Some Nordhaus - Gaddum Type Relations On

Strong Efficient Dominating Sets

K.Murugan (muruganmdt@gmail.com)
N.Meena (meenavidya72@gmail.com)

Department of Mathematics
The M.D.T.Hindu College, Tirunelveli – 627010, Tamilnadu, India

Abstract – Let \(G = (V, E) \) be a simple graph with \(p \) vertices and \(q \) edges. A subset \(S \) of \(V(G) \) is called a strong (weak) efficient dominating set of \(G \) if for every \(v \in V(G) \), \(|N_s[v]\cap S| = 1 \) (\(|N_w[v]\cap S| = 1 \)). The minimum cardinality of a strong (weak) efficient dominating set \(G \) is called strong (weak) efficient domination number of \(G \) and is denoted by \(\gamma_{se}(G) \), \(\gamma_{we}(G) \). A graph \(G \) is strong efficient if there exists a strong efficient dominating set of \(G \). In this paper, the authors introduced a new parameter called the number of strong efficient dominating sets of a graph \(G \) denoted by \(\# \gamma_{se}(G) \) and studied some Nordhaus- Gaddum type relations on strong efficient domination number of a graph and its derived graph. The relation between the number of strong efficient dominating sets of a graph and its derived graph is also studied.

Keywords - Strong efficient dominating sets, Strong efficient domination number and number of strong efficient dominating sets

1. Introduction

Throughout this paper, only finite, undirected and simple graphs are considered. Let \(G = (V, E) \) be a graph with \(p \) vertices and \(q \) edges. The degree of any vertex \(u \) in \(G \) is the number of edges incident with \(u \) and is denoted by \(\text{deg} u \). The minimum and maximum degree of a vertex is denoted by \(\delta(G) \) and \(\Delta(G) \) respectively. A vertex of degree 0 in \(G \) is called an isolated vertex and a vertex of degree 1 in \(G \) is called a pendant vertex. A subset \(S \) of \(V(G) \) of a graph \(G \) is called a dominating set of \(G \) if every vertex in \(V(G) \) \(\setminus S \) is adjacent to a vertex \(S \). The domination number \(\gamma(G) \) is the minimum cardinality of a dominating set of \(G \). Sampathkumar and Pushpalatha introduced the concepts of strong and weak domination in graphs [6]. A subset \(S \) of \(V(G) \) is called a strong dominating set of \(G \) if for every \(v \in V(G) \) \(S \) there exists a \(u \in S \) such that \(u \) and \(v \) are adjacent and \(\text{deg} u \geq \text{deg} v \). A subset \(S \) of \(V(G) \) is called an efficient dominating set of \(G \) if for every \(v \in V(G) \), \(|N[v]\cap S| = 1 \)[1]. The concept of strong (weak) efficient domination in graphs was introduced by Meena, Subramanian and Swaminathan [4]. A subset \(S \) of \(V(G) \) is called a strong (weak) efficient dominating set of \(G \) if for every \(v \in V(G) \), \(|N_s[v]\cap S| = 1 \) (\(|N_w[v]\cap S| = 1 \)). \(N_s(v) = \{ u \in V(G) : uv \in E(G), \text{deg}(u) \geq \text{deg}(v) \} \). The minimum cardinality of a strong (weak) efficient dominating set is called strong (weak) efficient domination number and is
denoted by $\gamma_{se}(G)$. A graph G is strong efficient if there exists a strong efficient dominating set of G. In this paper, the authors introduced a new parameter called the number of strong efficient dominating sets of a graph G denoted by $\# \gamma_{se}(G)$ and studied some Nordhaus-Gaddum type relations on strong efficient domination number of a graph and its derived graph. They also studied the Nordhaus-Gaddum type relations on the number of strong efficient dominating sets of a graph and its derived graph. For all graph theoretic terminologies and notations, Harary [2] is followed.

2. Basic Definitions and Results

The following basic definitions and results are necessary for the present study.

Definition 2.1: A graph G with vertex set $V(G) = \{v_1, v_2, v_3, ..., v_n\}$ for $n \geq 3$ and edge set $E(G) = \{v_i v_j | 1 \leq i \leq n\} \cup \{v_i v_{i+1} | 1 \leq i \leq n-1\} \cup \{v_1 v_n\}$ is called a wheel graph of length n and is denoted by W_n. The vertex v is called the axial or central vertex of the wheel graph.

Definition 2.2: A gear graph G_n is obtained from the wheel graph W_n by adding a vertex between every pair of adjacent vertices in the cycle.

Definition 2.3: The Bistar $D_{m,n}$ is the graph obtained from K_2 by joining m pendant edges to one end vertex of K_2 and n pendant edges to the other end of K_2. The edge K_2 is called the central edge of $D_{m,n}$ and the vertices of K_2 are called the central vertices of $D_{m,n}$.

Definition 2.4: The H-graph of a path P_n is the graph obtained from two copies of P_n with vertices $v_1, v_2, ..., v_n$ and $u_1, u_2, ..., u_n$ by joining the vertices v_{n+1} and u_{n+1} if n is odd and the vertices $v_{\frac{n}{2}}$ and $u_{\frac{n}{2}+1}$ if n is even.

Definition 2.5: The complement \overline{G} of a graph G has $V(G)$ as its vertex set and two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.

Definition 2.6 [7]: A vertex switching G_v of a graph G is obtained by taking a vertex v of G, removing all edges incident to v and adding edges joining v to every vertex which are not adjacent to v in G.

Result 2.7 [4]: $\gamma_{se}(K_{1,n}) = 1, n \in N$

Result 2.8 [4]: For any path $P_m, \gamma_{se}(P_m) = \begin{cases} n & \text{if } m = 3n, n \in N \\ n+1 & \text{if } m = 3n+1, n \in N \\ n+2 & \text{if } m = 3n+2, n \in N \end{cases}$

Result 2.9 [4]: $\gamma_{se}(C_{3n}) = n, n \in N$

Result 2.10 [4]: $\gamma_{se}(K_n) = 1, n \in N$

Result 2.11 [4]: $\gamma_{se}(D_{r,s}) = r + 1$ where $r \leq s$
Result 2.12 [5]: A graph G does not admit a strong efficient dominating set if the distance between any two maximum degree vertices is exactly two.

Result 2.13 [4]: Any strong efficient dominating set is independent.

Result 2.14: If G_1 and G_2 are strong efficient graphs, then $G_1 \cup G_2$ is strong efficient.

3. Main Results

In this section, the authors studied the strong efficient domination number of some graphs and their derived graphs and also derived some Nordhaus- Gaddum type relations between them. It was found that there are several strong efficient dominating sets for a given graph. This motivated the authors to define a new parameter called the number of strong efficient dominating sets denoted by $\#_{se}(G)$. Using this parameter, the authors studied the Nordhaus- Gaddum type relations on the number of strong efficient dominating sets of a graph and its derived graph.

Definition 3.1: Let G be a graph with a strong efficient dominating number $\gamma_{se}(G)$. The number of distinct strong efficient dominating sets of a graph G is denoted by $\#_{se}(G)$.

