T\right\}$. Let $t=1+r \sum_{i=0}^{4} i x^{2 i} y \in T$ and

$$
\begin{aligned}
h=1 & -\sum_{i=1}^{4}\left(\alpha_{i}+\alpha_{i+4} x^{5}+\alpha_{i+8} y+\alpha_{i+12} x^{5} y\right) \\
& +\sum_{i=1}^{4} x^{2 i}\left(\alpha_{i}+\alpha_{i+4} x^{5}+\alpha_{i+8} y+\alpha_{i+12} x^{5} y\right) \in H,
\end{aligned}
$$

where $\alpha_{i}, r \in \mathbb{F}_{5^{k}}$.

$$
\sigma\left(t^{h}\right)=\left(\begin{array}{cccc}
I_{5} & 0 & C & D \\
0 & I_{5} & D & C \\
C^{T} & D & I_{5} & 0 \\
D & C^{T} & 0 & I_{5}
\end{array}\right)
$$

where $C=\operatorname{circ}\left(r \delta_{1}, r\left(1+\delta_{1}\right), r\left(2+\delta_{1}\right), r\left(3+\delta_{1}\right), r\left(4+\delta_{1}\right)\right)$ and $D=\operatorname{circ}\left(r \delta_{2}, r \delta_{2}, r \delta_{2}, r \delta_{2}, r \delta_{2}\right), \delta_{1}=2 \sum_{i=1}^{4} i \alpha_{i}$ and $\delta_{2}=2 \sum_{i=1}^{4} i \alpha_{i+4}$. Then $h \in N_{H}(T)$ iff $\delta_{1}=\delta_{2}=0$. Therefore $\alpha_{4}=\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}$ and $\alpha_{8}=\alpha_{5}+2 \alpha_{6}+3 \alpha_{7}$. Thus every element of $N_{H}(T)$ has the form

$$
\begin{aligned}
1 & +\sum_{i=1}^{3}\left[(4-i) \alpha_{i}+\alpha_{i} x^{2 i}+\left(i \alpha_{i}\right) x^{8}+(4-i) \alpha_{i+3} x^{5}+\alpha_{i+3} x^{2 i+5}+\left(i \alpha_{i+3}\right) x^{3}\right] \\
& +\sum_{j=1}^{4}\left[\left(-\alpha_{j+6}\right) y+\alpha_{j+6} x^{2 j} y+\left(-\alpha_{j+10}\right) x^{5} y+\alpha_{j+10} x^{2 j+5} y\right]
\end{aligned}
$$

Therefore $\left|N_{H}(T)\right|=5^{14 k}$.
Lemma 1.7. Let S be the set of elements of H of the form

$$
1+r\left(x^{2}+x^{4}\right)\left(1-x^{4}\right)(1+y)+r_{1}\left(x+x^{3}\right)\left(x^{6}-1\right)(1+y)
$$

where $r, r_{1} \in \mathbb{F}_{5^{k}}$. Then $S \cong C_{5}{ }^{2 k}$.
Proof. Let

$$
\alpha=1+r\left(x^{2}+x^{4}\right)\left(1-x^{4}\right)(1+y)+r_{1}\left(x+x^{3}\right)\left(x^{6}-1\right)(1+y) \in S
$$

and

$$
\beta=1+s\left(x^{2}+x^{4}\right)\left(1-x^{4}\right)(1+y)+s_{1}\left(x+x^{3}\right)\left(x^{6}-1\right)(1+y) \in S
$$

where $r, r_{1}, s, s_{1} \in \mathbb{F}_{5^{k}}$. Then

$$
\alpha \beta=1+(r+s)\left(x^{2}+x^{4}\right)\left(1-x^{4}\right)(1+y)+\left(r_{1}+s_{1}\right)\left(x+x^{3}\right)\left(x^{6}-1\right)(1+y) .
$$

