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Abstract 

In this study, we have chosen the spatial confinement parabolic on semiconductor quantum wire with 

applied magnetic field. Thus, electrons are confined in zone where two parabola overlapped by using 

single step between two parabolic potential. The energy eigenvalues and wave functions of electrons 

under this double parabolic confinement are obtained by solving Schrödinger equation in the framework 

of asymptotic iteration method. The creation and annihilation operators for the radial wave functions are 

constructed by using factorization method, it is shown that these ladder operators satisfy the 

commutation relations for the SU(1,1) group. Closed analytical expressions for the matrix elements of 𝑟2 

and 𝑟 𝑑/𝑑𝑟 are obtained and the coherent state analysis for the system are carried out. 

Keywords — SU(1,1) groups, ladder operators, coherent state, matrix elements, quantum wire.

 

1 Introduction 

The quantum wells, wires and dots can be generated 
by combining the different types of semiconductor 
materials [1]. The combination of these semiconductor 
structures is very important for physical applications 
due to restriction on the movement of the electrons in 
the semiconductor materials. Since the confinement 
effects on electrons in the system increase with 
decreasing dimensions of these systems, the physical 
and electronical properties of the system change 
dramatically. This case is also same for the GaAs-
GaAlAs quantum wire. The restriction on movement 
of the electrons in this quantum wire changes 
electronic properties of the structure crucially. 
However, in this study, the dynamical group 
realization, the ladder operators for radial wave 
functions, and coherent states for the electrons in this 
quantum wire have been studied besides these 
important details. In other words, bound state 
energies and wave functions of electrons under the 
double parabolic surrounding created by considering 
the applied magnetic field and the spatial confinement 

in the GaAs-GaAlAs quantum wire are examined 
using the algebraic method. Bound state energies of 
electrons under influence of such a parabolic 
confinement can be controlled by changing of applied 
magnetic field [2]. In order to investigate a given 
quantum system using algebraic method, analytical 
expressions for normalization constants of wave 
functions and the exact solutions of this quantum 
system need to be obtained. 
The relativistic or non-relativistic systems displaying a 
dynamical symmetry provide the above mentioned 
conditions can be examined using the algebraic 
methods [3-6]. However, the obtained ladder 
operators and their commutation relations provide to 
establish the dynamical group for corresponding 
quantum system. The construction of the ladder 
operators by using factorization method is practical 
and more functional compare to other methods [7]. It 
should be pointed out that the algebraic method is 
very useful for studies in various fields of physics. The 
Morse potential is important for describing the 
interaction force of the diatomic molecule. The 
creation and annihilation operators for wave functions 
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obtained by solving the Schrödinger equation with the 
Morse potential have been established by algebraic 
method [8]. Closed analytical expressions for the 
matrix elements of relevant functions such as 1/y and 
d/dy are really practical for important physical 
calculations as transition probability. By using the 
solution of the one-dimensional Schrödinger equation 
in the presence of harmonic oscillator plus an inverse 
square potential, the wave functions and energy 
eigenvalues have been found and so the ladder 
operators have been constructed by factorization 
method. It has been found that these ladder operators 
satisfy the commutation relations of the dynamical 
group SU(1,1). Thus, the some comments have made 
on Barut-Girardello coherent states [9]. Construction 
of the ladder operators and realization of dynamical 
group for some important potentials such as Pöschl-
Teller and Morse potential have become the subject of 
many studies due to their importance in field of 
molecular physics [10-12]. Unlike these studies, the 
energy eigenvalues and corresponding wave functions 
for an electron under only magnetic field without any 
interaction potential have been obtained by solving 
Schrödinger equation [13]. Then, ladder operators 
have been constructed directly from wave functions 
using factorization method. The commutation 
relations of these ladder operators have been 
investigated and it has been concluded that these 
operators satisfy the commutation relations for the 
SU(1,1) group. 

