ABSTRACT

Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. The major component of soft and hard tissue destruction associated with periodontal disease is the result of activation of the host immunoinflammatory response to the oral pathogens. Diabetes mellitus alters bacteria–host interactions by prolonging the inflammatory response and dysregulating cytokine production, and is among the primary risk factors for periodontal disease. Alveolar bone loss is one of the main outcomes of periodontitis. One of the important long-term complications associated with diabetes mellitus is changed bone metabolism. Recently, the therapeutic strategies for the treatment of periodontal disease have been directed towards host modulation therapy. In this review, we will evaluate the effects of bisphosphonates and low dose doxycycline drugs as host modulation agents in the treatment of periodontal disease and in diabetics with periodontal disease.

Keywords: Periodontitis, diabetes mellitus, bisphosphonate, doxycycline, alveolar bone loss

ÖZ

Anahtar Kelimeler: Periodontit, diabetes mellitus, bıfosphonat, doksiskilin, alveolar kemik kaybı

INTRODUCTION

Periodontal disease is a chronic inflammatory condition characterized by loss of connective tissue attachment to the teeth and resorption of the alveolar bone due to the inflammatory processes. Previous reports have indicated that periodontitis may have profound effects on systemic health. Periodontitis has been referred to as the sixth complication of diabetes mellitus (DM). These include polymorphonuclear leukocyte (PMN) dysfunction, vascular changes, altered collagen and glycosaminoglycan synthesis, deregulated cytokine production, and the formation of advanced glycation end products (AGEs). Additionally, DM alters bacteria–host wound healing. Many studies have long recognized that disease is common among diabetic patients and becomes worse with the progression of diabetes. Several mechanisms have been reported to explain the greater incidence and severity of periodontal disease in patients with diabetes mellitus (DM). These include polymorphonuclear leukocyte (PMN) dysfunction, vascular changes, altered collagen and glycosaminoglycan synthesis, deregulated cytokine production, and the formation of advanced glycation end products (AGEs). Additionally, DM alters bacteria–host

*Ankara Yıldırım Beyazıt Üniversitesi Diş Hekimliği Fakültesi Periyodontoloji AD
** Ordu Üniversitesi Diş Hekimliği Fakültesi Periyodontoloji AD
interactions by prolonging the inflammatory response and dysregulating cytokine production.6 8

Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response, which is primarily responsible for the destruction of connective tissue constituents and bone, has led to host-modulation therapies in the management of infectious diseases.5 10

Host modulatory therapy (HMT) is a treatment concept that aims to decrease tissue destruction and stabilize or regenerate the periodontium by modifying or downregulating destructive aspects of the host response and upregulating protective or regenerative responses.7 One group of host modulation agents is the bisphosphonates (BPs), the carbon-substituted pyrophosphate analogs that are potent inhibitors of bone resorption and have been effectively used to control osteolysis or reduce bone loss in Paget disease, metastatic bone disease, hypercalcemia of malignancy, and osteoporosis.7 11 12 Additionally, recent data indicate that there is a potential role for BPs in the management of periodontitis.7 10 13 Altogether, various side effects were reported, with their potential therapeutic effects and improvements in patients quality of life, their use has become widespread. The other group of host modulation agent is non-antimicrobial formulatons of tetracycline (low-dose doxycycline [LDD]), contributes to decreased connective tissue breakdown by downregulating the expression of proinflammatory mediators and cytokines and increasing collagen production, osteoblast activity, and bone formation. LDD therapy reduces host-derived collagenase activity in gingival tissue with periodontitis.14 15

Recently, there are researches about the use of BPs, LDD and the use of combination of these agents in diabetics with periodontitis. The goals of this review are to evaluate the putative mechanism of these drugs and potential side effects in oral tissues, and to discuss their potential use in periodontitis patients with and without diabetes mellitus.