Thus S is closed under multiplication. It can easily be shown that S is abelian.
Lemma 1.8. $H \cong N_{H}(T) \rtimes S$.
Proof. Let

$$
\begin{aligned}
n=1 & +\sum_{i=1}^{3}\left[(4-i) \alpha_{i}+\alpha_{i} x^{2 i}+\left(i \alpha_{i}\right) x^{8}+(4-i) \alpha_{i+3}+\alpha_{i+3} x^{2 i+5}+\left(i \alpha_{i+3}\right) x^{3}\right] \\
& +\sum_{j=1}^{4}\left[\left(-\alpha_{j+6}\right) y+\alpha_{j+6} x^{2 j} y+\left(-\alpha_{j+10}\right) x^{5} y+\alpha_{j+10} x^{2 j+5} y\right] \in N_{H}(T)
\end{aligned}
$$

and $s=1+r\left(x^{2}+x^{4}\right)\left(1-x^{4}\right)(1+y)+r_{1}\left(x+x^{3}\right)\left(x^{6}-1\right)(1+y) \in S$ where $a_{i}, r, r_{1} \in \mathbb{F}_{5^{k}}$. Then

$$
\sigma\left(n^{s}\right)=\left(\begin{array}{cccc}
A & B & C & D \\
B & A & D & C \\
C^{T} & D^{T} & A^{T} & B^{T} \\
D^{T} & C^{T} & B^{T} & A^{T}
\end{array}\right)
$$

where $A=\operatorname{circ}\left[1+\sum_{i=1}^{3}(4-i) \alpha_{i}, \alpha_{1}+\delta_{1}, \alpha_{2}+2 \delta_{1}, \alpha_{3}+3 \delta_{1}, \sum_{i=1}^{3} i \alpha_{i}+4 \delta_{1}\right]$,
$B=\operatorname{circ}\left[1+\sum_{i=1}^{3}(4-i) \alpha_{i+3}, \alpha_{4}+\delta_{2}, \alpha_{5}+2 \delta_{2}, \alpha_{6}+3 \delta_{2}, \sum_{i=1}^{3} i \alpha_{i+3}+4 \delta_{2}\right]$,
$C=\operatorname{circ}\left[\sum_{j=1}^{4}\left(-\gamma_{j}\right), \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right], D=\operatorname{circ}\left[\sum_{j=1}^{4}\left(-\gamma_{j+4}\right), \gamma_{5}, \gamma_{6}, \gamma_{7}, \gamma_{8}\right]$,
$\delta_{1}=\sum_{i=1}^{4} \operatorname{irr}_{1}\left(\alpha_{i+10}+3 i \alpha_{i+6}\left(r^{2}+r_{1}^{2}\right)\right)+r\left(\left(\alpha_{7}-\alpha_{8}\right)+\left(\alpha_{10}-\alpha_{9}\right)\right)+r_{1}\left(\left(\alpha_{11}-\alpha_{12}\right)+\left(\alpha_{14}-\alpha_{13}\right)\right)$,
$\delta_{2}=\sum_{i=1}^{4} \operatorname{irr}_{1}\left(\alpha_{i+6}+3 i \alpha_{i+10}\left(r^{2}+r_{1}^{2}\right)\right)+r\left(\left(\alpha_{11}-\alpha_{12}\right)+\left(\alpha_{14}-\alpha_{13}\right)\right)+r_{1}\left(\left(\alpha_{7}-\alpha_{8}\right)+\left(\alpha_{10}-\alpha_{9}\right)\right)$,
$\alpha_{i}, r, r_{1} \in \mathbb{F}_{5^{k}}$ and the γ_{i} 's are functions of α_{i}, r and r_{1}.
Clearly $n^{s} \in N_{H}(T), S$ normalizes $N_{H}(T)$ and $\left\langle N_{H}(T), S\right\rangle=N_{H}(T) S$. By the Second Isomorphism Theorem $N_{H}(T) S / S \cong S / N_{H}(T) \cap S$. Now $N_{H}(T) \cap S=\{1\}$, therefore $H=N_{H}(T) S=N_{H}(T) \rtimes S$.