The first aim of this study is to obtain, using 
asymptotic iteration method (AIM),  the energy 
eigenvalues and wave functions of the electrons under 
double parabolic surrounding formed by using 
magnetic field and parabolic spatial confinement in 
the quantum wire in Fig.1 [14-16]. The second aim of 
this paper is to apply algebraic method on obtained 
wave functions. Then, the creation and annihilation 
operators are directly found from the generated wave 
functions by using properties of the confluent 
hypergeometric functions. Since the goal of an 
algebraic approach is to establish the dynamical 
group, investigation of the commutation relations of 
these ladder operators is crucial. The matrix elements 
for some different functions are provided in closed 
analytic form and finally, the calculations of the 
average values of some observables in the coherent 
states are performed. 

This paper is organized as follows. In Section 2, the 
Schrödinger equation of the system is established and 
solved by using AIM. In Section 3, the creation and 
annihilation operators are obtained and the 
commutation relations of the ladder operators are 

examined. Besides, the matrix elements for relevant 
functions are also found in this section. In Section 4, 
the coherent states of the system are searched. Section 
5 is devoted to conclusion. 

 

2 Hamiltonian and AIM solutions 

As shown in Fig.1, the Hamiltonian for an electron in 
the cylindrical quantum wire with R radius under the 
applied magnetic field along the z axis is given by 

 

*

(P+(e/c)A)
H= +V(r)

2m
                                     (1) 

 

where e is charge of the electron, *m is effective mass 

of the electron, A = (1 / 2)(Bx r)  is the vector potential 

and V(r) is the spatial confinement potential. The 

confinement potential V(r) is given as the following 

form 

 

    

20

2

V
r ,r<R

V(r)= R

0 ,r>R







                                                (2) 

 

where 𝑉0 is height of the potential barrier, 

𝑉0 = 0.6(1.36𝑥 + 0.22𝑥2)eV [17], x is aluminum 

concentration for 𝐺𝑎𝐴𝑠 − 𝐺𝑎𝑥𝐴𝑙1−𝑥𝐴𝑠 structure and it 

changes the height of the potential barrier. If Eq.(1) is 

rewritten using the P  and A , the Hamiltonian turns 

out 

 

   

2 2 2 2 2
1 1

H=- + + -
2 2 2 2* *r rr r z2m 2m

2 2 2
eB e B r

+ L + +V(r)z* * 2
2m c 8m c



   

  

 
 
 
 

          (3) 

 

where 𝐿𝑧 is z component of the angular momentum, B 

is the magnetic field. Then, the following Schrödinger 

equation 𝐻𝜓(𝑟, 𝜙, 𝑧) = 𝐸𝜓(𝑟, 𝜙, 𝑧)  need to be solved. 

Since the electron is free particle in the z direction, and 

has 2𝜋 period in the 𝜙 direction, the wave function for 

this equation is suggested as 

𝜓(𝑟, 𝜙, 𝑧) = 𝑁𝑒𝑖𝑘𝑧𝑧𝑒𝑖𝑚𝜙𝜓(𝑟) where N is normalization 

constant. If the Schrödinger equation is rewritten and 

edited by using this suggested wave function, a 

second order differential equation is formed such as; 
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2 2
2

2 2

d Ψ(r) 1 dΨ(r) m
+ - +ξ r +ξ Ψ(r)=0

0 1r drdr r

 
  
 

              (4)                                                                                                                      

where 

 

 

*2 2
2m Ve B 0

ξ = +0 2 2 2 2
4 c R

, 
2
z 2

*
eBm 2m E

ξ =k + -
1 c

,     

 
 

here m is magnetic quantum number. 
 

