<u>Gazi University Journal of Science</u> GU J Sci 29(4):909-914 (2016)

On Some Classes of r-AG-Groupoids

Thiti GAKETEM^{1,}

¹School of Science, University of Phayao, Phayao, 56000

Received:06/08/2016 Accepted: 10/08/2016

ABSTRACT

In this paper, we have introduced the notion of Γ -regular, weakly Γ -regular, left Γ -regular, right Γ -regular, Γ -completely regular and Γ - left quasi regular of Γ -AG-groupoids, and we have investigated their properties.

Keywords: Γ -AG-groupoid, Γ -regular, Γ -intra-regular, weakly Γ -regular, left Γ -regular, right Γ - regular, Γ -completely regular, Γ -left quasi regular.

1. INTRODUCTION

Kazim, M. A. and Naseeruddin, MD. defined the concept of LA-semigroup as follows a groupoid S is called a left almost semigroup, abbreviated as LA-semigroup if (ab)c = (cb)a for all $a, b, c \in S$.

Kazim, M. A. and Naseeruddin, MD. [1, Proposition 2.1] asserted that, in every LA-semigroup \boldsymbol{S} , a medial law hold

$$(ab)(cd) = (ac)(bd)$$
 for all $a, b, c, d \in S$.

Mushtaq, Q. and Khan, M. [2. p.322] introduced in every LA-semigroup S with left identity

$$(ab)(cd) = (db)(ca)$$
 for all $a, b, c, d \in S$.

Further Khan, M., Faisal, and Amjid, V. [3] introduced if a LA-semigroup S with left identity, then the following law holds:

$$a(bc) = b(ac)$$
 for all $a, b, c, d \in S$.

In this note we prefer to called left almost semigroup (LA-semigroup) as Abel-Grassmann's groupoid (abbreviated as an"AG-groupoid").

In [2]introduced the concepts of regular, weakly regular, left regular, right regular, completely regular and left quasi regular of an AG-groupoids as follows

Definition 1.1. [2. P1]. An element a of an AGgroupoid S is called a *regular* if there exists $x \in S$ such that a = (ax)a and S is called *regular* if all elements of S are regular.

Definition 1.2. [2. P1]. An element a of an AGgroupoid S is called an *intra-regular* if there exist $x, y \in S$ such that a = (x(aa))y and S is called *intra-regular* if all elements of S are intra-regular.

Definition 1.3. [2. P2]. An element a of an AGgroupoid S is called a *weakly regular* if there exist $x, y \in S$ such that a = (ax)(ay) and S is called *weakly regular* if all elements of S are weakly regular.

Definition 1.4. [2. P2]. An element a of an AGgroupoid S is called a *left regular* if there exists $x \in S$ such that a = x(aa) and S is called *left regular* if all elements of S are left regular.

^{*}Corresponding author, e-mail: newtonisaac41@yahoo.com

Definition 1.5. [2. P2]. An element a of an AGgroupoid S is called a *right regular* if there exists $x \in S$ such that a = (aa)x and S is called *right regular* if all elements of S are right regular.

Definition 1.6. [2. P2]. An element a of an AGgroupoid S is called a *left quasi regular* if there exist $x, y \in S$ such that a = (xa)(ya) and S is called *left quasi regular* if all elements of S are left quasi regular.

Definition 1.7. [2. P2]. An element a of an AGgroupoid S is called a *completely regular* if a is regular, left and right regular. S is called *completely regular* if it is regular, left and right regular.

2. DEFINITION OF Γ -AG-GROUPOIDS

Shah, T. and Rehman, I. [6, p.268] asserted that, in 1981, the notion of Γ -semigroups was introduced by Sen, M. K. Let S and Γ be any nonempty sets. If there exists a mapping $S \times \Gamma \times S \rightarrow S$ written $(a, \alpha, c) \mapsto a\alpha c$, S is called a Γ -semigroups if S satisfies the identity $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$. A Γ -AG-groupoids analogous to Γ -semigroups.