BISPHONONATE STRUCTURE AND MECHANISMS OF ACTION

BPs are analogs of pyrophosphate with oxygen replaced by carbon in the pyrophosphate bond to form a phosphate-carbon-phosphate (P-C-P) structural backbone with two side chains, R1 and R2.16 17 The binding to bone mineral is enhanced by including a hydroxyl group at R1. The R2 structure and 3 dimensional configuration determine the cellular effects of BPs, and their relative efficacies as inhibitors of bone resorption.18 The two side chains dictate the anti-resorptive potency of an individual BP and determine the extent of BP binding to hydroxyapatite (HA). BPs inhibit bone resorption by binding to HA, inhibiting formation of crystals and preventing or slowing their dissolution. Because of the high affinity of BPs for HA bone mineral, these drugs are targeted to areas of bone turnover and are especially concentrated in sites of osteoclastic bone resorption.19 BPs can affect osteoclast-mediated bone resorption in a variety of ways, including osteoclast recruitment and differentiation, and may induce apoptosis and direct inhibition of osteoblast-mediated cytokine production.7

BPs can be separated into two general classes according to their chemical structure and molecular mechanism of action. Alkyl side chains, first generation non-nitrogen containing BPs (e.g. etidronate, clodronate), had minimally modified side chains of the pyrophosphage molecule or contained a chlorphenyl group. These BPs can accumulate intracellurally in osteoclasts as non-hydrolysable analogues of adenosine triphosphate (ATP) and induce apoptosis. Their cumulative cell cytotoxicity effectively inhibits bone resorption by causing osteoclast apoptosis. With the addition of a nitrogen group in the side chain, second generation BPs (e.g., alendronate, pamidronate) potency increased by ten- to a hundred-fold. Third generation BPs have cyclic side chains (e.g., risedronate, zoledronate) and their potency increased by 10,000 times when a heterocyclic ring containing nitrogen was inserted into the drug molecule.18 20 The nitrogen-containing BPs (N-BP) inhibit the mevalonate pathway of cholesterol synthesis via inhibition of the enzyme farnesyldiphosphate synthase (FPP) and blocking prenylation of small GTPases leading to interruption of osteoclast function. The final outcome is a reduction in osteoclast activity and increased apoptosis.21 Although their primary action may be an inhibitory effect on osteoclasts, increasing attention is being given to other effector cells that may be influenced by BPs. In recent years, it has been hypothesized that a further target of BPs may be osteoblasts, which subsequently influence osteoclasts.22 Therefore, BPs also inhibit osteoclastic activity indirectly through bone marrow stromal cells and osteoblasts. Osteoblasts enhance osteoclast recruitment and activation by interaction of osteoblasts cell
The bioavailability of oral administration can be lower than 1%, on the other hand, BPs can be orally or intravenously administered. Seven of the nine BPs have been approved for oral administration while pamidronate and zoledronic acid are given intravenously. The bioavailability of oral administration can be lower than 1%, on the other hand, about 50% of dosage drug binds to bone surfaces in the intravenous administration.

Several BPs have been tested for clinical use, but it is difficult to directly compare them because each of them has different physicochemical and biological properties. There are nine BPs approved for clinical use by the FDA (Alendronate sodium, Alendronate sodium plus vitamin D, Etidronate disodium, Ibandronate sodium, Pamidronate sodium, Risedronate sodium, Risedronate sodium plus calcium carbonate, Tiludronate disodium, Zoledronate acid) BPs can be orally or intravenously administered. Sixteen of the nine BPs have been approved for oral administration while pamidronate and zoledronic acid are given intravenously. The bioavailability of oral administration can be lower than 1%, on the other hand, about 50% of dosage drug binds to bone surfaces in the intravenous administration.

Research studies have evaluated BPs application using different experimental models in dentistry, i.e., implantology, orthodontics and they have been shown to prevent dental calculus formation and are beneficial in modulating host responses in the management of periodontal diseases. Additionally, there are researches suggesting that radiolabeled BP can be used to detect periodontal bone loss in animal models and human periodontitis. However, the diagnostic use of BFs has not come into routine use for reasons related to cost, accesssibility, and full-body irritation.

The BPs and their implications to dentistry have been extensively reviewed. To this point, we would like to draw attention to the potential use of BPs in the management of periodontal disease-associated bone loss. BPs have been used as inhibitors of bone resorption and matrix-metalloproteinases (MMPs) in the treatment of periodontitis. Evidence suggest that BPs depending on the their chemical characterics and using dosage have different effects on the alveolar bone. There is a difficulty in comparing data from various publications because they all included different families and doses of administrated BPs. One of the most common investigated BP is alendronate, an amino-bisphosphonate, proved to be effective as adjunctive treatment in both patients with type 2 DM and post-menopausal women with little or no side-effects. Previous studies have demonstrated the effects of systemic alendronate in human and animal models. Alendronate prevented reduction of bone-specific alkaline phosphatase serum levels (BALP), alveolar bone loss and reduced inflammatory infiltrate, without causing systemic alterations. Two studies show that local delivery of 1% alendronate gel stimulated a significant increase in probing depth reduction, clinical attachment gain, and improved bone fill compared to a placebo gel as an adjunct to SRP in the treatment of chronic and agressive periodontitis.

