PIPPARD RELATIONS FOR CUBIC GAUCHE NITROGEN

Hamit YURTSEVEN1,2*, Özgecan TİRYAKİ2 and Özlem TARI3

1Physics Group, Middle East Technical University, Northern Cyprus Campus, Güzelyurt, KKTC
2Department of Physics, Faculty of Arts and Sciences, Middle East Technical University, Ankara, TURKEY
3Department of Mathematics and Computer Science, Faculty of Science and Letters, Istanbul Arel University, Istanbul, TURKEY

ABSTRACT

The Pippard relations (C_P vs. α_P and α_P vs. κ_T) are examined at various temperatures up to 1200 K at zero pressure (P = 0) for the cubic gauche nitrogen. The specific heat (C_P) is related to the thermal expansion (α_P) and the α_P is also related to the isothermal compressibility (κ_T) as the Pippard relations for this solid structure. For those relations, experimental data are used from the literature. It is found that the variation of the C_P with the α_P and α_P with the κ_T is linear. Using the linear relations dP/dT is predicted, which can be compared with the experimental measurements in the P – T phase diagram of cubic gauche nitrogen.

Keywords: Pippard relations. Cubic gauche nitrogen

1. INTRODUCTION

Nitrogen exhibits a number of solid phases in the P - T phase diagram [1-7]. Dissociation of the nitrogen molecules under pressure to form a polymeric phase has been studied both theoretically [8] and experimentally [6, 9] in nitrogen.

At higher pressures, structures of δ, δ_N, ε and ζ occur [2, 3] in this solid crystal. It has been pointed out that a transition to nonmolecular (NM) phase also occurs in the 140 - 160 GPa range [10]. It has been proposed [11] that the covalent polymeric lattice should have an unusual cubic gauche (cg-N) structure, as the atomic single bonded nitrogen with this structure has been synthesized at high pressure of ~ 110 GPa and high temperature of ~ 2000 K [12, 13]. This has been studied theoretically using density functional methods [8, 11, 14] and observed experimentally [6, 9, 10, 12, 13]. The structure of the phase was found to be cubic gauche with its bulk modulus ≥ 300 GPa, characteristic of strong covalent solids [12]. The lattice dynamical properties of the cubic gauche phase of nitrogen have been computed using density functional theory and its structure has been found to be stable up to at least 250 GPa [15]. On the basis of the dynamical data, the thermodynamic properties have been derived [15].

In this study, we analyze the volume V, the bulk modulus B and the specific heat C_V as a function of temperature (P = 0) and, also compressibility K and the volume as a function of pressure for cubic gauche nitrogen using the literature data [15]. By calculating the temperature dependence of the thermal expansion and the specific heat through the thermodynamic relations, the Pippard relations are constructed for cubic gauche nitrogen.

*Corresponding Author: hamit@metu.edu.tr
Below, in section 2 we give our analysis and results. In section 3, Pippard relations for cubic gauche nitrogen are given and they are discussed in section 4. Conclusions are given in section 5.

2. ANALYSIS AND RESULTS

2.1 Analysis of the Volume \( V(T) \) and the Bulk Modulus \( B(T) \) at \( P = 0 \)

We obtained the temperature dependence of the volume for the cubic gauche nitrogen at ambient pressure [1] according to the quadratic function

\[
V(T) = V_0 + \alpha T + \beta T^2
\]  

(1)

where \( V_0, \alpha \) and \( \beta \) are constants. Their values are given in Table 1. Analysis of the temperature dependence of the bulk modulus \( B \) for the cubic gauche nitrogen [15] was performed here according to the relation

\[
B(T) = \beta_0 + \alpha'T + \beta'T^2
\]  

(2)

where \( \beta_0, \alpha' \) and \( \beta' \) are constants. Their values are given in Table 1.