Theorem 3.2: $\gamma_{se}(K_{1,n}) + \gamma_{se}(\overline{K_{1,n}}) = 3$ for all $n \geq 1$ and $\#_{se}(K_{1,n}) + \#_{se}(\overline{K_{1,n}}) = n+1$ for all $n \geq 1$

For: $K_{1,n}$ is the graph $K_n \cup K_1$. Therefore $\gamma_{se}(\overline{K_{1,n}}) = 2$ and $\#_{se}(\overline{K_{1,n}}) = n$. Hence the theorem.

Theorem 3.3: $\overline{P_n}$ is strong efficient if and only if $n \leq 4$. Also $\#_{se}(P_n) + \#_{se}(\overline{P_n}) = \{3 \text{ when } n = 2 \text{ or } 3 \} \quad 4 \text{ when } n = 4$

Proof: Let $\overline{P_n}$ be strong efficient. Suppose $n > 4$. Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices of $\overline{P_n}$. Let S be a strong efficient dominating set of $\overline{P_n}$. Let $\text{deg}(v_1) = \text{deg}(v_n) = n-2$ and $\text{deg}(v_i) = n-3$ for $2 \leq i \leq n-1$. Since S is independent, v_1 and v_n are adjacent, either $v_1 \in S$ or $v_n \in S$. Suppose $v_1 \in S$. Then v_1 strongly dominates all v_i where $3 \leq i \leq n$ and v_2 must be an element of S. Then $|N_S[v_i] \cap S| \geq 2$ for $4 \leq i \leq n-1$, a contradiction. The proof is similar if $v_n \in S$. Further, when $n = 2$, $\overline{P_2}$ is $2K_1$, and when $n = 3$, $\overline{P_3}$ is $K_2 \cup K_1$, which are obviously strong efficient with $\gamma_{se}(\overline{P_2}) = 2$, $\#_{se}(\overline{P_2}) = 1$, $\gamma_{se}(\overline{P_3}) = 2$ and $\#_{se}(\overline{P_3}) = 2$. In $\overline{P_4}$, $\{v_1, v_2\}$ and $\{v_3, v_4\}$ are the strong efficient dominating sets. Hence $\gamma_{se}(\overline{P_4}) = 2$ and $\#_{se}(\overline{P_4}) = 2$.

Thus $\#_{se}(P_n) + \#_{se}(\overline{P_n}) = \{3 \text{ when } n = 2 \text{ or } 3 \} \quad 4 \text{ when } n = 4$

Theorem 3.4: $\overline{C_n}$ is strong efficient if and only if $n \leq 4$

Proof: Let $\overline{C_n}$ be strong efficient. Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices of $\overline{C_n}$. Suppose $n > 4$. Then $\overline{C_n}$ is a regular graph of degree $n-3$. Let S be a strong efficient dominating set of $\overline{C_n}$. Let v_i be an element of S. v_i strongly dominates all the vertices other than v_{i-1} and v_{i+1}. Since S is independent and v_{i-1} and v_{i+1} are adjacent, either $v_{i-1} \in S$ or $v_{i+1} \in S$. Suppose $v_{i-1} \in S$. Then $|N_S(v_i) \cap S| \geq 2$, $i + 2 \leq j$, a contradiction. The proof is similar if $v_{i+1} \in S$. Further, suppose $n = 3$. Then $\overline{C_3}$ is $3K_1$ which has a unique strong efficient...
dominating set with strong efficient domination number 3. On the other hand, suppose n = 4. Then $\overline{C_4}$ is $2K_2$ which is also strong efficient with strong efficient domination number 2 and $\#\gamma_{se}(\overline{C_4}) = 4$. Therefore $\#\gamma_{se}(\overline{C_n}) + \#\gamma_{se}(\overline{C_n}) = 4$ when n = 3

Result 3.5: There exists a graph G for which $\gamma_{se}(G) + \gamma_{se}(\overline{G}) = \#\gamma_{se}(G) + \#\gamma_{se}(\overline{G})$

Example: Let $G = K_n$.

For, $\overline{K_n}$ is nK_1 which has a unique strong efficient dominating set with strong efficient domination number n. So $\gamma_{se}(K_n) + \gamma_{se}(\overline{K_n}) = n + 1$ and $\#\gamma_{se}(K_n) + \#\gamma_{se}(\overline{K_n}) = n + 1$ for all $n \geq 1$.

Theorem 3.6: The bistar $D_{r,s}$ is strong efficient with $\gamma_{se}(D_{r,s}) + \gamma_{se}(\overline{D_{r,s}}) = r + 3$ and $\#\gamma_{se}(D_{r,s}) + \#\gamma_{se}(\overline{D_{r,s}}) = r + s + 1$ for all $r, s \geq 1$ and where $r < s$

Proof: Let $V(D_{r,s}) = \{u_1, u_2, v_1 / 1 \leq i \leq r + s\}$ and $E(D_{r,s}) = \{u_1 v_i, u_2 v_j : r + 1 \leq i \leq r + s, 1 \leq j \leq r\} \cup \{v_i v_j / 1 \leq i \neq j \leq r + s\}$

In $D_{r,s}$, u_1 is adjacent with $v_{i+1}, v_{i+2}, ..., v_{i+s}, u_2$ is adjacent with $v_1, v_2, ..., v_r$, v_i is adjacent with all the vertices other than u_j; $1 \leq i \leq r$ and v_j is adjacent with all the vertices other than u_j; $r + 1 \leq j \leq r + s$. u_1 and u_2 are nonadjacent. Deg(u_1) = s, Deg(u_2) = $r = \delta(D_{r,s})$, deg(v_i) = $r + s = \Delta(D_{r,s})$, $1 \leq i \leq r + s$. $\{v_1, u_1\}, \{v_2, u_1\}, ..., \{v_r, u_1\}, \{v_{r+1}, u_2\}, \{v_{r+2}, u_2\}, ..., \{v_{r+s}, u_2\}$ are the strong efficient dominating sets of $D_{r,s}$. So $\gamma_{se}(D_{r,s}) = 2$ whereas $\#\gamma_{se}(D_{r,s}) = r + s$. Hence the theorem.

Corollary 3.7: $\gamma_{se}(D_{r,r}) + \gamma_{se}(D_{r,r}) = r + 3$ and $\#\gamma_{se}(D_{r,r}) + \#\gamma_{se}(D_{r,r}) = 2r + 1$

Theorem 3.8: $\overline{W_n}$ is strong efficient if and only if $n \leq 4$

Proof: Suppose $n \geq 5$. Let $\overline{W_n}$ be strong efficient. Let S be a strong efficient dominating set of $\overline{W_n}$. Let $v, v_1, v_2, ..., v_n$ be the vertices of $\overline{W_n}$. v is isolated in $\overline{W_n}$. v_1 is adjacent with all the vertices other than v_{i-1} and v_{i+1}. As in the proof of theorem 2.4, a contradiction arises. Hence $n < 5$. Conversely, suppose $n = 3$. Then $\overline{W_3}$ is $4K_1$ which has a unique strong efficient dominating set. Thus $\gamma_{se}(\overline{W_3}) = 4$ and $\#\gamma_{se}(\overline{W_3}) = 1$. Suppose $n = 4$. Then $\overline{W_4}$ is $K_1 \cup 2K_2$ which is also strong efficient in which $\{v, v_1, v_2\}, \{v, v_1, v_4\}, \{v, v_3, v_2\}$ and $\{v, v_3, v_4\}$ are strong efficient dominating sets. Thus $\gamma_{se}(\overline{W_4}) = 3$ and $\#\gamma_{se}(\overline{W_4}) = 4$.

