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Abstract: Switched reluctance motors (SRMs) are increasingly employed in industrial applications because of their simple 
construction, ease of maintenance, low cost and high efficiency. But, modeling of SRMs is difficult due to its non-linearities and 
parameter uncertainties. To tackle these problems, a NEFCLASS based estimator has been proposed for modeling of inductance 
variation of SRMs. Simulation results of the inductance variation demonstrated the applicability of the proposed estimator. 
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ARM’LERİN ENDÜKTANS DEĞİŞİMLERİNİN NEFCLASS TABANLI MODELLENMESİ 

Özet: Anahtarlamalı relüktans motorların (ARM) yapılarının basit, kurulumlarının kolay, düşük fiyat ve yüksek verimli 
olmalarından dolayı endüstriyel uygulamalarda artarak kullanılmaktadırlar. Ancak, ARM’lerin modellenmesi parametrelerinin 
belirsizliği ve doğrusal olmayan karakteristiklerinden dolayı zordur. Bu çalışmada, bu problemlerin giderilmesi için NEFCLASS 
tabanlı endüktans modellemesi önerilmiştir. Endüktans değişimine ait benzetim sonuçları önerilen modelin uygulanabilirliğini 
göstermiştir.  

Anahtar Kelimeler: Sinirsel-bulanık sistemler, NEFCLASS, Anahtarlamalı relüktans motor 

1. Introduction 

Switched reluctance motors (SRMs) have undergone rapid development in hybrid electric vehicles, aircraft 
starter/generator systems, washing machines, and automotive applications over the last two decades. SRMs have 
various advantages over other electric motors, such as simple and robust construction and fault-tolerant performance 
[1]. In most of these applications, speed and torque control are necessary. To obtain high quality control, an accurate 
model of the SRM is often needed. At the same time, to increase reliability and reduce cost, sensorless controllers 
(without rotor position/speed sensor) are preferred. With the rapid progress in digital signal processors, sensorless 
control techniques have been successfully applied to SRMs [2] become more and more promising. An accurate 
nonlinear model of the SRM is essential to realize such control algorithms. But, due to the fact that SRMs typically 
operate at high levels of saturation of the magnetic circuit to obtain high efficiency, the mapping among the SRM 
input variables, output variables and parameters is highly nonlinear [3]. The inductance of the magnetic circuit is a 
nonlinear function of both phase current and rotor position. In addition, the system handles energy most efficiently 
when the energy conversion cycles are made as square as possible, maximizing the ratio of energy converted to 
energy input [4,5]. This leads a particularly difficult problem because of their complicated magnetic circuit, which 
operates at varying levels of saturation under operating conditions. Many researchers have studied on modeling of 
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inductance variation of SRMs. Stephenson and Corda proposed a quite successful method to model the flux linkage 
as a function of current and rotor position [6]. This method has been modified by Miller and McGilp [7,3]. Torrey 
and Lang have also proposed a method to provide analytical expression for the flux linkage and current for every 
rotor position within a single summary equation [8]. Bay and Elmas have first proposed different method based on 
fuzzy logic [9]. Akcayol has used neuro-fuzzy estimator having a simple structure for inductance variation [10].  

NEuro Fuzzy CLASSification (NEFCLASS) algorithm is one of the tuning methods of the fuzzy systems based on 
adding and deleting fuzzy system rules [11,12]. This algorithm is based on a common multilayered neural network 
structure whose weights are determined by fuzzy sets. The activation, the output and the propagation functions are 
then adapted accordingly. This approach preserves the common neural network (NN) structure, but allows the 
interpretation of the resulting system by the associated fuzzy system. The shape and position of the triangular 
membership functions (MFs) are adapted iteratively during the learning procedure. 

In this paper, NEFCLASS based modeling of inductance variation of the SRM has been described. Initial values of 
MFs and rule base have been obtained using experimental measurements of the SRM. 

In the following, Section 2 introduces measurements of phase inductance in details. NEFCLASS based modeling 
and results are expressed in Section 3 within details. The work is finally concluded in Section 4. 