The AIM is used to solve Eq.(4) in this study. The AIM is 

very advantageous and practical method to solve second 

order differential equations in the following form; 

 

          0 0
'

ψ''=λ (r)ψ +s (r)ψ                                                              (5) 

 

𝜆0(𝑟) ≠ 0, 𝜆0(𝑟) and 𝑠0(𝑟) are differentiable functions in 

𝐶∞(𝑎, 𝑏). 1st, 2nd, 3rd and others derivatives of Eq.(5) are 

considered to get general solution of this equation. As a 

result of these iterations, (k+1)th  and (k+2)th derivatives, 

being k=1,2,3…, are defined as following form: 

 

        
k+1 '

n k-1 n k-1 nψ (r)=λ (r)ψ (r)+s (r)ψ (r)                                (6-a)                                                                                                                                 

 
k+2 '

n k n k nψ (r)=λ (r)ψ (r)+s (r)ψ (r)                                (6-b) 

 
where  
 

        
'

k k-1 k-1 0 k-1λ (r)=λ (r)+s (r)+λ (r)λ (r)                               (7-a) 

 

        
'

k k-1 0 k-1 k=1,2,..,ns (r)=s (r)+s (r)λ (r),                               (7-b) 

 

These equations are known as recurrence terms. Considering 

the ratio of (k+1)th  and (k+2)th derivatives, for sufficiently 

large k (𝑘 > 0), it is  

 

        
s s
k k-1= =α.
λ λ
k k-1

                                                                        (8) 

 

Then, the ratio of (k+1)th and (k+2)th derivatives leads to get 
general solution of the Eq.(5), which yields to general 
solution to Eq.(5) as 
 

        

r

n

r

2 1 0

ψ (r)=exp - αd .

C +C exp [λ (υ)+2α(υ)]dυ d

l

l

l

 
 
 

  
  
   



 

           (9)    

(9)        
fdbf  

where 𝐶1 and 𝐶2 are integration constants. Using the 

Eqs.(7) and Eq.(8), the corresponding expression to 

calculate the energy values is  

 

     
k-1 k k k-1

δ(r)=λ (r)s (r)-λ (r)s (r)=0                     (10) 

 

However, the first part of Eq.(9) have convergent and 

physical polynomial solutions, whereas the second 

part of it have nonphysical. So, the coefficient (𝐶1) of 

second part of Eq.(9) is taken as zero. Then, the exact 

eigenfunctions can be derived from the following 

wave function generator: 

 

      
r

n 2ψ (r)=C exp - αdl
 
 

 
                                           (11) 

 

where n is radial quantum number. The detailed 
information can be found in [12-14].  
To solve Eq.(4) using AIM, the asymptotic behavior of 
equation should be investigated. Therefore, the 
reasonable physical wave function is proposed as 
follows: 
 

      

2
0r ξ

-
m 2ψ(r)=r e f(r)                                                   (12) 

 
 

Substituting Eq.(12) into Eq.(4) and defining a new 

variable𝑧 = 𝑟2√𝜉0 lead to  

 

2
0 1

2
0

2 ξ (1+m)+ξd f(z) 1+m df(z)
-(1- ) - f(z)=0

z dz 4 ξ zdz

 
  
 

        (13) 

where  
0

1+m
λ (z)=1-

z
, 

2 ξ (1+m)+ξ0 1
s (z)=0

4 ξ z0

. When 

Eqs.(7) and Eq.(8) are used together with 𝜆0(𝑧)  and 

𝑠0(𝑧) , the following expressions are generated; 

 

    0 1 1 0 10 0s λ -s λ =0 ξ =-2(1+m) ξ   for k=1,     (14-a) 
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    1 2 2 1 11 0s λ -s λ =0 ξ =-2(3+m) ξ   for k=2,      (14-b) 

    2 3 3 2 12 0s λ -s λ =0 ξ =-2(5+m) ξ  for k=3,       (14-c) 

      . 

      . 

      . 