Disodium chlodoronate, a BP that is potent inhibitor of osteoclast-mediated bone resorption, has been shown to have anti-inflammatory properties. Alencar et al. studied the effect of chlodoronate in an experimental periodontitis model focusing on anti-inflammatory and anti-resorptive properties and they found that both prophylactic and curative chlodoronate treatment decreased alveolar bone loss, as compared to non-treated group. Mitsuta et al. showed that topical administration of chlodoronate significantly prevented alveolar bone loss. In another study, a combination of a chemically modified doxycycline and chlodoronate were used in the experimental periodontitis model and they found that combined therapy significantly reduced alveolar bone loss and tooth loss compared to monotherapies. Additionally, pamidronate...
 Higher level of undercarboxylated OC (ucOC), a protein produced by osteoblasts and metabolized under the influence of osteoclasts during bone remodeling, was found to increase insulin secretion and sensitivity in mice. BPs, potent inhibitors of osteoclastic activity, do suppress bone turnover and decrease systemic ucOC levels. Therefore, BP therapies, which reduce ucOC levels, may increase the risk of insulin resistance and diabetes. Alendronate has been shown to reduce ucOC by 56%. In rodent models study, antiresorptive therapy with reductions in ucOC and OC could lead to insulin resistance, lower insulin secretion, weight gain and an increased risk of diabetes. On the contrary, some studies found that antiresorptive therapy does not have a clinically important effect on fasting glucose, weight or diabetes risk. Result of observational studies of the longitudinal effects of OC and ucOC levels on glucose metabolism have been inconsistent. OC levels are lower in those with diabetes, but this might be due to negative effects of diabetes on bone formation.

There are few studies about the effect of BPs in the treatment of diabetic patients with periodontitis. Rocha et al. reported significant improvement in the healing response compared to the placebo group with the use of systemic alendronate for 6 months in the treatment of patients with chronic periodontitis and type 2 DM. The other study showed that local delivery of 1% ALN into periodontal pockets resulted in a significant increase in the probing depth reduction, clinical attachment gain, and improved bone fill compared to placebo gel as an adjunct to SRP in patients with type 2 DM and chronic periodontitis. Özdemir et al. investigated the effects of LDD and bisphosphonate clodronate on alveolar bone loss and gingival levels of MMP-9 and IL-1β in experimental periodontitis with diabetes. They found that use of mono and combined clodronate and LDD administrations may significantly reduce levels of MMP-9 and IL-1β expression. However, drug administration did not affect alveolar bone levels.

BISPHOSPHONATE-RELATED OSTEONECROSIS OF THE JAW

Osteonecrosis is a term commonly used to describe death of bone cells and osteonecrosis of the jaw (ONJ) is defined as exposed necrotic bone in maxillofacial region which fails to heal after 6 to 8 weeks in patients with no history of craniofacial radiation. Painful exposure of bone in the mandible and maxilla of patients receiving the BPs pamidronate and zoledronic acid was first reported by Marx in 2003. The BPs most frequently associated with bisphosphonate-related osteonecrosis of the jaw (BRONJ) are the aminobisphosphonates, which include alendronate, pamidronate, and zoledronic acid, and intravenous administration has been associated with the majority of cases. Although alendronate is an amino-bisphosphonate, it is associated with a lower prevalence of BRONJ when compared to zoledronic acid and pamidronate. This is especially because of its oral administration route, which results in lower absorption and lower cumulative dose. The risk of BRONJ development for patients on intravenous BPs is
estimated at between 1% and 11%, and it increases after longer treatment time. BRONJ in patients taking oral BPs for osteoporosis is rare, estimated at 0.001% to 0.1%.78

The pathogenesis of BRONJ is not completely defined, but currently, two main hypothesis explain the mechanism for the complication of BP therapy. The first explains the pathology in terms of the osteoclastic-inhibiting effect of this class of drug on the cessation of bone remodelling and bone turnover. The second theory states that the inhibition of neoangiogenesis by BPs lead to loss of blood vessels in the jaws and avascular necrosis.17 Also altered functioning of oral mucosal cells, microbial flora, and a proinflammatory effect may cause to BRONJ after administration of BPs. There are several cases79, 80 of BP-induced stomatitis, and the oral mucosa is separated from the bone of the jaw.

