Bazı Makrofungus Türlerinin Ağır Metal İçeriklerinin Belirlenmesi

Mustafa SEVİNDİK¹, Emre Cem ERASLAN², Hasan AKGÜL³

Özet

Anahtar Kelimeler: Morchella esculenta, Helvella leucomeala, Sarcosphaera crassa, Ağır metal

Determination of Heavy Metal Content of Some Macrofungi Species

Abstract

The materials of the study are consisted of Morchella esculenta (L.) Pers., Helvella leucomeala (Pers.) Nannf. and Sarcosphaera crassa (Sant ex Steud.) Pouz. fungi. Heavy metal content (Zn, Fe, Mn, Cu, Pb, Ni and Co) of the fungi and the soil where they are taken were determined with wet decomposition method using atomic absorption spectrophotometry. Result of study showed different heavy metal accumulation patterned of fungi even though they were sampled nearby locations. In parallel to this result, heavy metal content of soil samples were also found to be different.

Keywords: Morchella esculenta, Helvella leucomeala, Sarcosphaera crassa, Heavy metal

Giriş

Mantarlar bunyelerindekine yüksek seviyedeki vitaminlerin ve proteinlerin yam sırı bunyelerindeki lif, karbonhidrat ve minerallerden dolayı değerli besin maddeletleri olarak kabul edilmiştır (Pekşen ve ark., 2007). Mantarlar bulundukları ortamdan bunyelerine kazandırdıkları mineral maddelerle de önem taşırlar ve bakır, çiçə, çikm, gümüş, kadmium, kobalt, kırmızı, mangan, molibden, nikel, selenyum, sezyum, stronşiyum, talyum, uranyum

¹ Akdeniz Üniversitesi, Fen Fakültesi, Biyoloji Bölümü- sevindik27@gmail.com
² Gaziantep Üniversitesi, Fen- Edebiyat Fakültesi, Biyoloji Bölümü-cemocann89@gmail.com
³ Akdeniz Üniversitesi, Fen Fakültesi, Biyoloji Bölümü, hakgul@akdeniz.edu.tr
gibi mineral maddeleri dünyelerinde biriktirdikleri için kirilik indikatörü olarak da kullanılırlar (Baba ve ark., 2012).

Bu çalışmada *Morchella esculenta*, *Helvella leucomelaena* ve *Sarcosphaera crassa* mantarlarının dünyelerinde bulundurdukları ağır metaller ile toplandığı alandan alınan toprak örneklerinin ağır metal içeriklerinin tespiti ve kıyaslanması amaçlanmıştır.

Materyal ve Metot

Mantar Örneklerinin Ağır Metal Analizine Hazırlanması

![Şekil 1. Morchella esculenta](image1.png) ![Şekil 2. Sarcosphaera crassa](image2.png)

![Şekil 3. Helvella leucomelaena](image3.png)

Mantar örnekleri kurutma aşamasından önce çamuru kısımlarından temizlendi sonra laboratuvara açık havada açık havada ve güneş ışınlarından uzak bir ortamda kurutuldu. Mantar örnekleri ayrı ayrı kurutma işlemi yapıldıktan sonra 1’er gram tartılıp erlen kaplara konulmuştur. Hazırlanan erlenlerin üzerinde 10 ml HNO₃ eklenmiştir ve oda sıcaklığında 24 ile 48 saat arası bekletilmiştir. Erlenler daha sonra ısıtısı ayarlanabilen ısıtıcı üzerinde düşük ısıda ve daha sonra ısı artırılarak çözelti berraklaşacağı kadar ısıtılmıştır. Isıtılan örneklerin üzerine 15 ml seyreltik HCl eklenmiş ve sütze işlemi yapılarak falcon tüpüre konulmuştur. En son aşamada çözelti 20 ml seyreltik HCl eklenerek tamamlanmış ve analiz için hazır hale getirilmiştir (Doğan, 2005).
Toprak Örneklerinin Ağır Metal Analizine Hazırlanması

Mantar örneklerinin toplandığı alandan alınan toprak örnekleri mantarların bulunduğu noktadan dikey olarak 15-20 cm derinliğinde açılan çukurun kesit yüzeyinden alınarak kararlaştırılmıştır. Mantarların örnekleme zamanında alınan toprak örnekleri laboratuvarında tozlardan ve kimyasal etkilerden uzak bölgelerde kurumuya bırakılmış ve daha sonra tartılarak darısı bilinen cam petri kaplarda 105 °C’ye ayarlı ettirilerek 48 saat bekletilerek kurutulmuştur. Kurutulan toprak örnekleri, porselen havanda toz haline getirilmiş ve 100 μm’lik elek ile elenmiştir. (Yücel vd., 1995) Toprak örnekleri eleme işlemi yapıldıktan sonra 1’er gram tartılıp erlen kaplara konulmuştur. Hazırlanan erlenlerin üzerine 10 ml HNO₃ eklenmiştir ve oda sıcaklığında 24 ile 48 saat arası bekletilmiştir. Erlenler daha sonra ısıtıcı ayarlanabilen ısıtıcı üzerine önce düşük ısıda ve sonra ısı artırılarak çözelti berraklaşıcaya kadar ısıtılmıştır. İstilalan örneklerin üzerine 15 ml seyreltik HCI eklenmiş ve süzme işlemi yapılarak falcon tüpüle konulmuştur. En son aşamada çözelti 20 ml seyreltik HCI eklenecek tamamlanmış ve analiz için hazır hale getirilmiştir. (Doğan, 2005)

