Prosthodontic treatment of an adolescent patient with hypohidrotic ectodermal dysplasia: Case report

Erhan Dilber¹, Tuba Yılmaz Savaş², Filiz Aykent²

Selçuk Dental Journal, 2015; 2: 76-80

Hypohidrotic ectodermal dysplasia (HED) is a rare genetic condition affecting structures of ectodermal origin (Bergendal 2010, Singer et al 2012). It typically occurs in men and shows an X-linked pattern. Common symptoms include hypotrichosis, hypohidrosis, anodontia, and oligodontia (Acikgoz et al 2007, Park et al 1999). Affected individuals have dry, scaly, and thin skin and absent or sparse eyebrows, eyelashes, and scalp hair (Acikgoz et al 2007, Ohno and Ohmori 2000). Oligodontia results in alveolar bone loss, underdeveloped alveolar ridges, and reduced sulcular depth (Bergendal 2010, Singer et al 2010). Frontal bossing, saddle nose, prominent supraorbital ridges, ungual malformation, palmar and plantar hyperkeratosis, abnormal pigmentation, periorbital wrinkles, and chronic rhinitis and pharyngitis are additional anomalies in some cases (Itthagarun and King 1997, Oliver et al 1975). Conical roots of posterior teeth, peg-shaped anterior teeth, delayed eruption, impacted teeth, enlarged pulp chambers, and taurodontism may be observed in the primary and permanent dentitions (Kupietzky and Houpt 1995, Vierucci et al 1994).

Oral rehabilitation of pediatric patients with HED usually involves removable dental prostheses. The esthetic, psychological, and functional problems of actively growing affected children can also be resolved with implant-supported dental prostheses (Alcan et al 2006, Singer et al 2012).

Here, we report the conventional prosthodontic treatment of maxillary oligodontia and mandibular anodontia in a 13-year-old boy with HED.

OUTLINE OF THE CASE

The patient was referred to the Prosthodontics Department of Selçuk University for treatment of oligodontia. He had never worn dental prostheses. Intraoral examination revealed maxillary oligodontia characterized by the presence of the primary second molars and permanent central incisors (Figure 1).
Mandibular teeth were absent. Thinned and shortened alveolar ridges and decreased sulcular depth were observed posteriorly. The palate had no mucosal defects. The tongue was enlarged and extended. Extraoral examination revealed dry and rough skin, increased pigmentation, perioral wrinkles, and swollen and dry lips (Figure 2). Panoramic radiography indicated that the roots of the permanent central incisors were suitable for treatment, and unerupted teeth were absent in both the jaws.

The treatment plan was to provide a partial removable dental prosthesis in the maxillary arch and complete removable dental prosthesis in the mandibular arch. First, the permanent central incisors were endodontically treated and prepared for metal copings. Impressions of the teeth were made with polyvinyl siloxane elastomeric impression material (Elite HD, Zhermack, Badia Polesine, Italy), and metal copings were cemented with chemically polymerizing adhesive resin (Panavia 21, Kuraray Co., Ltd., Osaka, Japan). Preliminary impressions were made with irreversible hydrocolloid (Hydrogum Thixotropic, Zhermack), and custom trays were fabricated for final impressions. The obtained dental casts were covered with acrylic resin baseplates and wax occlusion rims, the maxillomandibular relationship record was obtained by the standard method, and the record was mounted on a semi-adjustable articulator. Age-appropriate artificial teeth were selected and arranged. Finally, a chromium-cobalt partial removable dental prosthesis was placed in the maxillary arch and complete removable dental prosthesis was placed in the mandibular arch (Figure 4). Occlusion was equilibrated after placement, and instructions regarding maintenance were provided.

Although the patient was recalled every six months, he did not visit the clinic regularly. He was a villager and his home was too far to clinic. With phone calls, his mother reported significant improvements in speech and mastication. Five years later, he visited the clinic (Figure 5a) for dental implant placement. A small hole has developed around the metal copings and a circumferential (lingual) clasp has fractured (Figure 5c). Further, the patient protrudes the mandible while closing his mouth (Figure 5d). His appearance has changed (Figure 6), and the artificial teeth are abraded. Dental implant
mastication. Five years later, he visited the clinic (Figure 5a) for dental implant placement. A small hole has developed around the metal copings and a circumferential (lingual) clasp has fractured (Figure 5c). Further, the patient protrudes the mandible while closing his mouth (Figure 5d). His appearance has changed (Figure 6), and the artificial teeth are abraded. Dental implant treatment or replacing older prostheses have been delayed because of economic and transportation reasons.

Figure 5.
Five-year follow-up findings.
a) Maxillary and b) Mandibular views c) Maxillary partial removable dental prosthesis d) Maxillary and mandibular dental prostheses

Figure 6.
Final facial appearance
a) Frontal and b) Profile views
DISCUSSION

Early rehabilitation is an important outcome of dental treatment in patients with HED. A dental prosthesis can enhance the tonus of masticatory muscles and prevent alveolar bone resorption due to the absence of teeth. Removable dental prostheses could provide the optimum vertical dimension and prevent angular cheilitis. There is no recommended age at which treatment should commence (Acikgoz et al 2007). However, prosthetic restoration should be completed before school age for functional, phonational, psychological, and esthetic reasons (Bergendal 2002, Ohno and Ohmori 2000). In the present case, removable dental prostheses were fabricated for the adolescent patient, who did not attend school because of his economic status.

Oligodontia or anodontia associated with HED is usually characterized by severely resorbed or underdeveloped alveolar bone with reduced alveolar ridge height (Tarjan et al 2005). The bone volume available for supporting dental prostheses and implants may be not enough in some cases (Guckes et al 2002). The patient's age, dental and skeletal maturity, and bone volume could affect the quality of surgical and prosthetic rehabilitation (Imirzalioglu et al 2002). Early placement of dental implants has been recommended in children with severe hypodontia or anodontia (Alcan et al 2006, Kramer et al 2007, Singer et al 2012). Guckes et al (2002) analyzed the survival rate of 264 dental implants in 51 subjects with HED: they reported 91% and 76% survival rates for mandibular and maxillary dental implants, respectively.

Periodic recall presents opportunities to modify or replace prostheses to accommodate growth and development of the jaws. A 6- to 12-month recall schedule is recommended until skeletal growth is completed (Vieira et al 2007). When we observed the alveolar ridges after 5 years, we found vertical bone loss especially in the anterior region. The patient, however, is satisfied with his prostheses. Habitual mandibular protrusion caused loss of retention. Furthermore, clinical and radiographic examinations revealed no skeletal growth.

CONCLUSION

Removable dental prostheses are a practical, acceptable, and economical solution for oral rehabilitation of patients with HED. They improve the patient's quality of life and stimulate the alveolar ridges for later treatment with implant-supported dental prostheses, a more stable and esthetic solution. Clinicians must consider the patient's age and presence of underdeveloped and thinned alveolar ridges before dental implant placement in children with HED.
KAYNAKLAR

Correspondence:
Dr. Erhan Dilber
Şifa University, Faculty of Dentistry
Department of Prosthodontics
Mansuroğlu Mah. 293/1 Sk.35100
Bayraklı/Izmir, Turkey
Fax: +90 (232) 486 41 47
E-mail: dilberhan@gmail.com