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Abstract - In [2-4,8-9], the authors have characterized the
spherical curves in different spaces.In this paper, we shall charac- Keywords - Spherical curves,
terize the spherical curves according to modified orthogonal frame Modified orthogonal frame

in Euclidean 3-space.

1 Introduction

In the Euclidean space E® a spherical unit speed curves and their characterizations
are given in [8,9]. In [2-4,7], the authors have characterized the Lorentzian and Dual
spherical curves in the Minkowski 3-space E?. In this paper, we shall characterize the
spherical curves according to modified orthogonal frame in the Euclidean 3-space.

2 Preliminaries

We first recall the classical fundamental theorem of space curves, i.e., curves in Euclid-
ean 3-space E3. Let a(s) be a curve of class C®, where s is the arc-length parameter.
Moreover we assume that its curvature x(s) does not vanish anywhere. Then there
exists an orthonormal frame {t,n, b} which satisfies the Frenet-Serret equation

t'(s) 0 x 0 t(s)
n'(s) | = - 0 7 n(s) (1)
b’(s) 0O —7 0 b(s)
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where t,n and b are the tangent, principal normal and binormal unit vectors, respec-
tively, and 7(s) is the torsion. Given a function x(s) of class C' and a continuous func-
tion 7(s), there exists a curve of class C*® which admits an orthonormal frame {t,n, b}
satisfying the Eq.(1) with given x and 7 as its curvature and torsion, respectively. Such
a curve is uniquely determined by a motion of E3.

Let a; (i = 1,2,3) be coordinates in E®. Let a(s) an analytic curve , where s runs
through some interval and «(s) be analytic in s. We assume that « is non-singular, i.e.,

> (1

i=1

is nowhere zero. Therefore we can parametrize « by its arc length s. In the rest of this
paper, we only consider « in the following form:

a=a(s)=(a,as,a3) , sl

where «(s) is analytic in s and I is a non-empty open interval. We assume that the
curvature (s) of a is not identically zero. Now we define an orthogonal frame {7T', N, B}

as follows: p T
«Q
ds’ ds’ XA

where T' X N is the vector product of 7" and N. The relations between those and the
classical Frenet frame {t,n, b} at non-zero points of k are

T=t
N = kn (2)
B = kb.

Thus N(sg) = B(sg) = 0 when k(sg) = 0 and squares of the length of N and B vary
analytically in s. By the definition of {T', N, B} or Eq.(2), a simple calculation shows
that

T'(s) 0 1 07T
N'(s) | =| —r* £ 7 N(s) (3)
B'(s) 0 —-r = B(

s)
where a dash denotes the differentiation with respect to the arc length s and

dt / " "
= r(s) = et (o/,a”, ™)

K2

is the torsion of . From the Frenet-Serret equation, we know that any zero point of 2
is a removable singularity of 7. The Eq.(3) corresponds to the Frenet-Serret equation
in the classical case. Moreover, {T', N, B}satisfies:

(T,T) =1,(N,N) = (B, B) = r?, )
{ (T,N) = (T, B) = (N, B) = 0 (4)

where (,) denotes the inner product of E3. We note that the essential quantities in
Eqs.(3) and (4) are x*(s) and 7(s) which are analytic in s [7].
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3 Spherical Curves with Modified Orthogonal Frame

Definition 3.1. Let o be in E3given with coordinate neighborhood (I,a). If a C E3
then « is called a spherical curve of E3.

Definition 3.2. The sphere having sufficiently close common four points at m € «
with the curve o C E® is called the osculating sphere or curvature sphere of the curve
a at the point m € a.

Now let us calculate the geometric locus of the sphere having sufficiently close
common three points with curve o C E? at the point m € a.

Theorem 3.3. Let « be in E3given with coordinate neighborhood (I, ). The geometric
locus of the centers of the spherical curves having sufficiently close common three points
with the curve a providing the modified orthogonal frame vectors {T, N, B}at the point
a(s),s el is

a(s) = a(s) + ma(s)N(s) + ms(s)B(s),

where

2

my: I — R, my(s) = k2, ms(s) = £k 2Vr2k2 — 1.