                         1n 0ξ =-2(2n+1+m) ξ                  (14-d) 

 

If the Eq.(14-d) is written by using 𝜉0 and𝜉1, the 

energy values are formed as: 

 
*2 2 2 2 2

0z
n,m * * 2 2 2 2

2m Vk eBm e B
E = + +2(2n+1+m) +

2m 2m c 4h c h R

 
 
 
 

 
                                                                                               (15) 
 

As seen in Eq.(15), energy of free particle in the z 

direction have been shifted a certain amount. The 

exact eigenfunctions can be derived from the 

generator in the Eq.(11). Using Eqs.(7-11) leads to 

 

       0f (z)=1                                                                     (16-a) 

       1f (z)=z-1-m                                                            (16-b) 

       
2

2f (z)=(2+m)(1+m)-2(2+m)z+z                     (16-c) 

         . 

         . 

         . 

       
n

n n 1 1f (z)=(-1) (1+m) F (-n,1+m;z)                   (16-d) 

 

By using Eqs.(16), 𝑧 = 𝑟2√𝜉0 and Eq.(12), the radial 

wave function of the system is derived as 

 
2

0r ξ
-

m n m 22
n n 1 1 0ψ (r)=(-1) r e (1+m) F (-n,1+m;r ξ ) (17) 

 

This wave function can be transformed to another 

form by considering the following useful relations 

[18]. 

 

       n

(m+n)!
(1+m) =

m!
                                                     (18) 

 

       
m

n 1 1

(m+n)!
L (r)= F (-n,1+m;r)

n!m!
                              (19) 

 

Then, the wave function is 

          

2
0r ξ

-
m m m m 22
n n n 0ψ (r)=N r e L ( ξ r )                          (20) 

 

where 𝑁𝑛
𝑚 is normalization constant. To calculate the 

normalization constant, when considering the 

normalization condition m 2

n

0

(ψ (r)) rdr=1



 and 

following another useful relation [16],  
 
 

        
α -r α α

n m nm

0

Γ(n+α+1)
r e L (r)L (r)dr= δ

n!



                  (21) 

 
it is 
 

         

m+1

0m

n

2n!( ξ )
N =

(m+n)!
                                             (22) 

 
3 The construction of the creation and 
annihilation operators 
 
We adopt the factorization method introduced by 
Dong [7], based on the Schrödinger factorization 
method, Infeld-Hull factorization method. 
In this section, the finding of the creation and 
annihilation operators for the wave function of the 
system is investigated using the basic ideas proposed 
in [19-20]. The ladder operators should have the 
following properties 
 

         
m m

+ n + n+1Ŝ ψ (r)=s ψ (r)                                              (23-a) 

         
m m

- n - n-1Ŝ ψ (r)=s ψ (r)                                                (23-b) 

 

In Dirac-Braket notation, it is ± ±Ŝ n,m =s n±1,m  

for the operators. In addition, the 𝑆̂± ladder operators 

depend on the physical variable r and these operators 

should be on the following form 

 

          ± ± ±

d
Ŝ =A +B (r).

dr
                                                (24) 

 

For this purpose, if the differential operator d/dr is 
acted on the Eq.(20) and used the following properties  
 
 

          
m m m

n n n-1

d
r L (r)=nL (r)-(n+m)L (r)

dr
                   (25-a) 
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m m m

n n+1 n

d
r L (r)=(n+1)L (r)-(n+m+1-r)L (r)

dr
       (25-b) 

 

it is obtained that  

m

n
0 m

n-1

Nd m 2n 2(n+m)
- - + ξ r n,m =- n-1,m

dr r r N r

 
 
 

                      

 
                                                                                           (26-a) 

0 m

n

m2
n+10

d m
- + ξ r

dr r N 2(n+1)
n,m = n+1,m

N r2(n+m+1- ξ r )
+

r

 
 
 
 
 
 
 
                                                                                           (26-b) 
 

Substituting Eq.(22) into the Eq.(26-a) enables us to 
obtain the following relation for the annihilation 
operators 
 

2

0

1 d
-r +m+2n- ξ r n,m = n(n+m) n-1,m

2 dr

 
 