Result 3.9: Complement of a strong efficient graph need not be strong efficient.

Example: Consider the Gear graph G_n. Let $V(G_n) = \{v, v_1, v_2, v_3, ..., v_{2n}\}$. The vertex v strongly dominates the vertices $v_1, v_3, ..., v_{2n-1}$. Hence $\{v, v_1, v_2, v_4, v_6, ..., v_{2n}\}$ is the unique strong efficient dominating set of G_n. Therefore G_n is strong efficient. In $\overline{G_n}$, v is adjacent with v_{2i} where $1 \leq i \leq n$. Deg(v) = n. Each v_{2i-1} is adjacent with all the vertices other than v_{2j-2}, v_{2j} and v where $2 \leq j \leq n$. v_1 is adjacent with all the vertices other than v_{2n}, v_2 and v. v_{2j} is adjacent with all the vertices other than v_{2j-1} and v_{2j+1}. Deg(v_{2j-1}) = $2n - 3; 1 \leq j \leq n$ and $\text{deg}(v_{2j}) = 2n - 2; 1 \leq i \leq n$. Suppose $\overline{G_n}$ is strong efficient. Let S be a strong efficient dominating set of $\overline{G_n}$. Since degree of any v_{2i}
is maximum for some i, \(v_{2i} \in S \) for some i. \(v_{2i} \) strongly dominates all the vertices other than \(v_{2i-1} \) and \(v_{2i+1} \). Since \(v_{2i-1} \) and \(v_{2i+1} \) are adjacent and S is independent, either \(v_{2i-1} \in S \) or \(v_{2i+1} \in S \). If \(v_{2i-1} \in S \), then \(v_{2i+1} \) is strongly dominated by both \(v_{2i-1} \) and \(v_{2i+1} \). \(|N_s[v_{2i+1}] \cap S| \geq 2 \), a contradiction. Proof is similar if \(v_{2i+1} \in S \). Hence \(\overline{G_n} \) is not strong efficient.

Theorem 3.10: The complement of the H-graph \(\overline{H_n} \) is strong efficient if and only if \(n \leq 4 \).

Proof: Suppose \(\overline{H_n} \) is strong efficient. Let \(v_1, v_2, v_3, ..., v_n, u_1, u_2, u_3, ..., u_n \) be the vertices of \(\overline{H_n} \). Suppose \(n > 4 \). Since the vertices \(v_1, v_n, u_1 \) and \(u_n \) are pendant vertices in \(H_n \), their degree is maximum in \(\overline{H_n} \) which is \(2n-2 \). Let S be a strong efficient dominating set of \(\overline{H_n} \). Since the maximum degree vertices are mutually adjacent with each other S contains exactly one of them. Without loss of generality, let \(v_1 \in S \). \(v_1 \) strongly dominates all the vertices other than \(v_2 \). Therefore \(v_2 \in S \). But \(u_2 \) is adjacent with both \(v_1 \) and \(v_2 \) in \(\overline{H_n} \) and \(\deg(v_2) = \deg(u_2) \). \(|N_s[u_2] \cap S| = 2 > 1 \). Therefore \(n \leq 4 \). Conversely suppose \(n = 3 \), \(\overline{H_3} \) is given in the figure 1.

![Figure 1](image1.png) ![Figure 2](image2.png)

\(\{v_1, v_2\}, \{v_2, v_3\}, \{u_1, u_2\} \) and \(\{u_2, u_3\} \) are strong efficient dominating sets of \(\overline{H_3} \). Therefore \(\gamma_{se}(\overline{H_3}) = 2 \) and \# \(\gamma_{se}(\overline{H_3}) = 4 \). Suppose \(n = 4 \). \(\overline{H_4} \) is given in figure 2. \(\{v_1, v_2\} \) and \(\{u_3, u_4\} \) are strong efficient dominating sets of \(\overline{H_4} \). Therefore \(\gamma_{se}(\overline{H_4}) = 2 \) and \# \(\gamma_{se}(\overline{H_4}) = 2 \).

Theorem 3.11: The graph \(P_{m[v_i]} \) where \(v_i \) is an end vertex of the path \(P_m \) and \(m \geq 2 \) is strong efficient with

\[
\gamma_{se}(P_m) + \gamma_{se}[P_{m[v_i]}] = \begin{cases}
3 \text{ when } m = 2 \\
2 \text{ when } m = 3 \\
n+2 \text{ when } m = 3n, n \geq 2, n \in \mathbb{N} \\
n+3 \text{ when } m = 3n+1, n \in \mathbb{N} \\
n+4 \text{ when } m = 3n+2, n \in \mathbb{N}
\end{cases}
\]

\[
\#\gamma_{se}(P_m) + \#\gamma_{se}[P_{m[v_i]}] = \begin{cases}
3 \text{ when } m = 2 \\
2 \text{ when } m = 3n \text{ and } m = 3n + 2, n \in \mathbb{N} \\
3 \text{ when } m = 3n + 1, n \in \mathbb{N}
\end{cases}
\]

Proof: Let \(v_1, v_2, v_3, ..., v_m \) be the vertices of the path \(P_m \). Let \(i = 1 \). Let \(P_m[v_i] \) be the graph obtained by switching the end vertex \(v_i \) of the path \(P_m \).
Case (i): Suppose $m = 2$. Then $P_{2[v_1]}$ is $2K_1$ which is strong efficient with a unique strong efficient dominating set $\{v_1, v_2\}$. $\gamma_{se}(P_2) = 2$ and $\gamma_{se}[P_{2[v_1]}] = 3$ and $\#\gamma_{se}(P_2) + \#\gamma_{se}[P_{2[v_1]}] = 3$.

Case (ii): Suppose $m = 3$. Then $P_{3[v_1]}$ is P_3 which is strong efficient with a unique strong efficient dominating set $\{v_3\}$. In this case, $\gamma_{se}[P_{3[v_1]}] = 1$ and $\#\gamma_{se}[P_{3[v_1]}] = 1$. $\gamma_{se}(P_3) + \gamma_{se}[P_{3[v_1]}] = 2$.

