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Abstract: The sediment transport processes of streams have been the subject of research for many years. 

Sediment amount carried by a river is strongly correlated with the river’s flow rate and sediment 

concentration. This study aims to represent this correlation and to estimate the sediment amount using 

four different modelling techniques: MLR, PLS, SVM, and ANN. Records of river flow, sediment 

concentration and sediment amount obtained from the Göksu River, located in the Eastern Mediterranean 

region of Turkey, are used as input data in the models. The aim of is this study is to evaluate the 

effectiveness of ANN modelling in the estimation of sediment amount carried by river flow. Fifty percent 

of the data are used as training set to develop the models. The other half of the data is used for 

verification set. The performance of the four models is evaluated by determination  coefficient of 

prediction set (r
2

pred). The results indicate that ANN is the most effective method (r
2

pred = 0.94), followed 

by SVM (r
2

pred = 0.72). MLR and PLS methods are the least effective techniques (r
2

pred = 0.67) for 

estimating sediment amount in the Göksu River. Therefore, ANN approach is further studied to propose 

the best configuration for the prediction of river sediment amount. 
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Nehirlerde Sediment Miktarının Belirlenmesinde Ampirik Modelleme Tekniklerinin 

Değerlendirilmesi  

 

Öz: Nehirlerdeki sediment taşınım süreçleri uzun yıllardır önemli bir araştırma konusu olmuştur. 

Nehirlerde taşınan sediment miktarı, nehrin akımı ve sediment konsantrasyonu ile güçlü bir ilişki 

içerisindedir. Bu çalışma, bu ilişkiyi göstermeyi ve dört farklı modelleme tekniği olan MLR, PLS, SVM 

ve ANN metotlarını kullanarak sediment miktarını hesaplamayı amaçlamaktadır. Türkiye’nin Doğu 

Akdeniz bölgesinde yer alan Göksu Nehri’ne ait akım, sediment konsantrasyonu ve sediment miktarı 

modellerde girdi verisi olarak kullanılmıştır. Bu çalışmanın amacı, nehir akımıyla taşınan sediment 

miktarının tahmin edilmesinde ANN modelleme tekniğinin etkisini değerlendirmektir. Verilerin yüzde 

ellisi modelin geliştirilmesi için öğrenme seti olarak, kalan veriler ise modelin validasyonu  için test seti 

olarak kullanılmıştır. Test setinin belirleme katsayısı (r
2

pred) dikkate alınarak dört modelin performansı 

değerlendirilmiştir. Sonuçlar ANN’nin en etkili yöntem olduğunu (r
2

pred = 0.94) ve onu SVM’nin takip 

ettiğini (r
2

pred=0.72) göstermektedir. MLR ve PLS ise Göksu Nehri’ndeki sediment miktarının 

belirlenmesinde en az etkili yöntemlerdir  (r
2

pred = 0.67). Bu nedenle, nehirdeki sediment miktarını tahmin 

etmek için en etkili yöntem, ANN’nin farklı konfigürasyonları çalışılarak araştırılmıştır. 
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1. INTRODUCTION 

 
The sediment transport of streams is a complex phenomenon, which have been the subject 

of research for many years due to its importance in planning the management of water 
resources. Process-based numerical models based on the relation between sediment 
concentration values and streamflow data have been widely used for prediction of sediment 
amount (Engelund and Fredsoe, 1976; Dietrich et al., 1999; Nelson et al., 2006; Jarritt and 
Lawrence, 2007; Kettner and Syvitkski, 2008). However, a river system is a complex network 
including various physical and morphologic dynamics, thereby modelling such systems requires 
a detailed spatial and temporal data. For this reason, a simpler, user-friendly approach is 
required and preferable for modelling sediment transport in rivers. 