Definition 2.1. [6, p.268] Let *S* and Γ be any nonempty sets. We call *S* to be Γ -AG-groupoid if there exists a mapping $S \times \Gamma \times S \rightarrow S$, written $(a, \alpha, b) \mapsto a\alpha b$ such that *S* satisfies the identity $(a\alpha b)\beta c = (c\alpha b)\beta a$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Definition 2.2. [3, p.2]. Let S and Γ be any nonempty sets. We call S to be a Γ -medial if it satisfies $(a\alpha b)\beta(c\gamma d) = (a\alpha c)\beta(b\gamma d)$ and S is called a Γ -paramedial if it satisfies

 $(a\alpha b)\beta(c\gamma d) = (d\alpha c)\beta(b\gamma a)$ for all $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

Definition 2.3. A Γ -AG-groupoids S with left identity, the following law hold

 $a\alpha(b\beta c) = b\alpha(a\beta c)$, for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

In this paper, we introduce the concept of a Γ -regular, weakly Γ -regular, left Γ -regular, right Γ -regular, Γ -completely regular and left Γ -quasi regular of Γ -AG-groupoids which is defined analogous to [2] and investigate its properties.

3. MAIN RESULTS

Definition 2.4. [6. P274]. An element a of a Γ -AGgroupoid S is called a Γ -regular if there exists $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = (a\alpha x)\beta a$ and S is called Γ -regular if all elements of S are Γ regular.

Definition 2.5. [2. P1]. An element a of a Γ -AGgroupoid S is called an *intra*- Γ -*regular* if there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (x\alpha(\alpha\beta a))\gamma y$ and S is called *intra*- Γ *regular* if all elements of S are intra- Γ -regular.

Definition 2.6. An element a of a Γ -AG-groupoid S is called a *weakly* Γ -*regular* if there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (a\alpha x)\beta(a\gamma y)$ and S is called *weakly* Γ -*regular* if all elements of S are weakly Γ -regular.

Definition 2.7. An element a of a Γ -AG-groupoid S is called a *left* Γ -*regular* if there exists $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = x\alpha(a\beta a)$ and S is called *left* Γ -*regular* if all elements of S are left Γ -regular.

Definition 2.8. An element a of a Γ -AG-groupoid S is called a *right* Γ -*regular* if there exists $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = (a\alpha a)\beta x$ and S is called *right* Γ -*regular* if all elements of S are right Γ -regular.

Definition 2.9. An element a of a Γ -AG-groupoid S is called a *left* Γ -quasi regular if there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (x\alpha a)\beta(y\gamma a)$ and S is called *left* Γ -quasi regular if all elements of S are left Γ -quasi regular.

Definition 2.10. An element a of a AG-groupoid S is called a *completely* Γ -*regular* if a is Γ -regular and left (right) Γ -regular. S is called *completely* Γ -*regular* if it is Γ -regular, left and right Γ -regular.

Lemma 3.1. If S is Γ -regular (intra- Γ -regular, weakly Γ -regular, left Γ -regular, right Γ -regular, left Γ -quasi regular and completely Γ -regular) Γ -AG-groupoid, then $S = S\Gamma S$.

Proof. Let S be a Γ -regular and $a \in S$. Then there exists $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = (a\alpha x)\beta a$. Thus $a = (a\alpha x)\beta a \in S\Gamma S$ so $S \subseteq S\Gamma S$. Since S is a Γ -AG-groupoid we have $S\Gamma S \subseteq S$. Hence $S = S\Gamma S$. Similarly if S is an intra- Γ -regular, weakly Γ -regular, right Γ -regular, left Γ -regular, left Γ -quasi regular, completely Γ -regular, then can show that $S = S\Gamma S$.

Theorem 3.2 If S is a Γ -AG-groupoid with left identity, then S is an intra- Γ -regular if and only if for

all $a \in S$, $a = (x\alpha a)\gamma(a\omega z)$ for some $x, z \in S$ and $\alpha, \gamma, \omega \in \Gamma$.