Case (iii): Suppose $m \geq 4$. In $P_{m[v_1]}$, v_1 is adjacent with all the vertices other than v_2. Deg $(v_1) = m - 2 = \Delta(P_{m[v_1]}), \deg(v_2) = 1, \deg(v_i) = 3; 3 \leq i \leq m - 1$ and $\deg(v_m) = 2$. Now v_1 strongly dominates all the vertices of P_m other than v_2. Therefore $\{v_1, v_3\}$ is the unique strong efficient dominating set of $P_{m[v_1]}$. Therefore $\gamma_{se}[P_{m[v_1]}] = 2$ and $\#\gamma_{se}[P_{m[v_1]}] = 1$. Proof is similar if $i = m$. Hence the result.

Theorem 3.12: The graph $P_{m[v_1, v_m]}$ where v_1 and v_m are the end vertices of the path P_m is strong efficient if and only if $m \neq 4$. Moreover

$$\gamma_{se}(P_m) + \gamma_{se}[P_{m[v_1, v_m]}] = \begin{cases} \ 3 & \text{when } m = 2 \text{ or } 2 \\ 4 & \text{when } m = 5 \text{ or } 6 \\ n+2 & \text{when } m = 3n \text{ and } n > 2 \\ n+3 & \text{when } m = 3n+1, n > 1 \\ n+4 & \text{when } m = 3n+2 \text{ and } n > 1 \end{cases}$$

$$\#\gamma_{se}(P_m) + \#\gamma_{se}[P_{m[v_1, v_m]}] = \begin{cases} \ 3 & \text{when } m = 2 \text{ or } 3 \text{ or } m = 3n \text{ or } m = 3n+2, n > 1 \\ 2 & \text{when } m = 5 \\ 4 & \text{when } m = 3n+1, n > 1 \\ 6 & \text{when } m = 6 \end{cases}$$

Proof: Let v_1, v_2, v_3, ..., v_m be the vertices of the path P_m.

Case (i): Suppose $m = 2$. The graph $P_{2[v_1, v_m]}$ is $2K_1$ which has the unique strong efficient dominating set $\{v_1, v_2\}$. $\gamma_{se}(P_2) + \gamma_{se}[P_{2[v_1, v_m]}] = 3$ and $\#\gamma_{se}(P_2) + \#\gamma_{se}[P_{2[v_1, v_m]}] = 3$.

Case (ii): Suppose $m = 3$. The graph $P_{3[v_1, v_m]}$ is $K_2 \cup K_1$ which is obviously strong efficient with $\gamma_{se}[P_{3[v_1, v_m]}] = 2$ and $\#\gamma_{se}[P_{3[v_1, v_m]}] = 2$.

Case (iii): Suppose $m = 5$. In $P_{5[v_1, v_m]}$, v_3 is adjacent with all the vertices. Deg $(v_3) = \Delta(P_{5[v_1, v_m]})$. Therefore v_3 strongly dominates all the vertices and $\{v_3\}$ is the unique strong efficient dominating set. Hence $\gamma_{se}[P_{5[v_1, v_m]}] = 1$ and $\#\gamma_{se}[P_{5[v_1, v_m]}] = 1$.

Case (iv): Suppose $m = 6$. In the graph $P_{6[v_1, v_m]}$, v_1 and v_4 are adjacent with all the vertices other than v_2. v_2, v_3 and v_6 are adjacent with all the vertices other than v_2. Deg $(v_1) = \deg(v_1) = \deg(v_3) = \deg(v_4) = \deg(v_6) = 4 = \Delta(P_{6[v_1, v_m]}), \deg(v_2) = \deg(v_5) = 2 = \delta(P_{6[v_1, v_m]}), v_2$ and v_5 are non adjacent. Therefore $\{v_4, v_6\}, \{v_3, v_5\}, \{v_1, v_2\}$ and $\{v_3, v_5\}$ are strong efficient dominating sets of $P_{6[v_1, v_m]}$. Therefore $\gamma_{se}[P_{6[v_1, v_m]}] = 2$ and $\#\gamma_{se}[P_{6[v_1, v_m]}] = 4$.

Case (v): Suppose $m > 6$. In the graph $P_{m[v_1, v_m]}$, v_1 is adjacent with all the vertices other than v_2. Similarly v_n is adjacent with all the vertices other than v_{n-1}. Deg $(v_1) = \deg(v_1) = n - 2 = \Delta(P_{m[v_1, v_m]}), \deg(v_2) = \deg(v_{n-1}) = 2$ and $\deg(v_i) = n - 3; 3 \leq i \leq n - 2$.
\(v_1\) strongly dominates all the vertices other than \(v_2\). Therefore \(\{v_1, v_2\}\) is a strong efficient dominating set of \(P_m[v_1, v_m]\) where \(m > 6\). Similarly \(\{v_{m-1}, v_m\}\) is also a strong efficient dominating set of \(P_m[v_1, v_m]\). So \(y_{se}(P_m[v_1, v_m]) = 2\) and \(\#y_{se}(P_m[v_1, v_m]) = 2\). Hence the result.

Conversely suppose \(m = 4\). Then \(P_4[v_1, v_2]\) is the cycle \(C_4\) which is not strong efficient.

Theorem 3.13: The graph \(P_m[v_1, v_m]\) is strong efficient if and only if \(m \leq 6\). Also

\[
\begin{align*}
\gamma_{se}(P_m) + \gamma_{se}(P_m[v_1, v_m]) &= 3 \text{ when } m \leq 4 \\
\gamma_{se}(P_m) + \gamma_{se}(P_m[v_1, v_m]) &= 4 \text{ when } m = 5, 6 \\
\#y_{se}(P_m) + \#y_{se}(P_m[v_1, v_m]) &= 3 \text{ when } m \leq 4 \\
\#y_{se}(P_m) + \#y_{se}(P_m[v_1, v_m]) &= 2 \text{ when } m = 5, 6
\end{align*}
\]

Proof: Let \(P_m[v_1, v_m]\) be strong efficient. Let \(v_1, v_2, v_3, \ldots, v_m\) be the vertices of the path \(P_m\). Suppose \(m \geq 7\). Now \(v_2\) is adjacent with all the vertices other than \(v_2\) and \(v_3\) is adjacent with the vertices other than \(v_1\) and \(v_2\). \(D(v_1) = m - 2\) and \(D(v_2) = m - 3\), \(D(v_3) = 2\), \(D(v_4) = 3\), \(D(v_5) = 4\); \(4 \leq i \leq n - 1\). Let \(S\) be a strong efficient dominating set of \(P_m[v_1, v_2]\) where \(m \geq 7\). \(v_1\) strongly dominates all the vertices other than \(v_2\). So \(v_1 \in S\). \(v_1\) and \(v_2\) are non adjacent. This is a contradiction since \(|N_S(v_j) \cap S| = 2 > 1\) for \(4 \leq j \leq n - 1\). Hence \(P_m[v_1, v_m]\) is not strong efficient when \(m \geq 7\).