2. Measurements of The Phase Inductance 

Phase current of the SRM is directly proportional to the rate of change in rotor position and excitation current. The 
instantaneous value of the phase current depends on the instantaneous phase inductance. Because of this, accurately 
modeling of inductance variation is required to obtain satisfactory performance. So far, many researchers have 
proposed different methods [13,14,15]. Each method has its own advantages and disadvantages in terms of its 
accuracy and difficult to set up process. In this work, a simple measurement method based on measuring of the 
phase impedance was used. The measurements were performed on OULTON 4KW experimental motor. The phase 
impedance was measured at every third mechanical degree with respect to rotor position. A power supply was used 
to adjust current in the range of 1A and 8A. The experimental circuit is demonstrated in Figure 1.  
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Figure 1. The circuit for measurement of inductance. 

The measured impedance values are shown in Table 1.  
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Table 1. The measured impedance values. 

Current 

     1A     2A     3A     4A     5A     6A     7A     8A 

0° 38,20 75,78 112,47 148,60 168,00 179,40 187,70 195,00 

3° 35,90 71,17 106,05 139,20 162,00 174,70 184,10 191,30 

6° 32,37 64,60 96,00 125,70 148,50 162,70 173,10 181,50 

9° 27,85 55,10 82,12 108,50 129,00 144,40 156,00 166,00 

12° 22,45 44,88 67,20 89,50 107,70 121,80 132,50 142,80 

15° 18,01 35,92 53,67 71,20 84,60 97,50 107,80 116,90 

18° 12,94 25,79 35,58 51,40 62,80 72,10 80,50 89,10 

21° 7,88 15,73 23,60 31,30 39,10 46,40 53,70 60,70 

24° 5,45 10,89 16,30 21,72 27,15 32,55 37,90 43,32 

27° 4,85 9,69 14,54 19,38 24,20 29,00 33,80 38,40 

Po
si

tio
n 

30° 4,64 9,28 13,92 18,55 23,16 27,78 32,40 37,00 

By using measured phase impedance values, phase inductance values were calculated by means of , 
where  is the impedance,  is the frequency of the supply (50Hz used in this study), L is the inductance of a 

phase. The calculated impedance values are shown in Table 2.  

fL2πX L =

LX f

Table 2. The calculated inductance values (mH). 

 
Current 

  1A     2A     3A     4A     5A     6A     7A     8A 

0° 121,87 120,57 119,29 118,21 106,90 95,12 85,29 77,52 

3° 114,23 113,22 112,48 110,73 103,08 92,62 83,65 76,04 

6° 103,01 102,76 101,80 99,98 94,48 86,25 78,65 72,14 

9° 88,61 87,63 87,07 86,28 82,06 76,57 70,87 65,97 

12° 71,41 71,37 71,23 71,15 68,49 64,53 60,16 56,72 

15° 57,27 57,09 56,06 56,57 54,91 51,62 48,91 46,40 

18° 41,08 40,93 40,81 40,78 39,85 38,11 36,47 35,30 

21° 24,91 24,84 24,83 24,70 24,68 24,40 24,21 23,94 

24° 17,08 17,05 17,00 16,99 16,98 16,97 16,95 16,94 

27° 15,10 15,10 15,09 15,09 15,08 15,05 15,04 14,94 

Po
si

tio
n 

30° 14,43 14,43 14,43 14,42 14,40 14,39 14,38 14,37 

In the following section, designing the NEFCLASS based estimator for inductance variation of SRM is introduced. 
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3. Nefclass Based Modeling of Inductance Variation and Results 

The block diagram of the estimator based on NEFCLASS is shown in Figure 2. Input variables are i (current), θ 
(position) and output variable is L (inductance). The system consists of fuzzy logic estimator (FLE), and 
NEFCLASS used to optimize FLE’s rule base and MFs.  
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Figure 2. Block diagram of the NEFCLASS based estimator. 