Bulgular ve Tartışma

Yapılan analiz sonuçlarında mantar ve toprak örneklerinin ağır metal kompozisyonları mg.kg⁻¹ cinsinden belirlenmiştir. Mantar ve toprak örneklerinin ağır metal kompozisyonu Çizelge 1’de gösterilmiştir. Ayrıca Çizelge 2’de mantarların bünyesindeki bazı elementlerin literatürde yer alan değer aralıkları ve deney sonuçları verilmiştir.

| Çizelge 1. Mantar örneklerinin ağır metal birikimi (mg.kg⁻¹ kuru ağırlık) |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| | Zn | Fe | Mn | Cu | Pb | Cr | Ni | Co |
| S. crassa | 89.3±19.3 | 347.4±357.7 | 13.1±5.2 | 47.7±14.8 | 14.8±2.9 | 8.5±1.8 | 1.2±0.4 | 2.5±1.2 |
| (Toprak) | | | | | | | | |
| H. leucomelaena | 43.3±13.4 | 319.2±29.6 | 11.7±3.7 | 34.1±13.1 | 14.1±5.2 | 6.0±2.3 | 2.1±0.6 | 2.3±0.5 |
| (Toprak) | | | | | | | | |
| M. esculenta | 27.8±6.7 | 482.0±56.0 | 166.1±32.2 | 9.7±1.6 | 33.8±5.9 | 42.5±10.5 | 50.8±17.6 | 14.0±4.0 |
| (Toprak) | | | | | | | | |

*Değerler Ortalama± Standart sapma olarak verilmiştir

- Şekil 1. Mantar ve toprak örneklerinin Zn konsantrasyonları
- Şekil 2. Mantar ve toprak örneklerinin Fe konsantrasyonları
Şekil 3. Mantar ve toprak örneklerinin Mn konsantrasyonları

Şekil 4. Mantar ve toprak örneklerinin Cu konsantrasyonları

Şekil 5. Mantar ve toprak örneklerinin Pb konsantrasyonları

Şekil 6. Mantar ve toprak örneklerinin Cr konsantrasyonları

Şekil 7. Mantar ve toprak örneklerinin Ni konsantrasyonları

Şekil 8. Mantar ve toprak örneklerinin Co konsantrasyonları
Çizelge 2. Mantarların bünelerinde yer alan elementlerin literatürdeki değer aralıkları ve deney sonuçları (Mallikarjuna ve ark., 2013)

<table>
<thead>
<tr>
<th>Element</th>
<th>Literatürde yer alan en düşük ve en yüksek değerler (mg.kg⁻¹)</th>
<th>Çalışma verileri (Mantarlar) (mg.kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S. crassa</td>
</tr>
<tr>
<td>Fe</td>
<td>146-835</td>
<td>347.4±35.7</td>
</tr>
<tr>
<td>Zn</td>
<td>29.8-158</td>
<td>89.3±19.3</td>
</tr>
<tr>
<td>Cu</td>
<td>71-95</td>
<td>47.7±14.8</td>
</tr>
<tr>
<td>Ni</td>
<td>1.18-5.14</td>
<td>1.2±0.4</td>
</tr>
<tr>
<td>Mn</td>
<td>18.1-103</td>
<td>13.1±3.2</td>
</tr>
<tr>
<td>Pb</td>
<td>2.86-6.88</td>
<td>14.8±2.9</td>
</tr>
</tbody>
</table>

*Değerler Ortalama+ Standart sapma olarak verilmiştir

Yapılan çalışmalar sonucunda mantarlar da en yüksek Zn değeri 90.2 ile M. esculenta (Şekil-1), en yüksek Fe 379.1 ile M. esculenta (Şekil-2), en yüksek Mn değeri 30.8 ile M. esculenta (Şekil-3), en yüksek Cu değeri 47.7 ile S. crassa (Şekil-4), en yüksek Pb değeri 15.3 ile M. esculenta (Şekil-5), en yüksek Cr değeri 11.5 ile M. esculenta (Şekil-6), en yüksek Ni değeri 3.3 ile M. esculenta (Şekil-7), en yüksek Co değeri 3.1 ile M. esculenta (Şekil-8) bünelerinde belirlenmiştir. Ayrıca en yüksek Zn değeri 75.8 ile S. crassa (Şekil-1), en yüksek Fe 482.0 ile H. leucomelaena (Şekil-2), en yüksek Mn değeri 166.1 ile H. leucomelaena (Şekil-3), en yüksek Cu değeri 49.7 ile H. leucomelaena (Şekil-4), en yüksek Pb değeri 39.6 ile M. esculenta (Şekil-5), en yüksek Cr değeri 42.5 ile H. leucomelaena (Şekil-6), en yüksek Ni değeri 50.8 ile H. leucomelaena (Şekil-7), en yüksek Co değeri 14.6 ile M. esculenta (Şekil-8)’nm bulunduğundan alandaki toprak örneklerinde belirlenmiştir. Cu ve Zn elementlerinin mantarların bünelerinde topraktaki seviyesinden daha yüksek olduğu belirlenmiştir. Ayrıca bu veriler mantarların Cu ve Zn elementlerini diğer ağır metallerle göre daha fazla biriktirdiğini göstermiştir.

Sonuç

Kaynakça