Further, suppose \(m = 2\). \(P_2[v_1, v_2]\) is 2-\(K_1\) is strong efficient with a unique strong efficient dominating set \(\{v_1, v_2\}\). Suppose \(m = 3\). \(P_3[v_1, v_3]\) is \(K_2 \cup K_1\) which is strong efficient with strong efficient dominating sets \(\{v_1, v_2\}\) and \(\{v_3, v_2\}\). Suppose \(m = 4\) or \(5\). In both \(P_4[v_1, v_2]\) and \(P_5[v_1, v_2]\), the vertex \(v_4\) is adjacent with all the vertices. Therefore \(\{v_4\}\) is the unique strong efficient dominating set. Suppose \(m = 6\). In \(P_6[v_1, v_2]\), \(D(v_1) = D(v_4) = D(v_5) = 4\), \(D(v_6) = 3\) and \(D(v_3) = 2\). \(v_6\) is adjacent with all the vertices other than \(v_3\). Hence \(\{v_5, v_2\}\) is the unique strong efficient dominating set. Hence the result.

Theorem 3.14: The graph \(P_m[v_1, v_m]\), \(m \geq 3\) is strong efficient. Also

\[
\begin{align*}
\gamma_{se}(P_m) + \gamma_{se}(P_m[v_1, v_m]) &= \begin{cases}
n + 2 & \text{when } m = 3n, n \in N \\
n + 3 & \text{when } m = 3n + 1, n \in N \\
n + 4 & \text{when } m = 3n + 2, n \in N
\end{cases} \\
\#y_{se}(P_m) + \#y_{se}(P_m[v_1, v_m]) &= \begin{cases}
3 & \text{when } m = 3 \text{ or } 6 \text{ or } m = 3n + 1, n \in N \\
2 & \text{when } m = 3n, n \geq 3 \text{ or } m = 3n + 2, n \in N
\end{cases}
\end{align*}
\]

Proof: Case (i): Suppose \(m = 3\). Then \(P_3[v_1, v_3]\) is \(K_2 \cup K_1\) which is strong efficient with strong efficient dominating sets \(\{v_1, v_2\}\) and \(\{v_2, v_3\}\).

Case (ii): Let \(m = 6\). Then in \(P_6[v_1, v_2]\), \(v_1\) and \(v_2\) are the maximum degree vertices which are mutually adjacent and adjacent with all the vertices other than \(v_2\). Hence \(\{v_1, v_2\}\) and \(\{v_2, v_5\}\) are strong efficient dominating sets of \(P_6[v_1, v_2]\).

Case (iii): Let \(m \neq 3\) or \(6\). Then in \(P_m[v_1, v_2]\), \(v_1\) is adjacent with all the vertices other than \(v_2\) and \(D(v_1) = n - 2 = \Delta(P_m[v_1, v_2])\). \(v_2\) is isolated. Therefore \(\{v_1, v_2\}\) is the unique strong efficient dominating set of \(P_m[v_1, v_2]\). Hence the result.
Theorem 3.15: The graph $C_{3n[v_1]}$ is strong efficient with $\gamma_{se}(C_{3n}) + \gamma_{se}[C_{3n[v_1]}] = n + 3$
and $\#\gamma_{se}(C_{3n}) + \#\gamma_{se}[C_{3n[v_1]}] = \begin{cases} 5 & \text{for } n = 2 \\ 4 & \text{for } n \neq 2 \end{cases}$

Proof: Let $v_1, v_2, v_3, \ldots, v_{3n}$ be the vertices of the cycle C_{3n}.

Case (i): Suppose $n = 1$. $C_{3[v_1]}$ is $K_1 \cup K_2$ which is strong efficient with the strong efficient dominating sets $\{v_1, v_2\}$ and $\{v_1, v_3\}$.

Case (ii): Suppose $n = 2$. In $C_{6[v_1]}$, v_1 strongly dominates all the vertices of C_6 except v_2 and v_3. Clearly $\{v_1, v_2, v_6\}$ and $\{v_4, v_2, v_6\}$ are strong efficient dominating sets.

Case (iii): Suppose $n \geq 3$. In $C_{3n[v_1]}$, v_1 is adjacent with all the vertices other than v_2 and v_{3n}. $\text{Deg}(v_1) = 3n - 3 = \Delta(C_{3n[v_1]}), \text{Deg}(v_i) = 3, 3 \leq i \leq 3n - 1, \text{Deg}(v_2) = \text{Deg}(v_{3n}) = 1$. Hence $\{v_1, v_2, v_{3n}\}$ is the unique strong efficient dominating set of $C_{3n[v_1]}$. Hence the result.

Proposition 3.16: The graph $K_{1,n[v_1]}$ where v is the central vertex of the star $K_{1,n}$ is strong efficient. Also $\gamma_{se}(K_{1,n}) + \gamma_{se}[K_{1,n[v]}] = n + 2$ and $\#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[K_{1,n[v]}] = 2, n \geq 1$

Proof: Let v, v_1, v_2, \ldots, v_n be the vertices of the star $K_{1,n}$. $K_{1,n[v_1]}$ is the graph $(n+1)K_1$. So $\gamma_{se}[K_{1,n[v]}] = n + 1$ and $\#\gamma_{se}[K_{1,n[v]}] = 1$. Therefore $\gamma_{se}(K_{1,n}) + \gamma_{se}[K_{1,n[v]}] = n + 2$ and $\#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[K_{1,n[v]}] = 2, n \geq 1$

Proposition 3.17: The graph $K_{1,n[v_1]}$ where v is any pendant vertex of the star $K_{1,n}$ is strong efficient if and only if $n = 1, 2$

Proof: Let v, v_1, v_2, \ldots, v_n be the vertices of the star $K_{1,n}$. Let $K_{1,n[v_1]}$ is the graph obtained by switching the pendant vertex v_1 of the star $K_{1,n}$. When $n = 1$, the graph $K_{1,1[v_1]}$ is $2K_1$ which has the unique strong efficient dominating set $\{v, v_1\}$. When $n = 2$, the graph $K_{1,2[v_1]}$ is the path P_3 which has the unique strong efficient dominating set $\{v_2\}$. Conversely suppose $n \geq 3$. Let S be a strong efficient dominating set of $K_{1,n[v_1]}$.

Case (i): Suppose $n = 3$. Then the graph $K_{1,3[v_1]}$ is the cycle C_4 which is necessarily strong efficient.

Case (ii): Suppose $n \geq 4$. $K_{1,n[v_1]}$ is the graph in which v and v_1 are adjacent with v_2, v_3, \ldots, v_n. $\text{Deg}(v) = \text{Deg}(v_1) = n - 1, \text{Deg}(v_i) = 2$ for $2 \leq i \leq n$. Let $v_i \in S, v$ and v_1 are non adjacent so that $\{v_1, v\} \subseteq S$ for every strong efficient dominating set S. $|N_s[v] \cap S| = 2 > 1$, a contradiction. From both cases (i) and (ii), $n = 1, 2$.

Theorem 3.18: The gear graph G_n is strong efficient for all $n \geq 3$.