Empirical modelling is an alternate method to estimate the sediment amount in rivers using 
the regression techniques to fit the measured data. Such methods facilitate to control the data 
inputs and identify the irrelevant variables and provide a flexible approach to produce 
reasonable solution from small data sets (Abrahart and White, 2001). Different regression 
models have been studied in literature for modelling sediment transport in rivers. For example, 
Sinnakaudan et al. (2006) developed a model to estimate the total bed material for rivers in 
Malaysia using Multiple Linear Regression (MLR) analyses. Shi et al. (2013) used Partial Least 
Squares (PLS) regression to explore the relationship between the landscape characteristics and 
sediment amount. A study carried out by Kisi (2012) investigated the ability of Least Square 
Support Vector Machine (LSSVM) for modelling discharge-suspended sediment relationship.  

Artificial Neural Network (ANN) is an alternative data-driven modelling, which has been 
widely applied in a variety of areas, especially for the last decades. Recent studies reveal that 
ANN has become an effective methodological approach for modelling sediment transport 
(Abrahart and White, 2001; Tayfur, 2002; Yitian and Gu, 2003; Bhattacharya et al., 2005; Yang 
et al., 2009; Yenigün et al., 2010; Van Maanen, 2010; Arı Güner et al., 2013). Abrahart and 
White (2001) carried out a study on the comparison of ANN and MLR techniques using small 
data sets, and proposed ANN was able to exceed the limitations of MLR method. Tayfur (2002) 
modelled the sheet sediment transport using ANN and tested the performance against that of the 
most commonly used physically-based models, whose transport capacities were based on flow 
velocity, shear stress, stream power, and unit stream power. The results revealed that ANN 
performed as well as the physically-based models for simulating nonsteady-state sediment loads 
from different slopes. Yitian and Gu (2003) applied ANN for modelling daily and annual 
sediment discharges in the Yangtze River and Dongting Lake, China. The comparison of the 
predicted and observed data demonstrated that ANN technique was a powerful tool for real-time 
prediction of flow and sediment transport in complex network of rivers. Arı Güner et al. (2013) 
applied ANN method for modelling longshore sediment transport (LST) in Karaburun, Turkey 
and evaluated the accuracy of the ANN predictions against the measured values. They also 
compared ANN with two well-known empirical formulas (CERC, Kamphuis), and a numerical 
model (LITPACK). According to the results, ANN followed the most successful method 
“Kamphuis” for estimation of LST rates and provided a practical and accurate determination of 
the LST rate for most regions.  

This paper aims to develop four different regression models; MLR, PLS, SVM, ANN, and 
test the performance of these models for the estimation of sediment amount in the Göksu River. 
In addition, the effect of different network topologies of ANN are studied and the best 
configuration for the prediction of river sediment amount is assessed. Here, we aimed at 
proposing an effective and simple regression model, which could provide a reliable alternative 
to more complicated process-based models for the estimation of sediment amount in the study 
area. 
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2. METHODOLOGY 

2.1. Data Requirements 

The classical and commonly used method in the estimation of sediment amount is based on 
the relation between measured suspended sediment concentration values and measured water 
discharge, which can be represented by the below formula: 
                                                   

                                                                                                                                         (1) 

 

where QS is the sediment amount (ton/day), Qw is the flow-rate (m
3
/s), Cs is the sediment 

concentration (ppm) and k  is a coefficient. 
The data for the Göksu River including river flow, sediment concentration, and sediment 

amount is obtained from Turkish General Directorate of Electrical Power Resources Survey and 
Development Administration (EIE). A total number of 493 data including daily flow and 
monthly sediment concentrations between years 1999 and 2010 are entered to regression models 
as independent variables, while monthly sediment amount are used as dependent variable.  
 

2.2. Regression Models  

Molegro Data Modeller (MDM) software is used to estimate the sediment amount by the 
application of four different regression models: MLR, PLS, SVM, and ANN. Finally, three 
different network topologies of ANN methods are further assessed to determine the best 
configuration for the prediction of river’s sediment amount. 

MLR model assumes that the dependent variable y is a linear function of the independent 
variables, xi, which can be written as: 
 

                                                                                                                  (2) 

 
where the ci's are the regression coefficients in the linear model (MDM User Manual, 2013). 

In PLS, a smaller set of factors called latent components is extracted from the set of 
available descriptors (independent variables xi), which models the dependent variable y. PLS 
regression creates latent components from the independent variables, xi, while taking the 
dependent variable y into account (MDM User Manual, 2013). 

