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Abstract 

 

RNA-protein interactions play critical roles in diverse cellular processes including post-transcriptional 

regulation of gene expression and infection by pathogens. As such, characterization of RNA-protein interactions 

will lead to a better understanding of these mechanisms and associated diseases.  Experimental methods to 

determine RNA-protein interactions remain tedious and expensive. An alternative strategy is to use 

computational methods to predict RNA-protein interactions. Here, we develop a random forest model that uses 

sequence information of an RNA-protein pair to determine whether they will interact or not. We evaluate our 

model with three diverse datasets including one dataset that has never been used for this purpose before. For the 

two other datasets, our model gives a better performance than existing methods. We also show that including 

features that represent the physico-chemical properties of the protein or RNA secondary structure. Altogether, 

these results show that RNA-protein interactions can be predicted accurately with computational models.  

 

Keywords: RNA-protein interaction, machine-learning, random forests, physico-chemical properties, RNA 

secondary structure 

 

1. Introduction 

 

RNA-protein interactions have fundamental roles in 

several biological mechanisms such as RNA 

processing [1], gene expression control [2], protein 

synthesis [3,4], viral replication and pathogen 

resistance [5]. Aberrations in RNA-protein 

interactions have been linked to several diseases 

including neurodegenerative disorders and cancer [6]. 

As such, understanding the principles that govern 

RNA-protein interactions is critical.  

 

RNA-protein recognition is more complex than DNA-

protein recognition; because, in contrast to the B-form 

helical structure of the DNA, RNA molecules fold into 

an A-form helical structure whose major groove is less 

accessible for proteins. Therefore, base-specific 

interactions are mostly seen with the single-stranded 

regions of the RNA. Moreover, unlike DNA, RNA 

molecules can fold into complex and diverse 

structures, and this makes the RNA-protein 

recognition problem more challenging.  

 

The most reliable approach to characterize RNA-

protein interactions is to solve the three-dimensional 

structure using X-ray crystallography or NMR 

spectroscopy. However, these methods are time-

consuming and expensive. Recently, a number of high 

throughput approaches have been developed to 

identify RNA-protein interactions in vivo and in vitro. 

RIP-Chip is an in vivo method that first 

immunoprecipitates the RNA-protein complexes, and 

then identifies them using the microarray technique 

[7]. CLIP and PAR-CLIP are in vivo methods based 

on UV crosslinking and immunoprecipitation [8, 9]. 

Due to its complex protocol, CLIP method has been 

applied to a small number of RBPs so far. On the other 

hand, RNAcompete is an in vitro array-based method 

that has been applied to a large number of RBPs [10]. 

 

Computational methods provide a less costly and more 

robust alternative to the experimental characterization 

of RNA-protein interactions. Pancaldi et al predicted 

RNA-protein interactions in budding yeast with a 

machine learning model that uses more than 100 gene 

and protein features including features related to RNA 

structure, translational features, expression levels and 

protein properties [11]. Wang et al proposed a naïve 

Bayes classifier to predict RNA-protein interactions 

[12]. They encode the protein sequences with a 

reduced alphabet that groups the amino acids into four 

classes. The feature set that they use includes the 

frequency of all 3-mers in protein sequences (64 

features), the frequency of all 3-mers in RNA-

sequences (64 features), and all possible combinations 

of 3-mers in proteins and RNAs (64*64 features). 

Since this results in a large number of features, they 

apply feature selection methods to reduce the 

parameter space. Suresh et al use both sequence and 

structure-based features in a support vector machine 

model to predict RNA-protein interactions [13]. 

Namely, they use the protein block representation 

derived from the crystal structure of the proteins. Also, 

they include the structural context of each RNA 

nucleotide in their features. Their results indicate that 
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structure-based features improve the prediction 

accuracy over sequence-only models.  

 

Here, we propose a new machine-learning method that 

uses simple sequence-based features in a random-

forest model to predict RNA-protein interactions. We 

also assess the predictive accuracy of additional 

features that represent the physico-chemical properties 

of the protein and RNA secondary structure. Unlike 

many of the previous models, we tune the parameters 

of the random forest correctly using nested cross 

validation. We evaluate our model on three datasets 

from diverse organisms and show that it can predict 

RNA-protein interactions accurately. One of these 

datasets, RNAcompete is used in RNA-protein 

interaction prediction for the first time.  For the other 

two datasets, our model gives a better a better 

performance than existing models that use a much 

larger feature set.  