Proof: Let $v, v_1, v_2, \ldots, v_{2n}$ be the vertices of the gear graph G_n. The vertex v is adjacent with $v_{2i-1}; 1 \leq i \leq n$. $\text{Deg}(v) = n = \Delta(G_n), \text{Deg}(v_{2i-1}) = 3, 1 \leq i \leq n, \text{Deg}(v_{2i}) = 2, 1 \leq i \leq n$. v strongly dominates all the vertices $v_{2i-1}; 1 \leq i \leq n$. The vertices v_{2i} and v_{2i-1} are mutually non adjacent with each other. Therefore $\{v, v_2, v_4, \ldots, v_{2n}\}$ is the unique strong efficient dominating set of G_n. Thus $\gamma_{se}(G_n) = n + 1$ and $\#\gamma_{se}(G_n) = 1$.

Theorem 3.19: The graph $G_{n[v_{2i-1}]}$, $1 \leq i \leq n$ is strong efficient if and only if $n = 4$.

Proof: Let v, v_1, v_2, \ldots, v_{2n} be the vertices of the graph G_n. Suppose $n = 4$. Let $i = 1$. Let v, v_1, v_2, \ldots, v_8 be the vertices of $G_{4[v_{2i-1}]}$. v_1 is adjacent with all the vertices other than v, v_2 and v_8. $\text{Deg}(v_1) = 5 = \Delta(G_{4[v_{2i-1}]})$. Therefore v_1 strongly dominates all the vertices other than v, v_2 and v_8 and these vertices are mutually non adjacent with each other. $\text{Deg}(v_2) = \text{Deg}(v_8) = 1$. $\text{Deg}(v) = 3$. v is adjacent with v_4, v_5 and v_6. $\text{Deg}(v_4) = \text{Deg}(v_5) = \text{Deg}(v_7) = \text{Deg}(v_8) = 4$. v_2 is adjacent with v_3 and v_8 is adjacent with v_7. Hence $\{v, v_1, v_2, v_8\}$ is the unique strong efficient dominating set of $G_{4[v_{2i-1}]}$. Proof is similar if $2 \leq i \leq 4$. Thus $G_{4[v_{2i-1}]}$ is strong efficient. Hence $\gamma_{se}[G_{4[v_{1}]}] = 4$ and $\#\gamma_{se}[G_{4[v_{1}]}] = 1$. Conversely, let $G_{n[v_{2i-1}]}$, $1 \leq i \leq n$ be strong efficient. Suppose $n \neq 4$.

Case (i): Let $n = 3$. In $G_{3[v_{2i-1}]}$, $\text{deg}(v_3) = \text{deg}(v_5) = 4 = \Delta(G_{3[v_{2i-1}]}$) and $d(v_3, v_5) = 2$. Hence by the result 1.12, $G_{3[v_{2i-1}]}$ is not strong efficient.

Case (ii): Suppose $n \geq 5$. Let $i = 1$. Let S be a strong efficient dominating set of $G_{n[v_{2i-1}]}$. In $G_{n[v_{2i-1}]}$, the vertex v_1 is adjacent with all the vertices other than v_2, v_{2n} and v. $\text{Deg}(v_1) = 2n - 3 = \Delta(G_{n[v_{2i-1}]}). \text{deg}(v_{2i-1}) = 4; 2 \leq i \leq n, \text{deg}(v_{2i}) = 3; 2 \leq i \leq n - 1, \text{deg}(v) = n - 1$. The vertex v_1 is the unique maximum degree vertex and it strongly dominates all the vertices other than v_2, v_{2n} and v. Therefore $v_1 \in S$. The vertices v_2, v_{2n} and v are mutually non adjacent with each other. Hence they belong to S. But $|V[S]| = 3 > 1$, for every $i \neq j$, a contradiction. Hence $G_{n[v_{2i-1}]}$ is not strong efficient. Proof is similar for other values of i.

Theorem 3.20: The graph $G_{n[v_{2i-1}]}$, $1 \leq i \leq n$, is strong efficient. Further $\gamma_{se}(G_n) + \gamma_{se}[G_{n[v_{2i-1}]}] = n + 4$ and $\#\gamma_{se}(G_n) + \#\gamma_{se}[G_{n[v_{2i-1}]}] = \begin{cases} 3 \text{when } n = 3 \\ 2 \text{ when } n \geq 4 \end{cases}$

Proof: Let $v, v_1, v_2, \ldots, v_{2n}$ be the vertices of the graph G_n. Let $i = 1$.

Case (i): Suppose $n = 3$. In $G_{3[v_{2i-1}]}$, v_2 and v_5 are mutually adjacent and are adjacent with all the vertices other than v_1 and v_3. $\text{Deg}(v_2) = \text{deg}(v_5) = 4 = \Delta(G_{3[v_{2i-1}]}). \text{deg}(v_1) = \text{deg}(v_3) = 2$. v_2 and v_3 strongly dominates all the vertices other than v_1 and v_3. Therefore $\{v_2, v_1, v_3\}$ and $\{v_2, v_1, v_3\}$ are strong efficient dominating sets of $G_{3[v_{2i-1}]}$. Hence $\gamma_{se}[G_{3[v_{2i-1}]}] = 3$ and $\#\gamma_{se}[G_{3[v_{2i-1}]}] = 2$.

Case (ii): Suppose $n \geq 4$. In $G_{n[v_{2i-1}]}$, v_2 is adjacent with all the vertices other than v_1 and v_3. $\text{Deg}(v_2) = 2(n - 1) = \Delta(G_{n[v_{2i-1}]}). v_2$ is the unique maximum degree vertex. $\text{deg}(v_1) = \text{deg}(v_3) = 2 = \Delta(G_{n[v_{2i-1}]}). v_2$ strongly dominates all the vertices other than v_1 and v_3 which are non adjacent. Hence $\{v_2, v_1, v_3\}$ is the unique strong efficient dominating set of $G_{n[v_{2i-1}]}$. Proof is similar for other values of i. Hence the result.

Theorem 3.21: The graph $G_{n[v]}$, where v is the central vertex in a gear graph G_n, is strong efficient. Further $\gamma_{se}(G_n) + \gamma_{se}[G_{n[v]}] = 2n + 2$ and $\#\gamma_{se}(G_n) + \#\gamma_{se}[G_{n[v]}] = 2$.
Proof: Let \(v, v_1, v_2, \ldots, v_{2n} \) be the vertices of the graph \(G_n \). In \(G_n[v] \), \(v \) is adjacent with all the vertices \(v_{2i}; 1 \leq i \leq n \) and non adjacent with all the vertices \(v_{2i-1}; 1 \leq i \leq n \). Therefore \(G_n[v] \) is strong efficient. Hence the result.

Theorem 3.22: The graph obtained by switching any one of the central vertices of the bistar \(D_{r,s} \), \(r,s \geq 2 \) is not strong efficient.

Proof: Let \(u,v,v_1, v_2, v_3, \ldots, v_{r+s} \) be the vertices of the bistar \(D_{r,s} \), \(r,s \geq 2 \). \(v_1, v_2, \ldots, v_s \) are the pendant vertices adjacent with \(u \) and \(v_{r+1}, \ldots, v_{r+s} \) are the pendant vertices adjacent with \(v \). In \(D_{r,s[u]} \), both \(u \) and \(v \) are adjacent with the vertices \(v_{r+1}, \ldots, v_{r+s} \). But \(u \) and \(v \) are non adjacent. \(\text{Deg}(u) = \text{Deg}(v) = \Delta(D_{r,s[u]}) \) and \(d(u,v) = 2 \). Therefore by result 2.12, \(D_{r,s[u]} \) is not strong efficient.