Proof (\Rightarrow) Let *S* be an intra- Γ -regular Γ -AG-groupoid with left identity, then for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (x\alpha(a\beta a))\gamma y$. Now by using Lemma 3.1 let $y = u\omega v$ for some $u, v \in S$ and $\omega \in \Gamma$. Thus by using Definition 2.1, 2.2, 2.3, we have

$$a = (x\alpha(a\beta a))\gamma y = (a\alpha(x\beta a))\gamma y = (y\alpha(x\beta a))\gamma a$$

= $(y\alpha(x\beta a)\gamma(x\lambda(a\eta a))\delta y) = ((u\omega v)\alpha(x\beta a)\gamma(x\lambda(a\eta a))\delta y)$
= $((a\omega x)\alpha(v\beta u)\gamma(x\lambda(a\eta a))\delta y)) = ((a\omega x)\alpha t)\gamma(x\lambda(a\eta a))\delta y))$
= $(((x\lambda(a\eta a))\delta y)\alpha t)\gamma(a\omega x) = (t\delta y)\alpha(x\lambda(a\eta a))\gamma(a\omega x)$
= $((a\eta a)\delta x)\alpha(y\lambda t)\gamma(a\omega x)) = (((a\eta a)\delta x)\alpha s)\gamma(a\omega x)$
= $((s\delta x)\alpha(a\eta a))\gamma(a\omega x) = ((a\eta a)\alpha(x\delta s))\gamma(a\omega x)$
= $((a\eta a)\alpha k)\gamma(a\omega x) = ((k\eta a)\alpha a)\gamma(a\omega x)$
= $(z\alpha a)\gamma(a\omega x) = (x\alpha a)\gamma(a\omega z),$

where $v\beta u = t$, $y\lambda t = s$, $x\delta s = k$ and $k\eta a = z$ for some $t, s, k \in S$ and $\lambda, \eta, \delta \in \Gamma$.

(\Leftarrow) Let $a \in S$, $a = (x\alpha a)\gamma(a\omega z)$ for some $x, z \in S$ and $\alpha, \omega \in \Gamma$. Thus by using Definition 2.1, 2.2, 2.3, we have

$$a = (x\alpha a)\gamma(a\omega z) = a\gamma((x\alpha a)\omega z) = (x\lambda a)\beta(a\delta z)\gamma((x\alpha a)\omega z)$$
$$= (a\beta((x\lambda a)\delta z))\gamma((x\alpha a)\omega z) = (((x\alpha a)\omega z)\beta((x\lambda a)\delta z))\gamma a$$
$$= (((x\alpha a)\omega(x\lambda a))\beta(z\delta z))\gamma a = (((a\alpha x)\omega(a\lambda x))\beta(z\delta z))\gamma a$$
$$= ((a\omega((a\alpha x)\lambda x))\beta(z\delta z)))\gamma a = (((z\delta z)\omega((a\alpha x)\lambda x))\beta a)\gamma a$$
$$= ((((a\alpha x)\omega((z\delta z)\lambda x))\beta a)\gamma a = (((((z\delta z)\lambda x)\alpha x)\omega a)\beta a)\gamma a$$
$$= ((((x\lambda x)\alpha(z\delta z))\omega a)\beta a)\gamma a = ((a\omega a)\beta(x\lambda x)\alpha(z\delta z))\gamma a$$
$$= (a\beta(x\lambda x)\alpha(z\delta z))\gamma(a\omega a) = (a\beta t)\gamma(a\omega a),$$

where $(x\lambda x)\alpha(z\delta z) = t$ for some $t \in S$ and $\lambda, \delta \in \Gamma$. Now by using Definition 2.1, 2.2, we have

$$a = (a\beta t)\gamma(a\omega a) = ((a\lambda t)\eta(a\delta a)\beta t)\gamma(a\omega a) = ((a\lambda a)\eta(t\delta a)\beta t)\gamma(a\omega a)$$
$$= (t\eta(t\delta a)\beta(a\lambda a))\gamma(a\omega a) = (u\beta(a\lambda a))\gamma v,$$

where $t\eta(t\delta a) = u$ and $(a\omega a) = v$ for some $u, v \in S$ and $\delta, \omega \in \Gamma$. Thus S is an intra- Γ -regular. **Lemma 3.3** If S is a Γ -AG-groupoid, then the following are equivalent.

- (1) S is weakly Γ -regular.
- (2) S is intra- Γ -regular.

Proof (1) \Rightarrow (2) Let *S* be a weakly Γ -regular Γ -AG-groupoid with left identity, then for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (a\alpha x)\beta(a\gamma y)$ and by Lemma 3.1 let $x = u\lambda v$ for some $u, v \in S$ and $\lambda \in \Gamma$. Now by using Definition 2.1, 2.2, 2.3, we have

$$a = (a\alpha x)\beta(a\gamma y) = (y\alpha a)\beta(x\gamma a) = (y\alpha a)\beta((u\lambda v)\gamma a)$$
$$= (y\alpha a)\beta((a\lambda v)\gamma u) = (a\alpha v)\beta((y\lambda a)\gamma u) = (a\alpha(y\lambda a))\beta(v\gamma u)$$
$$= (a\alpha(y\lambda a))\beta t = (y\alpha(a\lambda a))\beta t,$$

where $v\gamma u = t$ for some $t \in S$. Thus S is intra- Γ -regular.