Table 1. Values of the parameters (Eqs. 1 and 2) for the cubic gauche nitrogen using the values at ambient pressure [15]

<table>
<thead>
<tr>
<th>( V(T) )</th>
<th>( V_0 ) (Å³)</th>
<th>( \alpha \times 10^{-5} ) (Å³/K)</th>
<th>( \beta \times 10^{-7} ) (Å³/K²)</th>
<th>( B(T) )</th>
<th>( \beta_0 ) (GPa)</th>
<th>( \alpha' \times 10^{-3} ) (GPa/K)</th>
<th>( \beta' \times 10^{-5} ) (GPa/K²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eq. (1)</td>
<td>52.48</td>
<td>-4</td>
<td>7.9</td>
<td>Eq. (2)</td>
<td>298.28</td>
<td>-9.1</td>
<td>-1.3</td>
</tr>
</tbody>
</table>

2.2 Analysis of Compressibility \( K(P) \) and the Volume \( V(P) \)

Here we analyzed the pressure dependence of the compressibility of the cubic structure in nitrogen using the lattice parameter data \((a/a_0)\) according to the polynomial

\[
K(P) = b_0 + b_1 P + b_2 P^2
\]

(3)

where \( b_0, b_1 \) and \( b_2 \) are constants. Their values are given in Table 2. We also analyzed the pressure dependence of volume using the lattice parameter data \( a (\text{Å}) \) [1] according to the relation

\[
V(P) = c_0 + c_1 P + c_2 P^2
\]  

(4)

where \( c_0, c_1 \) and \( c_2 \) are constants (Table 2).

Table 2. Values of the fitted parameters according to (Eqs. 3 and 4) for the cubic gauche nitrogen using the lattice parameter data \((a/a_0)\) for the compressibility \( \kappa \) and \( a (\text{Å}) \) for the volume \( V \) [15]

<table>
<thead>
<tr>
<th>( K(P) )</th>
<th>( b_0 )</th>
<th>( b_1 \times 10^{-4} ) (GPa⁻¹)</th>
<th>( b_2 \times 10^{-6} ) (GPa⁻²)</th>
<th>( V(P) )</th>
<th>( c_0 ) (Å³)</th>
<th>( c_1 ) (Å³/GPa)</th>
<th>( c_2 \times 10^{-4} ) (Å³/GPa²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eq.(3)</td>
<td>0.99</td>
<td>-7.4</td>
<td>1.06</td>
<td>Eq.(4)</td>
<td>54.487</td>
<td>-0.01</td>
<td>-8</td>
</tr>
</tbody>
</table>
2.3 Pippard Relations for Cubic Gauche Nitrogen

We examined the Pippard relations [16] for cubic gauche nitrogen according to

\[ C_p = TV \alpha_p (dP/dT) + T(dS/dT) \]  \hspace{1cm} (5)

and

\[ \alpha_p = \kappa_T (dP/dT) + (1/V)(dV/dT) \]  \hspace{1cm} (6)

where \( dP/dT \) is the slope of the P - T phase diagram of the cubic gauche nitrogen. In Eq. (5), \( dS/dT \) denotes the change in the entropy \( S \) for this structure.

In order to establish the Pippard relations (Eqs. 5 and 6), we first calculated \( C_p \) using the thermodynamic relation

\[ C_p = C_V + TV \alpha_p^2 \]  \hspace{1cm} (7)

where we used the temperature dependence of the volume \( V \) (Eq. 1) and the thermal expansion \( \alpha_p \) which was derived from Eq. (1) according to the definition

\[ \alpha_p(T) = d_0 + d_1T + d_2T^2 \]  \hspace{1cm} (8)

The values of the parameters \( d_0, d_1 \) and \( d_2 \) are given in Table 3.

Table 3. Values of the coefficients for the \( \alpha_p(T) \) and \( C_V(T) \) according to the Eqs. (8) and (9) respectively, for cubic gauche nitrogen

<table>
<thead>
<tr>
<th>( \alpha_p(T) ) (K(^{-1}))</th>
<th>( d_0 \times 10^{-4} ) (K(^{-1}))</th>
<th>( d_1 \times 10^{-7} ) (K(^{-2}))</th>
<th>( d_2 \times 10^{-9} ) (K(^{-3}))</th>
<th>( C_V(T) ) (J/mol.K)</th>
<th>( e_0 ) (J/mol.K)</th>
<th>( e_1 ) (J/mol.K(^2))</th>
<th>( e_2 \times 10^{-5} ) (J/mol.K(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eq.(8)</td>
<td>3.98</td>
<td>5.16</td>
<td>1.4</td>
<td>Eq.(9)</td>
<td>-21.4</td>
<td>0.171</td>
<td>7.14</td>
</tr>
</tbody>
</table>

The \( C_V \) values were obtained for the cubic gauche structure of nitrogen as a function of temperature at zero pressure (\( P = 0 \)) according to

\[ C_V(T) = e_0 + e_1T + e_2T^2 \]  \hspace{1cm} (9)

with the values of \( e_0, e_1 \) and \( e_2 \) (Table 3).