 

 

                                                                                               (27) 
 

According to Eq.(27), it is clear that 
 

2

- 0

1 d
Ŝ = -r +m+2n- ξ r

2 dr

 
 
 

, -s = n(n+m).          (28) 

 

Similarly, when the Eq.(26-b) are used together with 

Eq.(22) to find the 𝑆̂+ creation operator and it is 
obtained that 
 

2

0

d
r +m1
dr n,m = (n+1)(n+m+1) n+1,m

2
+2n+2- ξ r

 
 
 
  

 
                                                                                               (29) 
 

Then, 
 

+

2

0

d
r +m1ˆ drS =

2
+2n+2- ξ r

 
 
 
  

, +s = (n+1)(n+m+1).       (30) 

 

As seen in Eqs.(27)-(29), the ladder operators provide 

± ±Ŝ n,m =s n±1,m . The radial wave functions of 

electrons in the quantum wire can be directly obtained 

by acting the creation operator 𝑆̂+ on the ground state 

0,m  , namely 

 

          
m n

n +
ˆn,m =N S 0,m                                               (31) 

 

Now, based on ± ±Ŝ n,m =s n±1,m , dynamic 

group associated with the system can be examined by 
considering commutation relations of the ladder 

operators. The commutator + -
ˆ ˆ[S ,S ]  is calculated: 

 

         + - 0
ˆ ˆ[S ,S ] n,m =2s n,m ,                                     (32) 

 

where 0s =n+(m+1)/2 . So, a new operator 0Ŝ  should 

be defined as 0
ˆ ˆS =n+(m+1)/2 . n̂  is number operator 

with the property of n̂ n,m =n n,m . This operator 

0Ŝ  provides the following eigenvalue equation 

 

         0 0Ŝ n,m =s n,m .                                                 (33) 

 

The SU(1,1) generators 𝑆̂+, 𝑆̂−, 𝑆̂0 satisfy the following 

commutation relatios: 

 

 - + 0
ˆ ˆ ˆ[S ,S ]=2S ,   0 + +

ˆ ˆ ˆ[S ,S ]=S ,    0 - -
ˆ ˆ ˆ[S ,S ]=-S               (34) 

 

Since the SU(1,1) group is noncompact [21], all its 
unitary irreducible representations are infinite 
dimensional [22]. The properties of SU(1,1) group 
have been reviewed for Morse and Pöschl-Teller 
potentials [23-24]. However, the Casimir operator is 
given by 
 

 
2

0 0 + -

m -1ˆ ˆ ˆ ˆ ˆC n,m = S (S -1)-S S n,m = n,m
4

     (35) 

 

It is shown that there are four series of irreducible 
unitary representations for the SU(1,1) algebra except 
for the identity representation. They are the 
representation of 𝐷±(𝑗) with a spectrum bounded 
above and below, respectively; the supplementary 
series 𝐷𝑠(𝑄, 𝑞0) and the principle series 𝐷𝑝(𝑄, 𝑞0). 

Since the eigenvalues have the ground state, the 
representation of dynamical group SU(1,1) belongs to 
𝐷+(𝑗): 
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0

-

+

I j,v =v j,v

I j,v =[( j+v)(v-j-1)] j,v-1

I j,v-1 =[ (j+v)(v-j-1)] j,v

v=-j+n, n=0,1,2,...,j<0

                            (36) 

 

For further calculations, the matrix elements of 
relevant physical functions as 𝑟2 and rd/dr are 
considered in terms of the ladder operators by using 
Eq.(28) and (30). The matrix elements for these 
physical functions are obtained in closed analytic form 
as 
 

   

2

m,n

0

m,n+1

0

m,n-1

0

2n+m+1
m r n = δ

ξ

1
- (n+1)(m+n+1)δ

ξ

1
- n(m+n)δ

ξ

                (37) 

 
 

  
m,n+1

m,n-1 m,n

d
m r n = (n+1)(m+n+1)δ

dr

- n(m+n)δ -δ

                       (38) 

 

These relations are practical for finding the matrix 

elements from the ladder operators. 
 