SVM is used for linear classification. MDM considers that different types of objects are 
positioned on a 2D plane and is interested in a classifier capable of predicting the type of an 
object given its position in the plane. In this case the data are linearly separable with several 
possible choices of lines dividing the plane into regions according to class of objects. Support 
vector machines try to find the maximum separating hyperplane, which in 2D corresponds to the 
line with the widest borders (MDM User Manual, 2013).  

ANN consists of input, hidden and output neurons arranged in layers. The neural network 
is constructed by assigning each independent variable to a neuron in the input layer. Each input 
is connected to a number of neurons, which constitute the hidden layer (Van Maanen et al., 
2010). The network is first trained, whereby the target output neuron in each output neuron is 
minimized by adjusting the weights and biases through some training algorithm. During 
training, each connection multiplies the neuron output by a weight before the output enters the 
connected neuron. The combination of the weighted inputs can be expressed as (Tayfur, 2002):  
 

                                                                    ∑                                                              (3) 
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where netj  is the summation of the weighted input for the jth neuron,  xi  is the input from the i
th

 
neuron to the j

th
 neuron, wij  is the weight from the i

th
 neuron in the previous layer to the j

th
 

neuron in the current layer, and bj is the threshold value, also called the bias, associated with 
node j. The sigmoid function is applied as an activation function in the training of network to 
understand if the activation of a neuron is strong enough and produces a successive output that 
is sent to other neurons as an input. The sigmoid function is represented below (Tayfur, 2002): 
 

                                                              (    ) 
 

   
     

                                                         (4) 

 
In this study, flow rate and sediment concentration are entered to ANN model as input 

layer and the connections from the hidden layer are connected to the output layer, which is 
trained to estimate the dependent variable: sediment amount. The number of layers and neurons 
in hidden layers are adjusted by considering different network configurations, which are given 
in Figure 1.  

 

 

Figure 1: 
Backpropagation configuration of (a) ANN (3-0), (b) ANN (3-2), and (c) ANN (3-4) models 
 
3. RESULTS AND DISCUSSION 

MLR, PLS, SVM, and ANN analyses are applied to investigate the relationship between 
dependent variable and independent variables (descriptors) and to predict sediment amount in 
the Göksu River. Depending on the availability of field data, model validation is undertaken 
based on the predicted and observed sediment amounts. MDM divides the existing database into 
two groups for all regression models. One is used for training, and the other for validation 
purposes. Hence, the existing data sets are splitted into two subsets where 50% of them are used 
for training and the other 50% are used for prediction and validation. The same training/ 
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prediction sets are used for generation of all models. The regression results for MLR, PLS and 
SVM are illustrated in Figure 2a, 2b and 2c, respectively. The model outcomes for SVM fit the 
observed values better, whereas more outliers are observed for MLR and PLS model results. 
Outliers are observations that have large residual values and may be originated from errors or 
from initially accepting marginal or unacceptable data (Sinnakaudan et al., 2006). Parameter 
settings for SVM are given in Table 1.  

 

 
Figure 2: 

 Predicted vs. observed sediment amounts for (a) MLR, (b) PLS, and (c) SVM models 
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Table 1. Parameter settings for SVM model 

Parameter Settings  

Model type Epsilon- SVR 

Kernel  Radial basis function  

Termination criterion tolerance 0.001 

Cost  1 

Gamma  0 

Epsilon  0.1 

Data range normalization  -1 – 1  
 

The same method is followed for development of ANN model. ANN configuration given in 
Figure 1a is set up to predict the sediment amount in the Göksu River. Determination coefficient 
of prediction set (r

2
pred) is used to compare the performance of the four models and select the 

best method. The model that have maximum r
2

pred value is selected for further analysis. The 
model results reveal that ANN is the most effective method for estimating sediment amount in 
the Göksu River.  Previous studies also revealed that ANN is a powerful tool for prediction of 
flow and sediment transport in river systems and preferable to exceed the limitations of other 
regression methods and physically-based models (Abrahart and White, 2001; Tayfur, 2002; Arı 
Güner et al., 2013).  