 

2. Material and Methods 

 

2.1 Data Collection 

  

We treat the problem of RNA-protein interaction 

prediction as a binary classification task. Namely 

given two strings that correspond to the sequences of 

the protein and the RNA, we have to determine 

whether the pair will interact or not. We used three 

diverse datasets to evaluate our model: (i) 

RNAcompete dataset (ii) NDB-PRIDB dataset (iii) 

Pancaldi dataset.  

 

RNAcompete is a high-throughput microarray based 

binding assay to detect the binding preferences of 

RNA-binding proteins in vitro. Namely, the protein of 

interest is incubated with a large pool of short RNA 

sequences and the bound fraction is identified with a 

microarray containing probes that are complementary 

to the RNA sequences in the pool. In the end, the 

intensities of the probes correspond to an estimate of 

the binding affinity of the protein to each of the RNA 

sequences in the pool. The custom designed RNA pool 

contains more than 240,000 short RNAs (30-41 

nucleotides) where each 9-mer (i.e., subsequence of 

length 9) appears at least 16 times and each 7-mer 

appears at least 155 times. To summarize the binding 

preferences of an RBP, a score is calculated for each 

7-mer. First, all probes that have negative normalized 

values are assigned zero. Then, the score for a 7-mer is 

calculated by taking the trimmed mean (ignoring the 

top and bottom 5% quartile) of the intensities of the 

probes that contain that 7-mer.   

 

We downloaded the 7-mer scores of 66 human RBPs 

from the supplementary website 

(http://hugheslab.ccbr.utoronto.ca/supplementary-

data/RNAcompete_eukarya/). We identified the top 

and bottom scoring 10 7-mers for each RBP. Then, we 

formed the dataset by pairing the sequence of the 

protein with each of the 7-mers and labeling 1 or 0 

based on whether it is a high scoring or low scoring 7-

mer, respectively. In total, this dataset includes 1320 

RNA-protein interactions. When preparing the training 

and test sets, we ensured that the top and bottom 7-

mers of the same protein are considered completely in 

either the training set or the test set to avoid any bias. 

In other words, we split the training and test sets based 

on protein IDs.  

 

We downloaded the NDB-PRIDB dataset from the 

supplementary data of Suresh et al paper. This dataset 

is compiled from RNA-protein complexes available in 

Nucleic Acid Database (NDB) [14] and the protein-

RNA interface database (PRIDB) [15]. A distance 

cutoff of 3.4 Angstrom is used to define the positive 

and negative pairs. Namely, if any of the atoms in the 

protein is within distance <= 3.4 Angstrom to any of 

the atoms in the RNA molecule this pair is classified 

as interacting. Otherwise, the pair is labeled as non-

interacting. Final dataset includes 1807 positive pairs 

(including 1807 protein and 1078 RNA chains) and 

1436 negative pairs (including 1436 protein and 493 

RNA chains).    

 

Lastly, we also downloaded the dataset prepared by 

Pancaldi et al. The positive instances of this dataset 

include the 5166 mRNA-protein interactions detected 

by RIP-chip experiments performed in yeast [16] 

These interactions are shuffled to form the negative 

set. We should note that the average length of the 

RNAs (i.e., 1334 nts) is much longer compared to the 

previous two datasets. 

 

2.2. Feature Compilation 

 

We compiled features to represent a protein-RNA pair. 

For protein sequences, we counted the number of 

times each 3-mer (amino acid sequence of length 3) 

appears. To reduce the number of features, we 

encoded the protein sequences using a smaller 

alphabet that classifies the amino acids into 7 groups 

according to their dipole moments and the volume of 

their side chain: {A, G, V}, 

{I,L,F,P},{Y,M,T,S},{H,N,Q,W},{R,K},{D,E},{C} 

[17]. Similarly, for RNA sequences, we counted the 

frequency of each 3-mer. As such, the feature vector 

of a protein-RNA pair contains 407 features (343 for 

proteins and 64 for RNA sequences). Hereafter we call 

this feature set “sequence-only feature set”.  

 

We also tried including features that represent the 

physico-chemical properties of the aminoacids 

(downloaded from http://www.bmrb.wisc.edu/).  