Consider the set

$$
\begin{aligned}
U & =\left\{1+\sum_{i=1}^{3}\left[(4-i) \alpha_{i}+\alpha_{i} x^{2 i}+\left(i \alpha_{i}\right) x^{8}+(4-i) \alpha_{i+3}+\alpha_{i+3} x^{2 i+5}+\left(i \alpha_{i+3}\right) x^{3}\right]\right. \\
& \left.+\left[3\left(\alpha_{7}+\alpha_{8}\right)+\alpha_{7}\left(x^{2}+x^{8}\right)+\alpha_{8}\left(x^{4}+x^{6}\right)+3\left(\alpha_{9}+\alpha_{10}\right) x^{5}+\alpha_{9}\left(x^{3}+x^{7}\right)+\alpha_{10}\left(x+x^{9}\right)\right] y\right\}
\end{aligned}
$$

where $\alpha_{i} \in \mathbb{F}_{5^{k}}$. It can easily be shown that U is a group and $U \cong C_{5}{ }^{10 k}$. Also it can be shown that the set

$$
\begin{aligned}
V & =\left\{1+3\left(\alpha_{1}+\alpha_{2}\right)+\alpha_{1}\left(x^{2}+x^{8}\right)+\alpha_{2}\left(x^{4}+x^{8}\right)+3\left(\alpha_{3}+\alpha_{4}\right) x^{5}+\alpha_{3}\left(x^{3}+x^{7}\right)+\alpha_{4}\left(x+x^{9}\right)\right. \\
& \left.+\left[\alpha_{5}\left(1-x^{8}\right)+\alpha_{6}\left(x^{2}-x^{6}\right)+\alpha_{7}\left(x^{5}-x^{3}\right)+\alpha_{8}\left(x^{7}-x\right)\right] y\right\}
\end{aligned}
$$

is a group and $V \cong C_{5}{ }^{8 k}$ where $\alpha_{i} \in \mathbb{F}_{5^{k}}$.
Lemma 1.9. $N_{H}(T) \cong C_{5}{ }^{10 k} \rtimes C_{5}{ }^{4 k}$.
Proof. Let

$$
\begin{aligned}
u & =1+\sum_{i=1}^{3}\left[(4-i) \alpha_{i}+\alpha_{i} x^{2 i}+\left(i \alpha_{i}\right) x^{8}+(4-i) \alpha_{i+3}+\alpha_{i+3} x^{2 i+5}+\left(i \alpha_{i+3}\right) x^{3}\right] \\
& +\left[3\left(\alpha_{7}+\alpha_{8}\right)+\alpha_{7}\left(x^{2}+x^{8}\right)+\alpha_{8}\left(x^{4}+x^{6}\right)+3\left(\alpha_{9}+\alpha_{10}\right) x^{5}+\alpha_{9}\left(x^{3}+x^{7}\right)+\alpha_{10}\left(x+x^{9}\right)\right] y \in U
\end{aligned}
$$

and

$$
\begin{aligned}
v & =1+3\left(\beta_{1}+\beta_{2}\right)+\beta_{1}\left(x^{2}+x^{8}\right)+\beta_{2}\left(x^{4}+x^{8}\right)+3\left(\beta_{3}+\beta_{4}\right) x^{5}+\beta_{3}\left(x^{3}+x^{7}\right)+\beta_{4}\left(x+x^{9}\right) \\
& +\left[\beta_{5}\left(1-x^{8}\right)+\beta_{6}\left(x^{2}-x^{6}\right)+\beta_{7}\left(x^{5}-x^{3}\right)+\beta_{8}\left(x^{7}-x\right)\right] y \in V
\end{aligned}
$$

where $\alpha_{i}, \beta_{j} \in \mathbb{F}_{3^{k}}$. Then

$$
\sigma\left(u^{v}\right)=\left(\begin{array}{cccc}
A & B & C & D \\
B & A & D & C \\
C & D & A^{T} & B^{T} \\
D & C & B^{T} & A^{T}
\end{array}\right)
$$