Proof. Let (I,a) be a coordinate neighborhood, and s € I be parameter for the curve
a. Let also a be the center and r be the radius of the sphere having sufficiently close
common three points with «. In accordance to this, let us consider

f I — R
s — f(s) = (a—a(s),a—a(s)) —r?. (5)
Since
£5) = 1'65) = £(5) =0 6

at the point a(s), then the sphere
S*={xz € E*: (x —a,x —a) =1’} (x generic point of the sphere)

with the curve « at this point passes sufficiently close three points. So, considering
Egs.(5) and (6) together

f'(s) = —=2(T,a— a(s)) = 0.
is obtained. From this, since f”(s) =0, we get
(I',T)+ (a — a(s),—N) = 0.
Considering Eq.(3) with this, we have
(a—a(s),N)=1.
On the other hand, for the base {T, N, B},

a—a(s) =my(s)T(s) + ma(s)N(s) +ms(s)B(s);  my(s), ma(s),ms(s) € R (7)
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is obtained. However, by using Eq.(6), we have

mi(s) = (a—af(s), T(s)) = ma(s) = 0, (8)
and 1
K*my = (a—a(s), N(s)) = my = = 9)
By using f(s) =0, we get
(a—a(s),a—a(s)) =" = mi(s) + my(s)r’(s) + ms(s)s’(s) =r* . (10)
Considering Eq.(8) in Eq.(10), we have
[m3(s) + m3(s)] K?(s) =17 . (11)

Considering also Eq.(9) in Eq.(11) then
ms(s) = £ 2Vr2k2 — 1 = \. (12)
Therefore, subtituting Eqgs.(8),(9),(12) in Eq.(3)

a(s) = als) + %N(s) + k7 2Vr2K2 — 1B(s).

Here a and r change when the spheres change. Hence, m3(s) = A € R is a parameter.
This completes the proof of the theorem. n

Corollary 3.4. Let the curve o in E® be given with neighborhood coordinate (I,a).
Then the centers of the spheres which pass sufficiently close common three points with
a at the points a(s) € a are located on a straight line.

Proof. By Theorem 3.3, we have

a(s) = a(s) +

N AB

V) AB(
The equation with A parameter denotes a line which pass through the point C(s) =
a(s) + %N(s) and is parallel to the B. O

K

Definition 3.5. The line a(s) = a(s) + 5 N(s) + AB(s) is the geometric locus of the
centers of the spheres which have sufficiently close common three points with the curve
a C E? at the point m € « is called curvature the axis at the point m € o of curve
a C E3. The point

C(s0) = a(so) + N(sp)

K%(s0)
on curvature the axis is called curvature the center at the point m = «(sg) of curve
a C B3

Theorem 3.6. Let curve o C E® be given by (I, «) coordinate neighborhood. If
a(s) = a(s) + ma(s)N(s) + ms(s)B(s)
is the center of the osculating sphere at the point a(s) € «, then

(52 my

5 or ms(s) = o

ma(s) =k %(s), ma(s) =
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Proof. The proof of the theorem is similar to the proof of Theorem3.3. The osculating
sphere with the curve a have sufficiently close common four points. Therefore, since

f"(s) =01in (6) thus f”(s) = 0. Then we have

ff,

(=T, N) —52(a—a(s),T>+;<a—a(s),N>+T<a—a(s),B> =0

Considering Eqns.(1), (8) and (9) in the last equality, we obtain

K
_ B) =
(= afs).5) =~
or / 2\/
K K
ms(s) = g ormy = ( 27_>

Using Eq.(4) in the last equation yields

ms = —.
2T

Corollary 3.7. Let curve a in E® is given by (I,a) neighbouring coordinate. If r is
the radius of the osculating sphere at a(s) € «, then

i \/[mg(s) +mi(s)]k? = \/% + [%r

Proof. 1f the center of the osculating sphere at a(s) is a, then by Theorem 3.3,

a=a(s) +ma(s)N(s) +ms(s)B(s).

Thus we have

r = lla—a(s)ll = /2 (s)m3(s) + K2(s)ma(s) = \/ Ly [()}

Theorem 3.8. Let S3 be a sphere centered at 0 and also o C Sg be a spherical curve.
In this case, since (I,«) is a neighbouring coordinate for o and s € I is arclength
parameter, then

(a(s). B)

—ma(s) = ((s),T) , —ma(s) = =2, —my(s) = =7

Proof. Since a(s) € S for all s € I, and 7 is a radius, then we have
H
O = a(s) +mT +moN +msB

and

(a(s) als)) =7
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Thus, taking consecutive derivatives from the above equations with respect to s we
get

<@<S)>T = 0,
<OZ(S), N — _]-7
and /
K
B) =—
(a(s), B) = =
or )
K (a(s),B)
TR K2
Thus since % = —myg, we can write the last equality as
a(s), B
oy = (00613
K

The following theorem characterize the relationship between the radii and the cen-
ters of the osculating spheres. ]

Theorem 3.9. Let S§ C E® be a sphere centered at 0. If o is a curve on S5, then the
osculating sphere of the curve a at every point is Sg.