There are several putative factors that may place the patient at risk for BRONJ. These factors include pharmacokinetic and pharmacodynamic factors associated with BPs, comorbid medical conditions (e.g., diabetes, coagulopathy, blood dyscrasias, malignancy), dental factors (e.g., dentoalveolar surgery, trauma, periodontal disease, poor oral hygiene), age, environmental factors (e.g., alcohol use), concomitant medications (e.g., glucocorticoids, estrogens), and skeletal factors (e.g., low bone mineral density).20, 81 Periodontitis occurs in 71% to 84% of ONJ cases, suggesting it may be a risk factor.82, 83 In the great majority of cases, BRONJ occurs after extraction of teeth deemed unrestorable owing to the severity of dental disease or around teeth with active periodontal or periapical disease.76, 78, 82 In a series of 152 BRONJ cases, for 85 patients (56%), the initiating event for ONJ was either extraction owing to periodontitis, extraction owing to failing root canal, uncontrolled periodontitis, periodontal surgery, or apicoectomy.84 Nitrogenous BPs (NBPs) appear to have a proinflammatory effect, having been shown in vitro to enhance lipopolysaccharide-induced IL-1β, IL-6, and tumor necrosis factor-β expression.85-87 These findings suggest that NBPs may exert effects that favor an inflammatory environment, which may have implications for the progression of periodontitis and ONJ risk.

DM is one of the systemic risk factors contributing in the development of BRONJ.88 The microvascular changes in diabetes, combined with the effects exerted by BPs, could favor the development of alveolar bone necrosis. The presence of diabetes or impaired fasting glucose apparently correlates with a higher prevalence of microvascular disease in diabetic BRONJ patients compared with diabetic controls.89 Berti–Couto et al.90 investigated the influence of diabetes and corticotherapy on the development of osteonecrosis of the jaws associated with sodium alendronate. They showed that not corticotherapy but diabetes was associated with jaw osteonecrosis in rats undergoing alendronate therapy and subjected to tooth extractions. Watters et al.91 reported a significant correlation between poor BRONJ prognosis and the diagnosis of diabetes. A case-control study reported a higher rate of BRONJ in DM patients (17%) than in individuals without DM (11%).92 Delayed wound healing, altered microvascular function, and impaired bone metabolism are pathways that may predispose individuals with diabetes to develop BRONJ. Poor glycemic control is a risk factor for increased severity of dental disease,93 and this may increase the risk for BRONJ. The likelihood of a concomitant diagnosis of BRONJ with DM is supported by the immunosuppression and delayed wound healing that is known to occur in patients with poorly controlled DM after dental surgery or trauma.94

DOXYCYCLINES

The tetracycline (TC) family consists of broad spectrum bacteriostatic antibiotics that act by inhibiting bacterial protein synthesis.95 TCs have non-antimicrobial properties that include the inhibition of neutrophil and osteoblasts collagenases, as well as the inhibition of osteoclast function.96 TCs have been found to inhibit collagenases and several other MMPs by a mechanism independent of their antimicrobial activity.7 TCs with anticollagenolytic properties have a positive effect on the healing of hard tissues.97 It also tends to indicate a bone forming activity.98 Although several mechanisms of TCs have been proposed to explain the benefit effects, which include the enhancing of bone formation, decreasing of connective tissue breakdown and diminishing of bone resorption, the most widely investigation is related to the ability of these agents to inhibit the activity of MMPs.98 TCs have also been investigated for its ability to prevent the systemic complications of diabetes.96