These additional features include Chou-Fassman helix 

and sheet propensity values to represent the structure 

of the protein. We also included pKa value for free 

amino acid carboxylate, pKa value for free amino acid 
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amine and pKa value for amino acid side chain as 

these are important in determining the pH-dependent 

characteristics of the protein. Next, there are features 

that represent the number of carbon, hydrogen, 

nitrogen, oxygen and sulfur atoms in each amino acid, 

and hydrophobicity. Finally, we included features 

related to the accessible surface area of the protein. 

The number of features for each protein-RNA pair is 

421 (14 features for physico-chemical properties and 

407 for sequence-only features). Hereafter, we call 

this feature set “physico-chemical feature set”.  

 

Lastly, we also assessed the effect of RNA secondary 

structure by including features that take into account 

the structure context of RNA nucleotides. Namely, we 

predicted the secondary structure of RNA sequences 

using an existing computational method called 

RNAplfold [18]. RNAplfold employs local folding 

where RNA is folded locally in a sliding window 

approach and predictions are averaged over all 

windows. For each position, probabilities of being in 

the following five structural contexts are given as 

output:  paired context, hairpin loop, internal loop, 

multiloop, external loop. We chose this method as a 

previous study showed that local folding is more 

accurate than global folding [19]. Also, in agreement 

with the fact that RNAs can fold into multiple diverse 

structures; RNAplfold takes into account the ensemble 

of all possible structures rather than predicting only 

the minimum free energy structure. We extended the 

RNA features to also include secondary structure 

information. For instance, instead of counting the 

frequency of AAA, we summed the average 

probability of AAA to be in paired context (i.e. AAA-

P), the average probability of AAA to be in hairpin 

loop (i.e., AAA-H) etc. As such, for each 3-mer we 

included five features. In total, this feature set contains 

663 features (320 features from RNA sequence and 

343 features from protein sequence). Hereafter, we 

call this feature set “RNA structure feature set”. 

 

2.3. Random Forest 

 

Random forest consists of a collection of decision trees 

[20]. Random forest is fit using two layers of 

randomness. First layer of randomness is due to the fact 

that a set of bootstrapped samples is used to fit each 

tree. The second layer of randomness is related to the 

selection of the feature to split a node. In standard 

decision trees, each node is split based on the best 

feature where best is defined based on a cost function. 

In random forest, first, a random set of features is 

sampled for each node. The split is then determined 

based on the best feature among the sampled features. 

In summary, each tree is trained with a random sample 

of data points and each split is based on a random 

sample of features. Random forest model also estimates 

the importance of a feature by assessing the increase in 

prediction error when the values of that feature are 

shuffled. We used the random forest implementation in 

the scikit-learn package (Python) to conduct our 

experiments.  

 

We chose the parameter n_estimators (number of trees 

in the forest) using nested cross validation (10-fold). 

We tried the values 50, 100, and 500 for n_estimators. 

We set the max_features (the number of features to 

sample when splitting a node) as the square root of the 

number of features.  

 

2.4. Performance Evaluation 

 

We employed 10-fold cross-validation procedure to 

evaluate the performance of the random forest models. 

We used the following performance metrics: 

 

Accuracy = (TP + TN) / N 

Precision = TP / (TP + FP) 

Recall = TP / (TP + FN) 

 

where TP is the number of true positives, FP is the 

number of false positives, TN is the number of true 

negatives, FN is the number of false negatives and N 

is the total number of data points. Additionally, we 

calculated the area under the ROC curve (AU-ROC) 

that corresponds to the expected proportion of positive 

data points ranked before a randomly chosen negative 

data point. We plot the interpolated ROC curve of 10 

curves that correspond to the results on 10 CV folds.  

 

3. Results 

 

We evaluated our model with three datasets. 