 
4 Coherent States 
 

The coherent states were suggested by Schrödinger 

in the initial years of quantum mechanics. In 1963, 

Glauber approved giving name of the Coherent States 

to these states previously proposed by Schrödinger, to 

make mathematical description of coherent laser beam 

in quantum optic. The most important property of the 

coherent state system is to be consist of an 

overcomplate set and not orthogonal. However, the 

coherent states can be defined from the point of 

minimum uncertainty states.  The coherent state 

system was applied not only quantum optic but also 

to many fields of physics such as superfluidity theory 

in solid state physics [25]. The Landau diamagnetizma 

was investigated by constructing coherent state of an 

electron in a uniform magnetic field [26]. The spin 

coherent state was developed to investigate 

semiclassic properties of spin functions, which is 

similar to coherent state of harmonic oscillator [27]. In 

addition, the coherent state of the quantum 

mechanical asymmetric gyroscope was obtained by 

examining of semiclassic properties of a rotating core 

ensured the possibility of investigation mono nucleus 

as well as pair core. The coherent states were used in 

the description of the condensation of nuclear material 

in nuclear physics [28]. The corresponding coherent 

states for particle trapped in an infinite square-well 

and Pöschl-Teller potentials were constructed [29]. To 

establish a coherent state, different three ways in the 

consideration of displacement operator acting on the 

ground state, annihilation operator and minimum 

uncertainty states can be used. While coherent states 

for the square-well potential were investigated by 

using ladder operator formalism in [5], displacement 

operator method was considered to discuss same 

quantum system in [30]. In this section of paper, the 

coherent states are established by using below defined 

the unitary operators as also called displacement 

operator. This formalism is also known as Perelomov’s 

coherent states [4], which is different from considered 

ladder operator formalism to obtain Klauder-Glauber 

coherent states examined in [29] in detail. 
 

      
*

+ -
ˆ ˆD(α)=exp[αS -α S ]                                                (39) 

 

where 𝛼 ∈ ∁ and 
†

± m
ˆ ˆS =S . In order to construct the 

coherent states, it should be based on that 

 

      α =D(α) 0                                                           (40) 

 
The Baker-Campbell-Hausdorff formula is used to 
calculate the average of some observables, which is 
 

ˆ ˆ-A A 1 1 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆe Be =B+ [B,A]+ [[B,A],A]+ [[[B,A],A],A]+...
1! 2! 3!

 

                                                                                               (41) 
 

Eqs.(39)-(40) should be used together with below 
expression to calculate the average value of 

annihilation operator  𝑆̂−   in the coherent states.  
 

+ 2 *

- -
ˆ ˆα S α = 0 D (α)S D(α) 0 =(m+1)(α-α α )  (42) 

 

Following to same method, the average values of 
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2

-
ˆα S α , +

ˆα S α , 
2

+
ˆα S α , 0

ˆα S α  and 

2

0Ŝ   are calculated, which are 

 

      
2 2 3

-

(2n+m)(m+1)ˆα S α = (3α -2α )
3

                 (43) 

      
*

+
ˆα S α =-α (m+1)                                                (44) 

      
2 * 2

+
ˆα S α =(α ) (2n+m+2)(m+1)                        (45) 

      

*

0

1+2ααˆα S α = (m+1)
2

                                     (46) 

      

2
2

0

(m+1)ˆα S α =
2

                                                  (47) 

 

It should be pointed out that displacement operator 

method leads to get simple forms for expectation 

values in the coherent states of 𝑆0, 𝑆± operators. 