Doxycycline, a broad-spectrum antimicrobial agent, is a tetracycline derivative which has been
widely used as an adjunct in the treatment of periodontal disease.99-102 Doxycycline was found to be a more effective inhibitor of collagenases than the other TC analogs.7,100,103 Doxycycline contributes to decreasing of connective tissue breakdown by down-regulating the expression of proinflammatory mediators, cytokines, increasing collagen production, osteoblast activity and bone formation.104 It offers advantages over the two other drugs as its absorption from the gastro-intestinal tract is not altered by calcium, metal ions or anti-acids. It has more potent compliance and is associated with less photo and renal toxicity.97, 105 It also increases protein synthesis and secretion in periodontal ligament fibroblasts, facilitates osseous healing in advanced periodontal furcation defects, inhibits tissue collagenases, and prevents root resorption and alveolar bone loss after periodontal surgery.97

The properties of doxycycline seem to be useful in periodontal therapy because of its antibacterial, anti-collagenolytic, anti-inflammatory effects, and fibroblast-stimulating activities.106, 107 Doxycycline was able to inhibit in vitro osteoclastogenesis and cause apoptosis of mature osteoclasts due to bone resorption. These effects extend beyond the mere inhibition of MMP.108, 109 Studies stated that improvements in clinical outcomes occurred in the normal periodontal flora without detrimental shifts, at the acquisition of doxycycline resistance and at the multiantibiotic resistance.99, 110

USE OF LOW-DOSE DOXYCYCLINE IN THE TREATMENT OF PERIODONTAL DISEASE

Subantimicrobial dose of doxycycline is a novel ‘low-dose’ formulation (20 mg b.i.d., compared to ‘regular or antibiotic-dose’ 100 mg q.d. or b.i.d.) of TC.111 LDD (Periostat™, CollaGenex Pharmaceuticals, Inc. Newtown, PA: now Galderna R&D, Fort Worth, TX) has been approved by the United States Food and Drug Administration (FDA) and other national regulatory agencies in Canada and Europe.15 This low dose, which is antimicrobially ineffective, was found to be safe, effective and well-tolerated.99, 112, 100, 101 LDD has been approved as a host response modifier for the management of periodontal disease. It was designed to: (a) suppress host-derived MMPs in the periodontal lesion therapy and inhibiting bone resorption, and (b) prevent complications of ‘regular-dose’ TC (e.g. doxycycline) administration, such as gastrointestinal disturbance, increased photosensitivity and the emergence of antibiotic-resistant microorganisms.111, 113, 114 The positive effects of LDD were observed in clinical trials in patients with chronic periodontitis.98 Additionally, LDD formulations have demonstrated evidence of safety and efficacy in humans with a variety of other diseases and conditions as well, including pemphigoid, rheumatoid arthritis (RA), post-menopausal osteopenia, type 2 DM, cardiovascular diseases and a rare and fatal lung disease, lymphangioleiomyomatosis.112

LDD has been notified as an adjunct to periodontal SRP for the treatment of adult periodontitis.112, 115 Several studies have shown that use of LDD as adjunctive therapy to SRP could provide additional benefits in the management of chronic periodontitis compared to non-surgical periodontal treatment alone.99,101,10,112,116 Golub et al.99 determined that LDD regimen administered to patients with adult periodontitis can reduce pathologic elevations in gingival crevicular fluid (GCF) collagenase activity and improve attachment level measurements. Mavragani et al.100 demonstrated that systemic administration of LDD inhibited root resorption, alveolar bone loss, increased the alveolar bone mass and decreased number of osteoclast in the rat with experimental orthodontic tooth movement. Another experimental study showed that percentage of new bone formation enhanced with the use of LDD after tooth extraction.117 Additionally, Yağan et al.15 found that alveolar bone loss in the rats with experimental periodontitis treated with LDD was lower than control rats. The reduction of alveolar bone loss may be explained by the use of LDD, since it possess to a potent inhibitor of osteoclastic function.105