 

3.1. RNAcompete Dataset 

 

The table below shows the average cross-validation 

results of our model on RNAcompete dataset using 

two different feature sets. In sequence-only model we 

only used the features that are based on the sequence 

of the RNA and protein sequences. This model 

predicted the interacting RNAs for RBPs successfully 

(AU-ROC: 0.90, Table 1).  In physico-chemical 

model, in addition to the sequence features we also 

included features that represent the physico-chemical 

properties of the amino acids in the protein.  We found 

that including physico-chemical features increased the 

recall slightly but decreased accuracy, precision and 

AU-ROC (Table 1 and Figure 1). This is likely to be 

due to the small size of the dataset. We could not 

include RNA secondary structure related features as 

each RNA sequence (i.e. 7-mer) appears in multiple 

probes and each probe has a distinct RNA secondary 

structure. We also note that RNA related features rank 

higher than protein related features in terms of 

importance values estimated by the random forest 

model.    

3 
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Table 1. Results of the random forest model on RNAcompete dataset 

 
                                      Figure 1. ROC curve of the models 

 

3.2. NDB-PRIDB Dataset 

 

Next, we evaluated our model with the dataset 

compiled from NDB and PRIDB datasets. Our 

sequence-only model has a remarkable performance 

with an AU-ROC of 0.983 (Table 2). Again, we 

observe no significant improvement when physico-

chemical features or RNA structure features are 

included. The recently proposed RPI-Pred model by 

Suresh et al achieves an AU-ROC of 0.97 on the same 

dataset even though they use several additional 

features related to the structure of the protein and the 

RNA. Here our model that only uses sequence-based 

features achieves a better performance. We also note 

that the most important features are related to protein 

sequence according to the random forest model. For 

instance, the most important feature is the frequency 

of aminoacids that are from the groups {A, G, V}, 

{R,K}, {I,L,F,P}, respectively. This finding is in line 

with the previous literature which identified arginine 

and phenylalanine as enriched in the RNA binding 

sites [21].  

 

 

3.3. Pancaldi Dataset 

 

Lastly, we evaluated our model with the dataset 

prepared by Pancaldi et al. The model developed by 

Pancaldi et al gives an average accuracy of 0.69 and 

average AU-ROC of 0.77 on the same dataset. 

However, they use a large feature set (i.e., 120 

features) that includes features based on diverse 

properties of protein and RNA such as the localization 

of the protein, gene ontology class of the protein, 

physical properties of the protein, expression level, 

ribosome density and structure of the mRNA etc. 

Their model cannot be generalized to other datasets 

specifically from other organisms as these features are 

difficult to compile. Our model based on simple 

sequence-based features result in a much better 

performance (AUROC: 0.80 vs 0.77) than Pancaldi et 

al (Table 3). Additionally, we see a slight 

improvement when we include the physico-chemical 

features. On the other hand, including RNA structure 

information decreases the performance. When we look 

at the feature importance values estimated by the 

random forest model, we observe RNA-derived 

features are found to be more important than protein-

derived features similar to our results in RNAcompete 

dataset. 
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Table 2. Results of the random forest model on NDB-PRIDB dataset 

 

 
                                     Figure 2. ROC curve of the models 

 

Table 3. Results of the random forest model on Pancaldi dataset 

 
                                          Figure 3. ROC curve of the models 
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3.4. Comparison with Other Approaches 

 

Here we compare our random forest model that uses 

3-mer frequencies with a reduced aminoacid alphabet 

with other statistical methods. We only performed the 

experiments with sequence-only model as including 

physico-chemical features or RNA secondary structure 

features do not result in a great change of 

performance. First, we show that using 1-mer and 2-

mer frequencies with the full set of aminoacid 

alphabet reduces the performance. The decrease in 

performance was more pronounced for RNAcompete 

and Pancaldi datasets with small changes for the 

NDB-PRIDB dataset (Table 4). Next, we evaluated 

the effect of feature selection by only using the 

features that appear in the top 20 percentile when p-

values obtained from chi-square test are sorted in 

increasing order (using Python’s 

sklearn.feature_selection.chi2 method). Table 5 shows 

the results for all three datasets. We observe that using 

all the features gives a better performance.  

 

Lastly, we tried other machine learning approaches: 

decision trees, naïve Bayes and SVM using scikit-

learn package in Python. We tried both the linear and 

the RBF kernel for SVM model, which we name 

SVM-linear and SVM-RBF hereafter.   Hyper 

parameters of the models were selected with nested 

cross validation (using GridSearchCV function). Table 

6 shows the predictive performance of these 

approaches for the three datasets.  