(2) \Rightarrow (1) Let *S* be an intra- Γ -regular, for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (x\alpha(a\beta a))\gamma y$ and by Lemma 3.1 let $x = u\lambda v$ for some $u, v \in S$ and $\lambda \in \Gamma$. Now by using Definition 2.1, 2.2, 2.3, we have

$$a = (y\alpha(a\lambda a))\beta t = (a\alpha(y\lambda a))\beta t = (a\alpha(y\lambda a))\beta(v\gamma u)$$
$$= (a\alpha v)\beta((y\lambda a)\gamma u) = (y\lambda a)\beta((a\alpha v)\gamma u) = (y\lambda a)\beta((u\alpha v)\gamma a)$$
$$= (y\lambda a)\beta(x\gamma u) = (a\lambda x)\beta(a\gamma y),$$

where $x = u\alpha v$ for some $u, v \in S$ and $\alpha \in \Gamma$. Thus S is weakly Γ -regular.

Lemma 3.4 If S is a Γ -AG-groupoid, then the following are equivalent.

- (1) S is weakly Γ -regular.
- (2) S is right Γ -regular.

Proof (1) \Rightarrow (2) Let *S* be a weakly Γ -regular Γ -AG-groupoid with left identity, then for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (a\alpha x)\beta(a\gamma y)$ and let $x\gamma y = t$ for some $t \in S$. Now by Γ -medial, we have $a = (a\alpha x)\beta(a\gamma y) = (a\alpha a)\beta(x\gamma y) = (a\alpha a)\beta t$. Thus *S* is right Γ -regular.

(2) \Rightarrow (1) Let *S* be a right Γ -regular, for any $a \in S$ there exists $t \in S$ and $\alpha, \beta \in \Gamma$ such that $a = (a\alpha a)\beta t$ and let $x\gamma y = t$ for some $x, y \in S$. Now by Γ -medial, we have.

$$a = (a\alpha a)\beta t = (a\alpha a)\beta(x\gamma y) = (a\alpha a)\beta(x\gamma y)$$
 Thus S is weakly 1 -regular.

Lemma 3.5 If S is a Γ -AG-groupoid, then the following are equivalent.

- (1) S is weakly Γ -regular.
- (2) S is left Γ -regular.

Proof (1) \Rightarrow (2) Let *S* be a weakly Γ -regular Γ -AG-groupoid with left identity, then for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (a\alpha x)\beta(a\gamma y)$ and let $y\alpha x = t$ for some $t \in S$. Now by Definition 2.2, we have $a = (a\alpha x)\beta(a\gamma y) = (a\alpha a)\beta(x\gamma y) = (y\alpha x)\beta(a\gamma a) = t\beta(a\gamma a)$. Thus *S* is left Γ -regular.

(2) \Rightarrow (1) Let *S* is left Γ -regular, for any $a \in S$ there exists $t \in S$ and $\beta, \gamma \in \Gamma$ such that $a = t\beta(a\gamma a)$ and let $y\alpha x = t$ for some $x, y \in S$. Now by Definition 2.2, we have

$$a = t\beta(a\gamma a) = (y\alpha x)\beta(a\gamma a) = (y\alpha a)\beta(x\gamma a) = (a\alpha x)\beta(a\gamma y).$$

Thus S is weakly Γ -regular.

Lemma 3.6. Every weakly Γ -regular Γ -AG-groupoid with left identity is Γ -regular.