THE USE OF DOXYCYCLINE IN DIABETES MELLITUS WITH PERIODONTAL DISEASE

The use of doxycyclines as adjunctive therapy to SRP may help not only improving the periodontal status but also reducing the risks for other significant medical conditions including diabetes, heart attack, stroke and other cardiovascular diseases.95, 103 The studies on type I and type II diabetic rats demonstrated that the non-antibiotic properties of TCs were effective in reducing the severity of a variety of abnormalities including (but not limited to) those in collagen structure, turnover and in bone remodeling (both locally in the oral tissues and systemically) that contribute to the pathogenesis of diabetic complications, such as unusually severe periodontitis.118, 119 Singh et al.120 study indicated that protein synthesis
and secretion was increased in the periodontal ligament fibroblasts of diabetic rats by administration of TC. Thus, the use of TCs and their derivatives in individuals with diabetes could be useful for the management of periodontal disease. Moreover, administration of doxycycline additional to periodontal therapy has the potential to alter diabetes metabolic control.107, 121, 122 Also it has stated that doxycycline inhibits non-enzymatic glycation of extracellular proteins, and it may have a similar effect on the glycation of hemoglobin.121 Several studies suggest that the administration of systemic doxycycline can result in improvement of metabolic control especially in poorly controlled type 2 DM periodontitis patients.136,138,123, 124 It is interesting that in short-term (3 months) adding doxycycline to non-surgical periodontal therapy in uncontrolled diabetics did benefit in glycemic control.121 The use of adjunctive systemic doxycycline to SRP therapy improved the periodontal parameters in uncontrolled type 2 DM patients compared to group SRP alone.120, 121 On the contrary, some of the studies did not significantly improve the results.122,123,125 Moreover, the use of systemic doxycycline as adjunctive therapy in Type 1 DM patients with periodontitis did not improve levels of glycemic control.107, 126

Deo et al.127 evaluated the clinical efficacy of LDD together with SRP in DM patients with CP. They concluded that combined SRP and LDD therapy was more effective than SRP alone in terms of clinical attachment gain and probing depth reduction in DM patients with severe periodontal disease. Engerbretson and Hey-Hadavi128 analyzed the metabolic control efficacy of SRP combined with LDD therapy (20mg bid for three months) and SRP combined with systemic doxycycline therapy (100 mg each day for 14 days) in type 2 DM patients with periodontal disease. They found that mean HbA1c level after 3-month reduced significantly in SRP+LDD therapy group, while systemically doxycycline + SRP therapy group was not effective in the levels of glycemic control. On the contrary, Gilowski et al.129 did not found improvement in the glycemic level of patients with T2DM in the SRP+LDD therapy group. It has reported that LDD intake in patients with type 2 diabetes for three months appeared to be well-tolerated and did not cause serious adverse effects.128, 129

EFFECT OF LOW-DOSE DOXYCYCLINE THERAPY ON ALVEOLAR BONE LOSS IN DIABETES MELLITUS

A recent review stated that tetracycline reduced the severity of both alveolar bone loss and systemic bone loss or osteoporosis in patients with type 2DM.112 Tetracycline administration normalizes the structure and acid phosphatase activity of osteoclasts130 and restores osteoblast structure and function in the diabetic rats.131 Golub et al.111 determined that doxycycline prevented the development of the bone deficiency disease without affecting the severity of hyperglycemia in the rat with diabetes-induced osteopenia. On the other hand, doxycycline treatment did not prevent or alleviate the deleterious changes in trabecular microarchitecture, cortical structure, and biomechanical properties of bone induced by chronic diabetes.132

Alkan et al.97 examined the effects of systemic doxycycline administration on the healing of tibial bone defects in experimentally induced diabetic rats. They concluded that doxycycline administration did not significantly alter the amount of bone formation during the healing of bone defects in diabetic rats. Also, they determined that histologic observation of a few samples revealed a smaller number of osteoclasts in the doxycycline-treated diabetic and control rats than in non-treated doxycycline groups. Additionally, Kopman et al.36 showed that systemic administration of doxycycline did not enhance osseointegration in the diabetic animals treated with doxycycline compared to diabetic control group. Moreover, Özdemir et al.7 found that LDD administration did not affect alveolar bone levels in the diabetic rat with ligature-induced periodontitis. On the contrary, Tella et al.105 analyzed the effects of LDD on periodontal defects by experimentally inducing on the lower anterior teeth using an orthodontic elastic ligature in diabetic rats. They found that there was a significant increase of the number of osteoblasts and decreased number of osteoclasts and inflammatory cell infiltration in the doxycycline treated group when compared to control group. LDD was also effective in decreasing bone resorbing activity in the diabetic rats.105 It asserted that the results of studies can be effected some factor, such as the number of rats in the study, excessive trauma caused during defect preparation, nonoptimum defect size, and variable glucose levels in the rats.
COMBINED THERAPY OF BISPHOSPHONATE AND DOXYCYCLINE ON ALVEOLAR BONE LOSS

To date, the potential effects of doxycycline and BP administration on alveolar bone loss have been evaluated in models of experimental periodontitis, mostly by morphometric and radiographic methods. However, our literature research revealed that there are the limited number studies about the effect of combined BP and doxycycline therapy in the treatment of periodontal disease.