The FLE combines fuzzification, rule base, database, decision-making logic, and defuzzification units. 
Fuzzification, fuzzy inference and defuzzification are the FLE features. Multiple measured crisp inputs firstly have 
to be mapped into fuzzy MFs. This process is called fuzzification [16]. Fuzzy inference uses the knowledge base 
consisting of the rule base and the database, and the decision-making logic reside. The database contains 
descriptions of the input and output variables. The decision-making logic evaluates the control rules. The rule base 
includes the relations between the outputs and the inputs of the estimator. The output of the inference mechanism is 
fuzzy output variables. The FLE must convert its internal fuzzy output variables into crisp values so that the actual 
system can use these variables. This conversion is called defuzzification. One may perform this operation in several 
ways. In this study, the weighted average method has been used for defuzzification. In the weighted average method 
[16], the centroid of each MF for each rule is first evaluated. The final output L is then calculated as the average of 
the individual centroid weighted by their heights as follows, 

∑

∑

=

== n

1i
i

n

1i
ii

)µ(u

)µ(uu
L  (1) 

where  is minimum value of membership degree of input values. The initial membership functions of the 

current and the position are defined in the range of 1 ≤ i ≤ 8 and 0 ≤ θ ≤ 30 and the inductance is defined in the 
range of 14 ≤ L ≤ 122. 

)iµ(u

Figure 3 demonstrates the initial membership functions. 10 levels were chosen for i, 13 for θ and 13 for L. 
According to our experience and simulation results, the better response of the system was obtained in these levels 
membership functions compared to others. 
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Figure 3. The initial membership functions. 

NEFCLASS is used to optimize the membership functions and the rule base. The NEFCLASS system has a 3-layer 
feed-forward structure [11]. The NEFCLASS structure used in this work is shown in Figure 4. The first layer 
contains the inputs i and θ. The hidden layer holds rules, and the third layer consists of outputs. In this study, the 
hidden layer contains 88 fuzzy rules initially and the third layer contains 13 output units. 

Rule base has been first created, and it has been then refined by modifying the initially given membership functions. 
The rule base is created by finding a rule for each pattern in the training set. If a rule is not already in the rule base, it 
is added. While learning process, each rule is evaluated, and deleted some of them to keep only the best rules. The 
learning algorithm of the MFs uses the output error. This error is used to change input fuzzy sets by shifting the 
membership functions, and making their supports larger or smaller [12]. 
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Figure 4. The NEFCLASS structure with 2 inputs, 88 rules and 13 outputs. 

 

NEFCLASS training algorithm requires an input and target pattern set defined between inputs and output. Although, 
the input and target pattern set has 88 rows, only some of them are shown in Table 3.  

Table 3. NEFCLASS training set 

Row No i θ L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 1 3 0 0 0 0 0 0 0 0 0 0 0 1 0 

3 1 6 0 0 0 0 0 0 0 0 0 0 1 0 0 

. . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . 

86 8 24 1 0 0 0 0 0 0 0 0 0 0 0 0 

87 8 27 1 0 0 0 0 0 0 0 0 0 0 0 0 

88 8 30 1 0 0 0 0 0 0 0 0 0 0 0 0 

First and second columns in Table 3 are the inputs i and θ, respectively. The other columns are the outputs values of 
NEFCLASS. Output values, which are 1, show the highest value of outputs. The fuzzy sets are adjusted by a back 
propagation-like algorithm. The error is propagated from the outputs towards the inputs and used to change the 
membership function parameters. More information about NEFCLASS can be found in [11]. 

The learning phase yields optimized membership functions for both current and position. Figure 5 shows optimized 
membership functions for current, position and inductance.  
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Figure 5. Optimized membership functions. 

The consequent part of the rules is the output, which is the inductance. After learning phase, the optimized rule base 
of FLE is shown in Table 4. 

Table 4. Optimized rule base 
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In Table 4, it can be seen that total 60 best rules were obtained.  Since measured inductance values are very close to 
the estimated inductance values, these cannot be graphically shown together. For this reason, the following values 
(Eqn.2) have been calculated as deviation in inductance values, and these have been shown in Figure 6.  
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Figure 6. Deviation of inductance values. 

It can be clearly seen from Figure 6 that the proposed estimator results are reasonable accurate. According to the 
results, maximum deviation between measured and estimated inductance values is 0,044%. Figure 7 shows a parity 
plot between measured and estimated inductance values by the proposed estimater. The predictions have R2-value 
equal to 0,9998. 