 

Table 4. Comparison of models that use 1-mer and 2-mer frequencies 

 
 

 

Table 5. The effect of applying feature selection on predictive performance 

 
 

Table 6. Comparison of the performance of other classification techniques 
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We see that the naïve bayes and SVM models perform 

much better than the decision tree model for 

RNAcompete dataset. For NDB-PRIDB dataset, we 

observe that SVM-RBF model achieves a performance 

that is almost as good as our model. SVM with the 

linear kernel has slightly lower performance than 

SVM-RBF, whereas decision trees and naïve Bayes 

models perform worse. Lastly, for Pancaldi dataset, all 

models had considerably lower performance than our 

proposed model. In summary, for all the datasets, our 

random forest model has the best performance when 

compared to decision tree, naïve Bayes and SVM 

models.  

 

4. Conclusion and Discussion 

 

RNA-protein interactions play crucial roles in every step 

of RNA metabolism. Experimental methods to identify 

RNA-protein interactions are still time-consuming and 

expensive. As such, computational models are needed to 

fill this gap. In this study, we have developed a random 

forest model to predict whether a given RNA-protein pair 

will interact or not. We prepared different types of 

features: (i) features that are based on only the sequence 

content of the protein-RNA pair, (ii) features that 

represent the physico-chemical properties of the 

aminoacids in the protein, (iii) features that represent the 

secondary structure of the RNA. We evaluated our model 

with three diverse datasets. The first dataset is based on 

the RNAcompete outputs. This dataset is used for the 

first time for predicting RNA-protein interactions. Our 

model achieves an average accuracy of 0.82 and an 

average AU-ROC of 0.90. This result is quite promising 

as it indicates that the binding preferences of RBPs with 

no experimental data can be predicted accurately. Next, 

we ran our model with a dataset that is derived from the 

crystal structures of protein-RNA complexes in the NDB 

database. Again, our model achieved a dramatic 

performance with 0.983 average AU-ROC value. A 

recently proposed model named RPI-Pred that includes 

several additional features derived from the experimental 

structures of protein and RNA gives a lower performance 

(AU-ROC: 0.97). Our model is more advantageous as we 

can apply our model to any dataset even when the crystal 

structures of the protein-RNA complexes are unknown. 

Lastly, we predicted protein-mRNA interactions in yeast 

with an average accuracy of 0.72. Pancaldi et al achieves 

an average accuracy of 0.69 on the same dataset. 

Moreover, they use more than 100 complex features that 

are difficult to compile for datasets from other organisms 

than yeast. We should also note that our model differs 

from all the previous approaches in that the parameters of 

the model are set correctly using nested cross validation. 

 

We performed a series of experiments to confirm that our 

proposed model gives optimal performance. We first 

showed that 3-mer frequencies with the reduced 

aminoacid alphabet gives better performance than lower 

order frequencies. Additionally, we observed that 

applying feature selection results in no gain of 

performance. However, more advanced techniques of 

feature selection must be applied before definite 

conclusions. Lastly, result of running naïve bayes, 

decision trees and SVM classifiers with the same datasets 

showed that our model performs much better than the 

other methods. The low performance of naïve bayes 

could be due to the assumption that features are 

independent. For all datasets, SVM-RBF has a higher 

AU-ROC than SVM-linear indicating that the data is 

not linearly separable. This high performance could be 

explained by the fact that the random forest model can 

represent higher order interactions among the features 

and it is less prone to overfitting. Altogether, these 

results indicate that using only sequence-based features 

can achieve good accuracy in predicting RNA-protein 

interactions.  

 

We observed that including RNA secondary structure 

features did not result in improved performance. One 

reason could be the inaccuracy in predicting RNA 

secondary structure. Also, many of the RNA-binding 

proteins that appear in the three datasets might no have a 

strong preference for RNA secondary structure. Ray et al 

showed that motifs inferred from in vitro data could still 

be useful to predict in vivo binding [10]. However, in this 

study, we do not utilize the existing specific motif models 

for RBPs. Rather, we would like to infer general rules 

that can predict RNA-protein interactions only using the 

sequence of the protein and the sequence. As such, our 

model can still be used to pinpoint candidate RNA 

sequences that could be bound by the RBP of interest in 

vivo in the absence of any existing motif model. As a 

next step, experimental data on RNA secondary structure 

(e.g. [22]) can be utilized to determine the exact location 

of the binding sites within the RNA sequence. 
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