where $A=\operatorname{circ}\left(1+\sum_{i=1}^{3}(4-i) \alpha_{i}, \alpha_{1}+\delta_{1}, \alpha_{2}+2 \delta_{1}, \alpha_{3}+3 \delta_{1}, \sum_{i=1}^{3} i \alpha_{i}+4 \delta_{1}\right)$,
$B=\operatorname{circ}\left(1+\sum_{i=1}^{3}(4-i) \alpha_{i+3}, \alpha_{4}+\delta_{2}, \alpha_{5}+2 \delta_{2}, \alpha_{6}+3 \delta_{2}, \sum_{i=1}^{3} i \alpha_{i+3}+4 \delta_{2}\right)$,
$C=\operatorname{circ}\left(3 \alpha_{7}+3 \alpha_{8}+\delta_{3}, \alpha_{7}+\delta_{3}, \alpha_{8}+\delta_{3}, \alpha_{8}+\delta_{3}, \alpha_{7}+\delta_{3}\right)$,
$D=\operatorname{circ}\left(3 \alpha_{9}+3 \alpha_{10}+\delta_{4}, \alpha_{9}+\delta_{4}, \alpha_{10}+\delta_{4}, \alpha_{10}+\delta_{4}, \alpha_{9}+\delta_{4}\right)$,
$\delta_{1}=\left(\alpha_{7}-\alpha_{8}\right)\left(2 \beta_{5}+\beta_{6}\right)+\left(\alpha_{9}-\alpha_{10}\right)\left(2 \beta_{7}+\beta_{8}\right)$,
$\delta_{2}=\left(\alpha_{7}-\alpha_{8}\right)\left(2 \beta_{7}+\beta_{8}\right)+\left(\alpha_{9}-\alpha_{10}\right)\left(2 \beta_{5}+\beta_{6}\right)$,
$\delta_{3}=\left(\alpha_{2}-\alpha_{3}\right)\left(2 \beta_{5}+\beta_{6}\right)+\gamma_{1}\left(\alpha_{7}-\alpha_{8}\right)+\left(\alpha_{5}-\alpha_{6}\right)\left(2 \beta_{7}+\beta_{8}\right)+\gamma_{2}\left(\alpha_{9}-\alpha_{10}\right)$,
$\delta_{4}=\left(\alpha_{2}-\alpha_{3}\right)\left(2 \beta_{7}+\beta_{8}\right)+\gamma_{1}\left(\alpha_{9}-\alpha_{10}\right)+\left(\alpha_{5}-\alpha_{6}\right)\left(2 \beta_{5}+\beta_{6}\right)+\gamma_{2}\left(\alpha_{7}-\alpha_{8}\right)$,
$\gamma_{1}=3 \beta_{5}{ }^{2}+3 \beta_{5} \beta_{6}+2 \beta_{6}{ }^{2}+3 \beta_{7}{ }^{2}+3 \beta_{7} \beta_{8}+2 \beta_{8}{ }^{2}$ and $\gamma_{2}=4 \beta_{6} \beta_{8}+\beta_{5} \beta_{7}+3 \beta_{6} \beta_{7}+3 \beta_{5} \beta_{8}$.
Clearly $u^{v} \in U$ and V normalizes U and $\langle U, V\rangle=U V$. Let
$R=U \cap V=\left\{1+3(a+b)+a\left(x^{2}+x^{8}\right)+b\left(x^{4}+x^{8}\right)+3(c+d)+c\left(x^{3}+x^{7}\right)+d\left(x+x^{9}\right)\right\}$
where $a, b, c, d \in \mathbb{F}_{3^{k}}$. Now $N_{H}(T)=U V$ by the second Isomorphism Theorem. Let $V \cong R \times W \cong C_{5}{ }^{4 k} \times C_{5}{ }^{4 k}$ since V completely reduces. Clearly $W \cap U=\{1\}$ and W normalizes V. Thus $N_{H}(T) \cong U \rtimes W \cong C_{5}{ }^{10 k} \rtimes C_{5}{ }^{4 k}$.