Proof. Assume that *S* is a weakly Γ - regular Γ -AG-groupoid with left identity then for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (a\alpha x)\beta(a\gamma y)$. Let $x\gamma y = t$ for some $t \in S$ and $t\omega(((y\lambda x)\eta a)) = u \in S$ for some $\lambda, \omega, \eta \in \Gamma$. Now by Definition 2.1, we have

$$a = (a\alpha x)\beta(a\gamma y) = ((a\gamma y)\alpha x)\beta a$$

$$= ((x\gamma y)\alpha a)\beta a = (t\alpha a)\beta a; \qquad \text{by Definition 2.1 and } x\gamma y = t$$

$$= (t\alpha(a\lambda x)\omega(a\eta y))\beta a; \qquad \text{where } a = (a\alpha x)\beta(a\gamma y)$$

$$= (t\alpha(a\lambda a)\omega(x\eta y))\beta a; \qquad \text{by } \Gamma \text{-medial law}$$

$$= (t\alpha(y\lambda x)\omega(a\eta a))\beta a; \qquad \text{by } \Gamma \text{-paramedial law}$$

$$= (t\alpha(a\omega((y\lambda x)\eta a)))\beta a; \qquad \text{by Definition 2.3}$$

$$= (a\alpha u)\beta a; \qquad \text{where } t\omega(((y\lambda x)\eta a))) = u.$$

Thus S is a Γ -regular.

Theorem 3.7. If S is a Γ -AG-groupoid, then the following are equivalent.

(1) S is weakly Γ -regular.

(2) S is completely Γ -regular.

Proof. (1) \Rightarrow (2) Let S be a weakly Γ -regular. Then by Lemma 3.4, 3.5, 3.6, we have S is a completely Γ -regular.

(2) \Rightarrow (1) Let S be a completely Γ -regular. Then by Lemma 3.5, we have S is a weakly Γ -regular.

Lemma 3.8 If S is a Γ -AG-groupoid, then the following are equivalent.

(1) S is weakly Γ -regular.

(2) S is left Γ -quasi regular.

Proof (1) \Rightarrow (2) Let *S* be a weakly Γ -regular Γ -AG-groupoid with left identity, then for any $a \in S$ there exists $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (a\alpha x)\beta(a\gamma y)$. Then

$$a = (a\alpha x)\beta(a\gamma y)$$

= $(y\alpha a)\beta(x\gamma a)$ by Γ -paramedial law
= $(x'\alpha a)\beta(y'\gamma a)$ where $y = x'$ and $x = y'$

Thus S is left Γ - quasi regular.

(2) \Rightarrow (1) Let *S* be a left Γ -quasi regular Γ -A*G*-groupoid with left identity, then for any $a \in S$ there exists $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (x\alpha a)\beta(y\gamma a)$. Then

$$a = (x\alpha a)\beta(y\gamma a)$$

= $(a\alpha y)\beta(a\gamma x)$ by Γ -paramedial law
= $(a\alpha x')\beta(a\gamma y')$ where $y = x'$ and $x = y$

Thus S is weakly Γ -regular.

The next Theorem will conclude of research.

1

Theorem 3.9. If S is a Γ -AG-groupoid, then the following are equivalent.

- (1) S is weakly Γ -regular.
- (2) S is intra- Γ -regular.
- (3) S is right Γ -regular.
- (4) S is left Γ -regular.
- (5) S is left Γ -qausi regular.
- (6) S is completely Γ -regular.

(7) for all $a \in S$ there exist $x, y \in S$ and $\alpha, \omega \in \Gamma$ such that $a = (x\alpha a)(a\omega y)$.

ACKNOWLEDGEMENTS

The authors are very thankful to the learned referees for their suggestions to improve the present paper.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- M.A. Kazim and MD. Naseeruddin, On almost semigroup, *Portugaliae Mathematica*, 36(1977), 41-47.
- [2] M. Khan, Faisal, and V. Amjid, On some classes of Abel-Grassmann's groupoids, arXiv:1010.5965v2 [math.GR], 2(2010), 1-6.
- [3] M. Khan, N. Ahmad and I. Rehman, Characterizations of Γ -AG-groupoid by their Γ ideal, *arXiv:1012.1923v1 [math.GR]*, 9(2010), 1-8.
- [4] Q. Mushtaq and M. Khan, M-System in LAsemigroups, *Southeast Asian Bulletin of Mathematics*, 33(2009), 321-327.
- [5] Q. Mushtaq and M. Kamran, Finite AG-groupoid with left identity and left zero,

IJMMS, 27(2010): 387-389.

[6] T. Shah and I. Rehman, On Γ -ideal and Γ -biideals in Γ -AG-groupoids. *International Journal of Algebra*, 4(2010), 267-276.