R2 = 0,9998

10

20

30

40

50

60

70

80

90

100

110

120

130

10 20 30 40 50 60 70 80 90 100 110 120 130

Estimated values

M
ea

su
re

d 
va

lu
es

 

Figure 7. Comparison of the measured and estimated inductance values. 

As can be clearly seen from Figures 6-7, proposed model has successfully predicted inductance values. 
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4. Conclusions 

A NEFCLASS based estimator has been successfully presented in this study. The parameters of MFs and rule base 
were established and tuned using artificial neural network approach. The measured and the estimator inductance 
values were compared via graphics. The simulation results demonstrate the effectiveness of the proposed estimator. 
The main advantages of the proposed estimator are that it does not require complex mathematical model and it has 
faster operation. 

References 

1. Lawrenson, P.J., J.M. Stephenson, P.T. Blenkinson, J. Corda, and N.N. Fulton, Variable- Speed Switched 
Reluctance Motors, IEE Proc., 127B, 4, 253-265, 1980.  

2. Utkin, V.I., Guldner, J., Shi, J. and Gulder, J., Sliding Mode Control in Electro-Mechanical Systems, Taylor & 
Francis, New York, 1999. 

3. Elmas, C.,  Sagiroğlu, Ş., Çolak, I.and Bal, G., Nonlinear Modelling of a Switched Reluctance Drive Based on 
Neural Networks, IEEE MELECON, 809-812, April, 1994. 

4. Miller, T.J.E., Converter Volt-Ampere Requirements of the Switched Reluctance Drive, in Conf. Rec. of IEEE 
Ind. Appl. Soc. Annual Meeting, 813-819, 1984. 

5. Stephenson, J.M. and El-Khazendar, M.A., Saturation in Doubly Salient Reluctance Motors, Proc. IEE, 136B, 
1, 50-58, 1989. 

6. Stephenson, J.M. and Corda, J., Computation of Torque and Current in Doubly-Salient Reluctance Motors from 
Nonlinear Magnetisation Data Proc. IEE, 126, 5, 393-396, 1979. 

7. Miller, T.J.E. and McGilp, M., Nonlinear Theory of the Switched Reluctance Motor for Rapid Computer Aided 
Design, Proc. IEE, 137B, 6, 1990. 

8. Torrey D.A. and Lang, J.H., Modeling a Nonlinear Variable-Reluctance Motor, Proc. IEE, 137B, 5, 314–326, 
1990. 

9. Bay, O.F. and Elmas C., Fuzzy Logic Based Modeling of Inductance Variation of the Switched Reluctance 
Motor, G.U.Journal of Polytechnic, 2, 3, 1-6, Ankara, Turkey, 1999. 

10. Akcayol, M.A., Neuro-Fuzzy Modeling of Inductance Variation of the Switched Reluctance Motor, 
G.U.Journal of Polytechnic, 5, 4, 287-292, Ankara, Turkey, 2002. 

11. Nauck, D. and Kruse R., NEFCLASS- A Neuro-Fuzzy Approach for the Classification of Data, ACM 
Symposium on Applied Computing, Nashville, 461-465, Feb.26-28, ACM Press, New York, 1995. 

12. Nauck, D., Klawonn, F. and Kruse R., Foundations of Neuro-Fuzzy Systems, Wiley, Chichester, 1997. 

13. Krishnan, R. and Materu P., Measurement and Instrumentation of Switched Reluctance Motor, IEEE 
Ind.Appl.Annual Meeting, 116-121, San Diego, October, 1989. 

14. Ray, W.F. and Erfan F., A New Method of Flux or Inductance Measurement for Switched Reluctance Motors, 
5th International Conference on Power Electronics and Variable Speed Drives, 137-140, 26-28 October, 
London, England, 1994. 

15. Ferrero, A. and A. Raciti, A Digital Method for the Determination of Magnetic Characteristics of Variable 
Reluctance Motors, IEEE Trans. Instrum. Meas., 39, 604–608, 1990. 

16. Babuska, R., Fuzzy Modeling for Control, Kluwer Academic Publishers, Boston, 1998. 

 