Proof. Let the curve a with (I, &) neighbouring coordinate such that s € I is arclenght
parameter. By Theorem 3.6,

a(s) = a(s) +ma(s)N(s) +ms(s)B(s).

By Theorem 3.8, this expression can be written as

Thus we get
a=a(s) —a(s) =a=0.

On the other hand, we can write
d(a(s),0) =r.
This completes the proof of the theorem. n

Theorem 3.10. Let the curve o € E? be given with neighbouring coordinate (I, ). The
radius of the osculating sphere at the point o(s) for all s € I such that ms(s) # 0,7 #0
15 constant if and only if the centers of the osculating sphere are the same.
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Proof. =: By Corollary 3.4, we can write as follows
K> (m3(s) + m3(s)) = r3(s).
Since r =constant, from the derivative of this equation with respect to s, we have

KoMl + kmamy + k'm3 + K'm3 =0

or ) )
K K Mo mo
/ /
Mg+ —Mgz = ———Mg — — M.
K K 13 ms
. ! / . . .
Inserting values my = — | mh = %and m3 = —=X5 in right side of the last
K
equality, we obtain
/ + Hl
ms+ —m3=——T.
5k K2
Finally, since mo = ?127 we get
/ K//
my + —mg + Tms = 0. (13)
3k

On the other hand for base {7, N, B} we have
a(s) = a(s) + mT + mo(s)N(s) + ms(s)B(s).

From derivative with respect to s of the last equality, we get
/
a(s) = (L+m)—mer®)T+ (ml + mQ% +my — ng) N (14)

K/
+ (Emg +mg +Tm2> B.

. !
Since 1 4+ m} — maek? and my + mae™ 4+ m,, — 7ms for values m; = 0 and my = — are
1 K 2 /€2

zero, we can write a’(s) as follows
K,//
a'(s) = <—m3 +mj + Tm2> B. (15)
K
So by (13) we find

a'(s) =0.

Thus we have a(s) =constant for all s € T
<:Conversely, let a(s) be constant for all s € I. Considering the equation

(a(s) — als),a(s) — a(s)) =r%(s),

taking derivative of this equation with respect to s, and if necessary calculations are

made, we find
r(s)r'(s) = 0.
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Here, either r(s) = 0 or 7/(s) = 0. If r(s) = 0, then by Corollary 3.7, we have
K? [m3(s) +m3(s)] =0, kK#0

m3(s) = —m3(s) = 0.

But this contradicts the theorem. Therefore 7'(s) = 0. Thus r(s) is constant for all
sel. [

Theorem 3.11. Let a be a curve in E® with (I, ) neighbouring coordinate and m3(s) #
0,7 # 0 for all s € I. Then, « is a spherical curve if and only if the centers of the
osculating spheres at the point a(s) for all s € I are located at the same point.

Proof. Let a be a curve on S7 which have the radius r and centered at any point b. By
Theorem 3.8, the proof is clear. Conversely, let the centers of the osculating curve be
the point b in a(s) € a for all s € I. Then by Theorem 3.10 all osculating spheres have
the same radius r. Therefore

d(a(s),b) =r

for all s € I. This completes the proof of the theorem. n

Theorem 3.12. Let a be curve in E3 be given with (I, ) neighbouring coordinate. If
ms(s) # 0,7 # 0 such that s is a arclenght parameter, then o is a spherical curve if

and only if
1\ 11 7 K
— | — — — =0.
[(/@2) 27’] * k2 TK3
Proof. Let a be a spherical curve. By Theorem 3.11, for all s € I, the center a(s) of
the osculating spheres are constant. Additionally, the Eq.(13) yields

/
K

my + —mg +7mg =0
K

1\ 1) KT,
k2 ) 2T T3 K2
/

Conversely, let m} + img + 12 = 0. By Theorem 3.9 and a’(s) = 0. Therefore
K

or

K
a(s)=constant. Thus, by Theorem 3.11, the curve « is a spherical curve.. ]
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