Konuralp Journal of Mathematics
Volume 5 No. 1 pp. 49-55 (2017) ©KJM

NOVEL IDENTITIES INVOLVING GENERALIZED CARLITZ'S TWISTED q-EULER POLYNOMIALS ATTACHED TO χ UNDER

S_{4}

UGUR DURAN AND MEHMET ACIKGOZ

Abstract

The essential purpose of this paper is to give some novel symmetric identities for generalized Carlitz's twisted q-Euler polynomials attached to χ based on the fermionic p-adic invariant integral on \mathbb{Z}_{p} under S_{4}.

1. Introduction

In recent years, many mathematicians have studied on symmetric identities of some well-known special polynomials arising from p-adic q-integral on \mathbb{Z}_{p}. For example, Duran et al. [8] on q-Genocchi polynomials under S_{4}, Duran et al. [9] on weighted q-Genocchi polynomials under S_{4}, Araci et al. [3] on q-Frobenious Euler polynomials under S_{5}, Dolgy et al. [6] on q-Euler polynomials under S_{3}, Dolgy et al. [7] on h-extension of q-Euler polynomials under D_{3} and furthermore, moreover, Duran et al. [10] on Carlitz's twisted (h, q)-Euler polynomials under S_{n}, furthermore, Rim et al. [15] on generalized (h, q)-Euler numbers under D_{3} have worked extensively by using p-adic q-integrals on \mathbb{Z}_{p}.

Throughout the present paper we shall make use of the following notations: \mathbb{Z}_{p} denotes the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_{p} denotes the field of p-adic rational numbers, and \mathbb{C}_{p} denotes the completion of algebraic closure of \mathbb{Q}_{p}, where p be a fixed odd prime number. Let \mathbb{N} be the set of natural numbers and $\mathbb{N}^{*}=\mathbb{N} \cup\{0\}$. The normalized absolute value in accordance with the theory of p-adic analysis is given by $|p|_{p}=p^{-1}$. The notion " q " can be noted as an indeterminate, a complex number $q \in \mathbb{C}$ with $|q|<1$, or a p-adic number $q \in \mathbb{C}_{p}$ with $|q-1|_{p}<p^{-\frac{1}{p-1}}$ and $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. The q-analog of x is defined as $[x]_{q}=\frac{1-q^{x}}{1-q}$. It is obviously that $\lim _{q \rightarrow 1}[x]_{q}=x$. See cf. [3-21] for a systematic work.

[^0]For

$$
f \in U D\left(\mathbb{Z}_{p}\right)=\left\{f \mid f: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p} \text { is uniformly differentiable function }\right\},
$$

the fermionic p-adic invariant integral on \mathbb{Z}_{p} of a function $f \in U D\left(\mathbb{Z}_{p}\right)$ is defined by Kim in [12] as follows:

$$
\begin{equation*}
I_{-1}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x)(-1)^{x} . \tag{1.1}
\end{equation*}
$$

Hence, via Eq. (1.1), it follows

$$
I_{-1}\left(f_{n}\right)=(-1)^{n} I_{-1}(f)+2 \sum_{l=0}^{n-1}(-1)^{n-l-1} f(l)
$$

where $f_{n}(x)$ means $f(x+n)$. For more details, one can take a close look at the references [3], [6], [7], [8], [9], [10], [11], [12], [13], [15], [16], [17].

For $d \in \mathbb{N}$ with $(p, d)=1$ and $d \equiv 1(\bmod 2)$, we set

$$
\begin{gathered}
X:=X_{d}=\lim _{\bar{n}} \mathbb{Z} / d p^{n} \mathbb{Z} \text { and } X_{1}=\mathbb{Z}_{p}, \\
X^{*}=\bigcup_{\substack{0<a<d p \\
(a, p)=1}}\left(a+d p \mathbb{Z}_{p}\right)
\end{gathered}
$$

and

$$
a+d p^{n} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\quad \bmod d p^{n}\right)\right\}
$$

where $a \in \mathbb{Z}$ lies in $0 \leq a<d p^{n}$ cf. [3, 6-13, 15-19].
Note that

$$
\int_{X} f(x) d \mu_{-1}(x)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x), \text { for } f \in U D\left(\mathbb{Z}_{p}\right) .
$$