Two different network topologies are also applied to determine the best configuration, one 
of which includes 2

nd
 hidden layer with two neurons and the other also contains the 2

nd
 layer 

with four neurons. Initial weight range values between 0.2 and 0.8 are entered to ANN model. 
The best regression outcomes are obtained for the weight value 0.5 (r

2
pred =0.94), so this value is 

maintained for all ANN methods. Parameter settings of the models and outcomes are given in 
Table 2 and Figure 3, respectively. Overall statistics of four models are also given in Table 3. 
According to the model results, it is observed that increased number of neurons in the 2

nd
 layer 

does not have a significant influence on regression outcomes. 
 

Table 2. Parameter settings for ANN models  

Parameters ANN (3-0) ANN (3-2) ANN (3-4) 

Max training epochs 1000 1000 1000 

Learning rate  0.3 0.3 0.3 

Output layer learning 

rate 

0.3 0.3 0.3 

Momentum 0.2 0.2 0.2 

Data range normalization 0.1-0.9 0.1-0.9 0.1-0.9 

Number of neurons in 1
st
  

hidden layer 

3 3 3 

Number of neurons in 2
nd

 
hidden layer 

0 2 4 

Initial weight range (+/-) 0.5 0.5 0.5 
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Figure 3:  

Predicted vs. observed sediment amounts for (a) ANN (3-0), (b) ANN (3-2), and (c) ANN (3-4) 
models 

 
In addition to r

2
pred, Spearman’s rank correlation coefficient (rho) and Nash-Sutcliffe 

efficiency coefficient (NS) are also calculated. NS is defined as one minus the sum of the 
absolute squared differences between the predicted and observed values normalized by the 
variance of the observed values during the period under investigation (Krause et al., 2005). 
According to the overall statistics given in Table 3, ANN (3-0) can be suggested as the most 
reliable model among the four regression techniques and different configurations of ANN.  

It is important to define an applicability domain of the proposed models for future 
applications on different data scales. Applicability domain is a structural space, knowledge, or 
information on which the training set of the model has been developed, and for which it is 
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applicable to make predictions for new data points (Roy et al., 2015). The model results reveal 
that 92% of the predicted values of ANN (3-0) fall within the applicability domain of the 
proposed model.  

Table 3.  Overall statistics of regression models  

Prediction Statistics MLR PLS SVM ANN (3-0) ANN (3-2) ANN (3-4) 

r
2

pred 0.67 0.67 0.72 0.94 0.93 0.94 

Spearman’s rho 0.99 0.99 0.95 0.96 0.95 0.94 

NS 0.25 0.25 0.7 0.94 0.89 0.89 

 

4. CONCLUSION 

The aim of the present study is modelling the sediment amount in the Göksu River via 
different black box models by using the water discharge and sediment concentrations as input 
data. For this purpose, four regression techniques; MLR, PLS, SVM, and ANN are applied to 
develop the models and the performance of such models are evaluated by determination 
coefficient of prediction set (r

2
pred). 

The ANN model gives the most reliable predictions among the regression models tested, 
with a r

2
pred

 
value 0.94, followed by SVM (r

2
pred = 0.72). MLR and PLS methods are the least 

effective techniques (r
2

pred = 0.67) for estimating sediment amount in the Göksu River. Further 
analysis of ANN method is applied for different configurations: ANN (3-0), ANN (3-2), and 
ANN (3-4). According to r

2
pred values given in Table 2, increasing the number of neurons in the 

2
nd

 layer does not have a significant influence on model outcomes. 
Widely-used process-based models are based on the relationship between water discharge 

and sediment concentrations, as well as the topographical and geomorphologic properties of the 
rivers. However, spatial heterogeneity of river systems cause limitations of measured field data 
and prevent to obtain an accurate and reliable estimation of the sediment amount. For this 
reason, simpler approaches have been investigated in literature for modelling sediment transport 
in rivers. This paper focuses the four different empirical models that provide quick simulations 
with minimum data requirement. ANN (3-0) model may be used as an effective method instead 
of process-based models for the estimation of sediment amount in rivers.  
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