 

 
5 Conclusion 
 
The physical implication of this study has been 
discussed as follows: 
In the presence of magnetic field, the investigation of 
behavior of electron gas in low-dimensional systems is 
very important for possible applications. Hamiltonian 
of this quantum system is 
 
 

      

2 2
2 2

z* * * 2

eB e B
H=- + L + r +V(r, )

2m 2m c 8m c
      (48) 

 

As seen in the Hamiltonian, the magnetic field is 
applied on the system along the z axis. This applied 
magnetic field, together with parabolic spatial 
confinement, leads to create total effective potential in 
quantum wire. In other words, electrons in quantum 
wire are confined under the influence of magnetic 
field and spatial (parabolic) confinement. The aim is 
here to confine of the electrons in zone overlapped 
two parabola using single step between two parabolic 
potential 
 
 

2 2
2

* 2

eff 2 2
2 2o

* 2 2

e B
r ,r>R

8m c
V (r)=

Ve B
r + r ,r<R

8m c R







                             (49) 

 

 

It is clear in Fig. 2, 3 and 4 that when B magnetic 
field increases from 0.5 to 3, the potential profile, and 
thus the localizations of bound states, changes 
significantly. Since parameters (𝑉0 and R) in parabolic 
spatial confinement relative to structure of 
semiconductor, parabolic spatial confinement cannot 
be changed. But, changing of strength of magnetic 
field means changing of parabolic confinement as can 
be seen in Fig. 1, 2 and 3. 

Realization of the dynamical group for the Morse, 
Pöschl-Teller, Pseudoharmonic potentials important 
potentials in atomic, molecular and condensed matter 
physics was examined using algebraic method. 
Because, constructing the ladder operators for these 
potentials allows to find the explicit bound state 
energies and the eigenfunctions directly in a simple 
and unique way, which is advantage of algebraic 
approach. Considered double parabolic potential to 
model semiconductor heterostructures in this study is 
important a potential from the point of view its 
applicable in semiconductor technology such as 
optoelectronic and sensors that sensitive to magnetic 
field. Due to these reasons, investigation of this 
quantum system by using algebraic method, as well as 
AIM, is also very necessary. I sure that construction of 
ladder operator for semiconductor heterostructures 
will be interest to some researchers in this field. 

As a result of applying magnetic field on GaAs-
GaAlAs quantum wire and changing a parabolic 
spatial surrounding, electrons in the system have 
localized in overlapped zone of two parabolic 
potential. The employed Schrödinger equation for 
these localized electrons has been solved by using 
AIM, the energy eigenvalues and corresponding wave 
functions including confluent hypergeometric 
functions have been obtained. The annihilation and 
creation operators for the normalized wave functions 
have been constructed using the factorization method. 
By examining commutation relations of the obtained 

operators  𝑆̂±,0, it has been shown that SU(1,1) group is 

the dynamical group for the bound states of electrons 
in overlapped zone of two parabolic potential. It has 
been shown that corresponding wave functions can be 

obtained by acting the creation operator 𝑆̂+ on the 
ground state. The matrix elements of functions 𝑟2 and 
rd/dr have been obtained by using ladder operators 
in closed analytic form. Finally, the average values of 

the ladder operators  𝑆̂±, operator 𝑆̂0 and squares of 
these operators in the coherent states have been 
calculated. But, since the Hamiltonian of the system 

can not be exactly expressed in terms of operators 𝑆̂±,0, 

the time depending of operators 𝑆̂±,0 could not be 
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obtained by using the evolution operator 

ˆU(t)=exp[(-i/h)Ht]. 

 
 

Figure 1. Schematic representation of cylindrical 

quantum wire [2]. 
 
 
 

 
Figure 2. Plot of effective potential for B=0.5, e= 𝑚∗=𝑉0 

=R=c=1. 

 

 

 
Figure 3. Plot of effective potential for B=1, e= 𝑚∗=𝑉0 

=R=c=1. 

 

Figure 4. Plot of effective potential for B=3, e= 𝑚∗=𝑉0 

=R=c=1. 
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