As is well-known that the Euler polynomials $E_{n}(x)$ are defined by means of the following Taylor expansion at $t=0$:

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}=\frac{2}{e^{t}+1} e^{x t}, \quad(|t|<\pi) . \tag{1.2}
\end{equation*}
$$

If we choose $x=0$ in the Eq. (1.2), it yields $E_{n}(0):=E_{n}$ that is called as n-th Euler number. Moreover, the polynomials $E_{n}(x)$ can be introduced by the following p-adic integral:

$$
E_{n}(x)=\int_{\mathbb{Z}_{p}}(x+y)^{n} d \mu_{-1}(y),
$$

see, for more details, $[2-7,10-20]$.
Let χ be a primitive Dirichlet's character with conductor $d \in \mathbb{N}$ with $d \equiv 1$ ($\bmod 2)$. Details on the Dirichlet's character χ can be found in [1].

As a generalization of $E_{n}(x)$, the generalized Euler polynomials attached to χ, $E_{n, \chi}(x)$, are defined by

$$
\begin{align*}
\int_{X} \chi(y) e^{(x+y) t} d \mu_{-1}(y) & =\left(\frac{2 \sum_{a=0}^{d-1} \chi(a)(-1)^{a} e^{a t}}{e^{d t+1}}\right) e^{x t} \tag{1.3}\\
& =\sum_{n=0}^{\infty} E_{n, \chi}(x) \frac{t^{n}}{n!}
\end{align*}
$$

Thus, by virtue of Eq. (1.3), we have

$$
E_{n, \chi}(x)=\int_{X} \chi(y)(x+y)^{n} d \mu_{-1}(y), n \geq 0
$$

Substituting with $x=0$ in the Eq. (1.3) yields $E_{n, \chi}(0):=E_{n, \chi}$ known as n-th generalized Euler number attached to χ, see [12] and [18].

Let $T_{p}=\bigcup_{N \geq 1} C_{p^{N}}=\lim _{N \rightarrow \infty} C_{p^{N}}$, in which $C_{p^{N}}=\left\{w: w^{p^{N}}=1\right\}$ is the cyclic group of order p^{N}. For $w \in T_{p}$, we denote by $\phi_{w}: \mathbb{Z}_{p} \rightarrow C_{p}$ the locally constant function $\ell \rightarrow w^{\ell}$. For $q \in C_{p}$ with $|1-q|_{p}<1$ and $w \in T_{p}$, in [17], Ryoo introduced the Carlitz's twisted q-Euler polynomials by the following fermionic p-adic invariant integral on \mathbb{Z}_{p} :

$$
\begin{equation*}
\mathcal{E}_{n, q, w}(x)=\int_{\mathbb{Z}_{p}} w^{y}[x+y]_{q}^{n} d \mu_{-1}(y) \quad(n \geq 0) \tag{1.4}
\end{equation*}
$$

Letting $x=0$ into the Eq. (1.4) gives $\mathcal{E}_{n, q, w}(0):=\mathcal{E}_{n, q, w}$ called n-th Carlitz's twisted q-Euler numbers.

From (1.4), we can derive the generating function of the generalized Carlitz's twisted q-Euler polynomials attached to χ as follows:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, \chi, q, w}(x) \frac{t^{n}}{n!}=\int_{\mathbb{Z}_{p}} \chi(y) w^{y} e^{[x+y]_{q} t} d \mu_{-1}(y) \tag{1.5}
\end{equation*}
$$

When $x=0$, we have $\mathcal{E}_{n, \chi, q, w}(0):=\mathcal{E}_{n, \chi, q, w}$ are called generalized Carlitz's twisted q-Euler numbers attached to χ.