Llavaneras et al. investigated the effect of combination therapy using chemically modified doxycycline and BP (clodronate) in an endotoxin-induced non-diabetic rat periodontitis model. They concluded that combined therapy leads to reduction of periodontal soft and hard tissue destruction and is associated with inhibition and downregulation of MMPs. Yaffe et al. explored the local delivery of doxycycline, alendronate, and TC, and combined efficacy of these drugs on alveolar bone loss. Their results demonstrated that alendronate was effective and doxycycline alone was the most effective, but TC alone was not effective in reducing bone loss. Combination of alendronate and TC was synergistically effective and combined treatment of alendronate+doxycycline showed no additive effect. Buduneli et al. evaluated the combined effects of LDD and alendronate on the gingival tissue and alveolar bone loss. They found that alendronate bone loss in the alendronate and combination groups was less than doxycycline and control groups, but the differences were not statistically significant. Similarly, they showed in their studies that alendronate either alone or in combination with doxycycline provided slight inhibition on lipopolysaccharide (LPS)-induced alveolar bone resorption. However, in one of these studies significantly increased serum OC level was observed in the combined drug treatment group. Therefore, they suggested that combined administration of alendronate and doxycycline might increase bone remodeling and thereby inhibit the progression of alveolar bone resorption in rats. Only one study evaluated the effect of mono and combined BP clodronate and LDD therapies on the alveolar bone loss in rats with diabetes. They determined that there were no statistically significant differences in bone levels among LDD, BP, and a combination therapy.

CONCLUSIONS

Alveolar bone resorption is the principal sequela and the cause of tooth loss in patients afflicted by periodontal disease. The use of bone-sparing drugs that inhibit alveolar bone resorption is a treatment field in host-modulation therapy. Based on the present knowledge of BPs, the use of BPs in periodontal research shows a promising method of managing periodontal diseases by modifying the host response. Published studies tend to demonstrate that BPs prevent or at least reduce the alveolar bone loss in comparison with control subjects. It is also conceivable that in the future, such drugs will not only be used to prevent bone loss observed in periodontal diseases, but also to possibly stimulate new bone formation. On the other hand, BRONJ is the most significant side effects of BPs on oral tissues and DM is one of the systemic risk factors contributing in the development of BRONJ and periodontitis. A simple way to avoid the side effects could be the topical use of BPs with a drug-delivery system. However, at this point, there is a lack of data determining the optimal prescription concentration and formulation of BPs in the treatment of periodontal disease and DM. The potential biases and other explanations for these findings must be investigated and evidence of a potential association between BPs and risk of DM would also provide a confirmation of alveolar bone loss.

As a result of several decades of extensive clinical trials, which have been described in many reviews, the clinically significant benefits of LDD when used in addition to highquality SRP has been shown to be effective in the treatment of periodontitis. Our literature researches revealed that the outcome of the studies about the effect of combined SRP+ doxycycline therapy in the glycemic control and on the alveolar bone loss of diabetic patients with periodontitis are controversial. Further studies are needed to enhance our understanding of the role of combined therapy (SRP+Doxycycline) in diabetic patients with periodontal disease.

Researches about the effects of combined therapy (BPs+LDD) in diabetics with periodontitis claimed that combined therapy did not affect the alveolar bone levels. Since there are limited numbers of research about the combined therapy (BPs+LDD) in diabetics with periodontitis, these findings should be verified by clinical human trials before BPs and/or doxycycline therapy are used in dental practice. In
brief, there is insufficient evidence to suggest the integration of these drugs in the treatment of diabetics with periodontal disease.

REFERENCES

88. Urade M. [Diabetes mellitus and bisphosphonate-related osteonecrosis of the jaws]. Clin Calcium
106. Agarwal A, Bhattacharya HS, Srikanth G, Singh A. Comparative evaluation of decalcified freeze dried