Recall that $\mathcal{U}\left(\mathbb{F}_{5^{k}} D_{20}\right) \cong H \rtimes \mathcal{U}\left(\mathbb{F}_{5^{k}}\left(C_{2} \times C_{2}\right)\right)$. Also $H \cong N_{H}(T) \rtimes S \cong$ $\left(C_{5}{ }^{10 k} \rtimes C_{5}{ }^{4 k}\right) \rtimes C_{5}{ }^{2 k}$. Now
$\mathbb{F}_{5^{k}}\left(C_{2} \times C_{2}\right) \cong\left(\mathbb{F}_{5^{k}} C_{2}\right) C_{2} \cong\left(\mathbb{F}_{5^{k}} \oplus \mathbb{F}_{5^{k}}\right) C_{2} \cong \mathbb{F}_{5^{k}} C_{2} \oplus \mathbb{F}_{5^{k}} C_{2} \cong \mathbb{F}_{5^{k}} \oplus \mathbb{F}_{5^{k}} \oplus \mathbb{F}_{5^{k}} \oplus \mathbb{F}_{5^{k}}$.
Therefore

$$
\begin{aligned}
\mathcal{U}\left(\mathbb{F}_{5^{k}} D_{20}\right) & \cong\left(\left(C_{5}^{10 k} \rtimes C_{5}^{4 k}\right) \rtimes C_{5}{ }^{2 k}\right) \rtimes C_{5^{k}-1}^{4} \\
& \cong\left[\left(\left(C_{5}^{10 k} \rtimes C_{5}^{4 k}\right) \rtimes C_{5}^{2 k}\right) \rtimes C_{5^{k}-1}^{3}\right] \times \mathcal{U}\left(\mathbb{F}_{5^{k}}\right) .
\end{aligned}
$$

Acknowledgment. The author would like to thank the referee for the valuable suggestions and comments.

References

[1] A. Bovdi and K. Szakács, A basis for the unitary subgroup of the group algebra of units in a finite commutative group algebra, Publ. Math. Debrecen, 46(1-2) (1995), 97-120.
[2] V.A. Bovdi and L.G. Kovács, Unitary units in modular group algebras., Manuscr. Math., 84(1) (1994), 57-72.
[3] L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{3^{k}} D_{6}$, Int. J. Pure Appl. Math., $45(2)$ (2008), 315-320.
[4] P.J. Davis, Circulant Matrices, Chelsea Publishing, New York, 1979.
[5] J. Gildea, On the Order of $\mathcal{U}\left(\mathbf{F}_{p^{k}} D_{2 p^{m}}\right)$, Int. J. Pure Appl. Math., 46(2) (2008), 267-272.
[6] J. Gildea, Units of $\mathbb{F}_{5^{k}} D_{10}$, submitted.
[7] T. Hurley, Group Rings and Rings of Matrices, Int. J. Pure Appl. Math., 31 (2006), 319-335.
[8] M. Khan, Structure of the unit group of $F D_{10}$, Serdica Math. J., 35(1) (2009), 15-24.
[9] C. Polcino Milies and S.K. Sehgal, An Introduction to Group Rings (Algebras and Applications), Kluwer Academic Publishers, Dordrecht, 2002.
[10] R. Sandling, Units in the Modular Group Algebra of a Finite Abelian p-Group, J. Pure Appl. Algebra, 33 (1984), 337-346.
[11] R.K. Sharma, J.B. Srivastava and M. Khan, The unit group of $F S_{3}$, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 23(2) (2007), 129-142.

Joe Gildea

Department of Mechanical and Electronic Engineering
School of Engineering
Institute of Technology Sligo
Ireland
e-mail: gildea.joe@itsligo.ie