Corollary 3.23: \(D_{1,s[u]} \), \(s \geq 2 \) where \(v \) is defined in theorem 3.22 is strong efficient.

Proof: Let \(v_1 \) be the pendant vertex adjacent with the central vertex \(u \) and \(v_2, v_3, \ldots, v_{s+1} \) be the pendant vertices adjacent with \(v \). \(D_{1,s[u]} \) is the graph \(P_3 \cup sK_1 \) which is strong efficient. \(\{v_1, v_2, \ldots, v_s, v_{s+1}\} \) is the unique strong efficient dominating set of \(D_{1,s[u]} \).

Corollary 3.24: \(D_{1,s[u]} \), \(s \geq 2 \) where \(u \) is defined in theorem 3.22 is not strong efficient.

Proof: In \(D_{1,s[u]} \), \(u \) and \(v \) are adjacent with the vertices \(v_2, v_3, \ldots, v_s, v_{s+1} \). Also \(u \) and \(v \) are non adjacent. \(\text{Deg}(u) = \text{Deg}(v) = s = \Delta(D_{1,s[u]}) \). Since \(d(u,v) = 2 \), by result 2.12, the graph \(D_{1,s[u]} \) is not strong efficient.

Theorem 3.25: Let \(D_{r,s[u,v]} \) be the graph obtained by switching both the central vertices \(u \) and \(v \) of the bistar \(D_{r,s} \). Then

\[
\gamma_{se}(D_{r,s}) + \gamma_{se}(D_{r,s[u,v]}) = r + 3 \text{ when } r \leq s
\]

\[
\#\gamma_{se}(D_{r,s}) + \#\gamma_{se}(D_{r,s[u,v]}) = 2 \text{ when } r < s
\]

\[
= 3 \text{ when } r = s
\]

Proof: Let \(u, v, v_1, v_2, \ldots, v_r, v_{r+1}, \ldots, v_{r+s} \) be the vertices of the bistar \(D_{r,s} \). \(v_1, v_2, \ldots, v_r \) are the pendant vertices adjacent with \(u \) and \(v_{r+1}, \ldots, v_{r+s} \) are the pendant vertices adjacent with \(v \). The graph \(D_{r,s[u,v]} \) is \(K_{1,r} \cup K_{1,s} \) which is strong efficient. \(\{u,v\} \) is the unique strong efficient dominating set of \(D_{r,s[u,v]} \). Hence the result.

Theorem 3.26: The graph \(D_{r,s[v_i]} \) where \(1 \leq i \leq r + s \) obtained by switching a pendant vertex of the bistar \(D_{r,s} \) is strong efficient if and only if \(r = 1 \) and \(i = 1 \) or \(s = 1 \) and \(i = r + 1 \) or both \(r, s = 1 \).

Proof: Case(i): Let \(r, s \geq 2 \) and \(r < s \). Suppose \(D_{r,s[v_i]} ; 1 \leq i \leq r + s \) be strong efficient. Let \(S \) be a strong efficient dominating set of \(D_{r,s[v_i]} \).

Subcase (a): Suppose \(1 \leq i \leq r \). In \(D_{r,s[v_i]} \), \(v_i \) is adjacent with all the vertices other than \(u \). \(\text{Deg}(v_i) = r + s = \Delta(D_{r,s[v_i]}), \text{Deg}(v) = s + 2, \text{Deg}(u) = r, \text{Deg}(v_j) = 2 \) for \(j \neq i \). \(v_i \) strongly
dominates all the vertices other than \(u \). Hence \(v, u \in S \). \(|N_S[v_k] \cap S| = 2 > 1, k \neq i, 1 \leq k \leq r \). This is a contradiction.

Subcase i(b): Suppose \(r+1 \leq i \leq r+s \). In \(D_{r,s}[v_i] \), \(v_i \) is adjacent with all the vertices other than \(v \). \(\text{Deg}(v_i) = r+s = \Delta(D_{r,s}[v_i]), \text{deg}(v) = s, \text{deg}(u) = r+2 \) and \(\text{deg}(v_j) = 2 \) for \(j \neq i \). \(v_i \) strongly dominates all the vertices other than \(v \). Hence \(v_i, v \in S \). \(|N_S[v_k] \cap S| = 2 > 1, k \neq i, r+1 \leq k \leq r+s \). This is a contradiction.

Case(ii): Suppose \(r, s > 2 \) and \(r = s \). Proof is similar to that of subcase i(a).

Case(iii): Suppose \(r, s = 2 \) and \(1 \leq i \leq 2 \). In \(D_{1,2}[v_i] \), \(v_i \) is adjacent with all the vertices other than \(u \). \(\text{Deg}(v_i) = \text{deg}(v) = 4 = \Delta(D_{1,2}[v_i]), \text{deg}(u) = 2, \text{deg}(v_j) = 2 \) for \(j \neq i \). Also \(d(u, v) = 2 \). Hence by result 1.12, the graph \(D_{1,2}[v_i] \) is not strong efficient. Proof is similar if \(3 \leq i \leq 4 \).

Case(iv): Suppose \(r = 1 \) and \(i \geq 2 \). In \(D_{1,s}[v_i] \), \(v_i \) is adjacent with all the vertices other than \(v \). \(\text{Deg}(v_i) = s+1 = \Delta(D_{1,s}[v_i]), \text{deg}(v) = s, \text{deg}(v_j) = 2 \) for \(j \neq i \). The vertex \(v_i \) strongly dominates all the vertices other than \(v \). Hence \(v_i, v \in S \). \(|N_S[v_k] \cap S| = 2 > 1, k \neq i, 2 \leq k \leq s+1 \). This is a contradiction.

Case(v): Suppose \(s = 1 \) and \(1 \leq i \leq r \). Proof is similar to that of case(iv). Conversely

Case(i): Let \(r = 1 \) and \(i = 1 \). In \(D_{1,s}[v_i] \), the vertex \(v_1 \) is adjacent with all the vertices other than \(u \) and \(v \) is the full degree vertex. \(\{v\} \) is the unique strong efficient dominating set of \(D_{1,s}[v_i] \).

Case(ii): Let \(s = 1 \) and \(r = s+1 \). In \(D_{1,s}[v_{r-1}] \), the vertex \(v_{r-1} \) is adjacent with all the vertices other than \(v \) and \(u \) is the full degree vertex. \(\{u\} \) is the unique strong efficient dominating set of \(D_{1,s}[v_{r-1}] \).

Case(iii): Let \(r = s = 1 \). Proof is similar to that of case(i) and case(ii). Hence from all the above cases, the graph \(D_{r,s}[v_i] \) is strong efficient.