Once we calculated the specific heat \( C_p \) (Eq. 7), we then examined the first Pippard relation (Eq. 5) by plotting \( C_p/T \) against \( V \alpha_p \) as shown in Figure 1. The best fit (\( C_p/T \) vs. \( V \alpha_p \)) was obtained as a straight line according to Eq. (5) with the values of \( dP/dT \) and \( dS/dT \) within the temperature interval studied (Table 4).

Finally, we examined the second Pippard relation (Eq.6) by plotting the thermal expansion (\( \alpha_p \)) as a function of the isothermal compressibility (\( \kappa_T \)) in values in Figure 2. We give the values of the slope (\( dP/dT \)) and the intercept (\( 1/V \)(dV/dT)), which we extracted in Table 4.
We examined here the Pippard relations (Eqs. 5 and 6) by calculating the temperature dependence of the thermal expansion $\alpha_P$, isothermal compressibility $\kappa_T$, and the specific heat $C_V$ using the volume $V$ and the specific heat $C_V$ data [15] for cubic gauche nitrogen. We obtained linear plots of $C_p/T$ vs. $V\alpha_P$ (Figure 1) and $\alpha_P$ vs. $\kappa_T$ (Figure 2) at various temperatures ($P = 0$), as expected from the Pippard relations (Eqs. 5 and 6). The values of the slope $dP/dT$ were extracted, which were 1.25 GPa/K ($C_p/T$ vs. $V\alpha_P$) and 0.54 GPa/K ($\alpha_P$ vs. $\kappa_T$), as also given in Table 4. In principle, the $dP/dT$ values should be the same. However, the data ($C_V$ and $V$) [15] we used for our calculations, were obtained from the density functional theory which is based on some assumptions. Our calculated thermodynamic quantities can be compared with their experimental measurements and also pressure versus temperature measurements in the $P$ - $T$ phase diagram for cubic gauche nitrogen under the given temperature and pressure conditions. This then provides the $dP/dT$ values, which can then be compared with our $dP/dT$ values (Table 4). Also, the Pippard relations can be examined at higher pressures such as $P = 35$, 125 and 250 GPa with the $C_V$ values obtained [15] when the volume data are available at those constant pressures.

In regard to the nature of the cubic gauche structure in nitrogen, experimental studies [12, 13] lead to the formation of this structure passed through the amorphous state, as stated previously [15]. The transition to the polymeric nitrogen may be by passing through different molecular structures according to the thermodynamic stability fields [15, 17]. Elastic and vibrational properties of cubic gauche nitrogen [18-20] have confirmed the stability and highly energetic character of this phase under high pressures, as also pointed out previously [15].

**Figure 1.** The first Pippard relation (Eq. 5) at various temperatures ($P = 0$) for cubic gauche nitrogen

**Table 4.** Values of the slope ($dP/dT$) and the intercepts according to the Pippard relations indicated for cubic gauche nitrogen

<table>
<thead>
<tr>
<th>Pippard Relations</th>
<th>$dP/dT$ (GPa/K)</th>
<th>$dS/dT \times 10^{-2}$ (J/mol.K$^2$)</th>
<th>$\langle 1/V \rangle$ ($dV/dT$) (K$^{-1}$)</th>
<th>Temperature Interval (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eq.(5)</td>
<td>1.69</td>
<td>1.4</td>
<td>-</td>
<td>0&lt;T&lt;1000</td>
</tr>
<tr>
<td>Eq.(6)</td>
<td>0.54</td>
<td>-</td>
<td>-0.526</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. The second Pippard relation (Eq. 6) at various temperatures (P = 0) for cubic gauche nitrogen

4. CONCLUSIONS

The temperature dependence of the volume V, the bulk modulus B and the specific heat $C_V$ and, the pressure dependence of the volume and compressibility $\kappa_T$ were analyzed for the cubic gauche nitrogen using the data from the literature. On this basis, the thermal expansion $\alpha_P$ and the specific heat $C_P$ were calculated as a function of temperature for this cubic phase of N$_2$. The Pippard relations were examined at various temperatures ($P = 0$) which give linear variations of $C_P$ with $\alpha_P$ and $\alpha_P$ with $\kappa_T$ for the cubic gauche nitrogen (cg-N) as expected. The slope values of $dP/dT$ were deduced from the Pippard relations, which are reasonable for this crystal structure. The Pippard relations can also be examined at various pressures at constant temperatures ($T = 293$ K) for cg-N.

REFERENCES