Theorem 3.27: The graph \(H_{n[u_i]} \) where \(u_i \) is the pendant vertex of the \(H \)- graph \(H_n \) is strong efficient if and only if \(n \neq 3 \).

Proof: Let \(u_i, v_j \) where \(1 \leq i \leq n \) be the vertices of the graph \(H_n \). Suppose \(n \geq 4 \). In \(H_{n[u_i]} \), the vertex \(u_1 \) is adjacent with all the vertices other than \(u_2 \). \(u_1 \) strongly dominates all the vertices all the vertices other than \(u_2 \). \(\text{Deg}(u_1) = 2n-2 = \Delta(H_{n[u_i]}), \text{deg}(u_2) = 1 \). Hence \(\{u_1, u_2\} \) is the unique strong efficient dominating set. Similarly \(H_{n[u_n]} \), \(H_{n[v_1]} \) and \(H_{n[v_n]} \) are strong efficient.

Conversely, let \(H_{3[u_i]} \) be strong efficient. Let \(S \) be a strong efficient dominating set. In \(H_{3[u_i]} \), \(u_1 \) is adjacent with all the vertices other than \(u_2 \) and \(v_2 \) is adjacent with all the vertices other than \(u_3 \). \(\text{Deg}(u_1) = \text{deg}(v_2) = 4 = \Delta(H_{3[u_i]} \) and \(u_1, v_2 \) are adjacent. Therefore \(S \) contains either \(u_2 \) or \(v_2 \). \(\text{Deg}(v_1) = \text{deg}(v_3) = \text{deg}(u_2) = \text{deg}(u_3) = 2 = \delta(H_{3[u_i]} \). If \(u_1 \in S \), then \(u_2 \in S \) and \(|N_S[u_3] \cap S| = 2 > 1 \). This is a contradiction. If
\(\nu_2 \in S \), then \(u_3 \in S \) and \(|N_S[u_2] \cap S| = 2 > 1 \). This is also a contradiction. Proof is similar for the graphs \(H_3[u_3] \), \(H_3[\nu_3] \) and \(H_3[p_3] \). Hence the graph \(H_n[u_i] \) where \(\nu_i \) is the pendant vertex of the \(H \)- graph \(H_n \) is strong efficient if and only if \(n \neq 3 \).

Theorem 3.28: (i) \(H_n[u_{n+1 \over 2}] \), \(n \geq 3 \) and \(n \) is odd is strong efficient if and only if \(n \neq 3 \).

(ii) \(H_n[u_{n+1 \over 2}] \), \(n \geq 4 \) and \(n \) is even is strong efficient if and only if \(n \neq 4 \).

Proof: Let \(u_i, \nu_i \) where \(1 \leq i \leq n \) be the vertices of the graph \(H_n \).

Case (i): Suppose \(n \neq 3 \) and \(n \) be odd. In \(H_n[u_{n+1 \over 2}] \) is adjacent with all the vertices other than \(u_{n-1 \over 2}, u_{n+3 \over 2} \) and \(\nu_{n+1 \over 2} \). Deg \(u_{n+1 \over 2} = 2n-4 = \Delta (H_n[u_{n+1 \over 2}]) \), deg \(u_{n-1 \over 2} = 1 = \delta (H_n[u_{n+1 \over 2}]) \) and deg \(\nu_{n+1 \over 2} = 2 = \deg (\nu_1) = \deg (\nu_n) = \deg (u_1) = \deg (u_n) \). deg \(u_k \) = deg \(\nu_k \) = 3 for \(k \neq {n+1 \over 2}, 1 \) and \(n \). Also \(u_{n+1 \over 2}, u_{n-1 \over 2}, u_{n+3 \over 2} \) and \(\nu_{n+1 \over 2} \) are mutually non adjacent. Therefore \(\{u_{n+1 \over 2}, u_{n-1 \over 2}, u_{n+3 \over 2}, \nu_{n+1 \over 2}\} \) is the unique strong efficient dominating set of \(H_n[u_{n+1 \over 2}] \). Hence \(H_n[u_{n+1 \over 2}] \) is strong efficient.

Conversely suppose \(n = 3 \). \(H_3[u_a] \) is the graph \(C_4 \cup 2K_1 \). Since \(C_4 \) is not strong efficient, \(H_3[u_a] \) is not strong efficient.

Case (ii): Suppose \(n \neq 4 \) and \(n \) be even. In \(H_n[u_{n+1 \over 2}] \), the vertex \(u_{n+1 \over 2} \) is adjacent with all the vertices other than \(u_{n-1 \over 2}, u_{n+3 \over 2} \) and \(\nu_{n+1 \over 2} \). Also Deg \(u_{n+1 \over 2} = 2n-4 = \Delta (H_n[u_{n+1 \over 2}]) \), deg \(u_{n-1 \over 2} = 1 = \delta (H_n[u_{n+1 \over 2}]) \) and deg \(\nu_{n+1 \over 2} = 2 = \deg (\nu_1) = \deg (\nu_n) = \deg (u_1) = \deg (u_n) \). All the other vertices are of degree 3. The vertex \(u_{n+1 \over 2} \) strongly dominates all the vertices other than \(u_{n-1 \over 2}, u_{n+3 \over 2} \) and \(\nu_{n+1 \over 2} \). Therefore \(\{u_{n+1 \over 2}, u_{n-1 \over 2}, u_{n+3 \over 2}, \nu_{n+1 \over 2}\} \) is the unique strong efficient dominating set of \(H_n[u_{n+1 \over 2}] \). Therefore \(H_n[u_{n+1 \over 2}] \) is strong efficient.

Conversely let \(n = 4 \). In \(H_4[u_{n+1 \over 2}] \), deg \(u_2 \) = 4 = \(\Delta (H_4[u_{n+1 \over 2}]) \). The vertex \(u_2 \) strongly dominates all the vertices other than \(u_1, u_3, \) and \(\nu_3 \). The vertex \(u_1 \) is an isolate. Deg \(u_1 = 1 = \delta (u_1) \), deg \(\nu_3 = 2 = \deg (\nu_1) = \deg (\nu_2) = 3 \). Suppose \(H_4[u_{n+1 \over 2}] \) is strong efficient. Let \(S \) be a strong efficient dominating set of \(H_4[u_{n+1 \over 2}] \). Hence \(u_2 \in S, u_1, \nu_3 \). \(u_3 \) and \(u_2 \) are mutually
non adjacent. Hence they belong to S. $|N_5[v_3] \cap S| = |\{u_2, v_3\}| = 2 > 1$. This is a contradiction. Hence the graph $H_{4[u_2]}$ is not strong efficient. Hence the theorem.

4. Conclusion

In this paper, the authors studied some Nordhaus- Gaddum type relations on strong efficient domination number of a graph and its derived graph. They introduced the concept of number of strong efficient dominating sets and studied the relation between the number of strong efficient dominating sets of a graph and its derived graph. Similar studies can be made on this type for various derived graphs.

Acknowledgements

The authors are very much thankful to the referees for the valuable comments and suggestions for the improvement of the paper.

References