The present paper is organized as follows. In the following section, we consider the generalized Carlitz's twisted q-Euler polynomials attached to χ and present some not only new but also interesting symmetric identities for these polynomials associated with the fermionic p-adic invariant integral on \mathbb{Z}_{p} under symmetric group of degree four. Furthermore, some speacial cases of our results in this paper are examined in the Corollary.

2. Novel symmetric Identities for $\mathcal{E}_{n, \chi, q, w}(x)$ under S_{4}

Let $w_{i} \in \mathbb{N}$ be fixed natural number which satisfies the condition $w_{i} \equiv 1$ ($\bmod 2)$, where $i \in \mathbb{Z}$ lies in $1 \leq i \leq 4$ and χ be the trivial character. Then, we observe

$$
\begin{gathered}
\int_{\mathbb{Z}_{p}} \chi(y) w^{w_{1} w_{2} w_{3} y} e^{\left[w_{1} w_{2} w_{3} y+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} t} d \mu_{-1}(y) \\
=\lim _{N \rightarrow \infty} \sum_{y=0}^{d p^{N}-1}(-1)^{y} \chi(y) w^{w_{1} w_{2} w_{3} y} e^{\left[w_{1} w_{2} w_{3} y+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} t} \\
=\lim _{N \rightarrow \infty} \sum_{l=0}^{d w_{4}-1} \sum_{y=0}^{p^{N}-1}(-1)^{l+y} \chi(l) w^{w_{1} w_{2} w_{3}\left(l+d w_{4} y\right)} \\
\times e^{\left[w_{1} w_{2} w_{3}\left(l+d w_{4} y\right)+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} t} .
\end{gathered}
$$

Hence, we discover
$I=\sum_{i=0}^{d w_{1}-1} \sum_{j=0}^{d w_{2}-1} \sum_{k=0}^{d w_{3}-1}(-1)^{i+j+k} \chi(i) \chi(j) \chi(k) w^{w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k}$
$\times \int_{\mathbb{Z}_{p}} \chi(y) w^{w_{1} w_{2} w_{3} y} e^{\left[w_{1} w_{2} w_{3} y+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} t} d \mu_{-1}(y)$

$$
\begin{gathered}
=\lim _{N \rightarrow \infty} \sum_{i=0}^{d w_{1}-1} \sum_{j=0}^{d w_{2}-1} \sum_{k=0}^{d w_{3}-1} \sum_{l=0}^{d w_{4}-1} \sum_{y=0}^{p^{N}-1}(-1)^{i+j+k+y+l} \chi(i j k l) w^{w_{1} w_{2} w_{3}\left(l+d w_{4} y\right)+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k} \\
\times e^{\left[w_{1} w_{2} w_{3}\left(l+d w_{4} y\right)+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} t .}
\end{gathered}
$$

Notice that Eq. (2.1) is invariant for any permutation $\sigma \in S_{4}$. Therefore, we state the following theorem.

Theorem 2.1. Let $w_{i} \in \mathbb{N}$ be any natural number which satisfies the condition $w_{i} \equiv 1(\bmod 2)$, in which $i \in \mathbb{Z}$ lies in $1 \leq i \leq 4$, χ be the trivial character and $n \geq 0$. Then the following

$$
\begin{aligned}
I= & \sum_{i=0}^{d w_{\sigma(1)}^{-1 d} w_{\sigma(2)}^{-1 d w_{\sigma(3)}-1} \sum_{j=0} \sum_{k=0}(-1)^{i+j+k} \chi(i) \chi(j) \chi(k) w^{w_{\sigma(4)} w_{\sigma(2)} w_{\sigma(3)} i+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(3)} j+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(2)} k}} \begin{aligned}
& \times \int_{\mathbb{Z}_{p}} \chi(y) w^{w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}\left(l+w_{\sigma(4)} y\right)} \\
& \times e^{\left[w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)} y+w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)} w_{\sigma(4)} x+w_{\sigma(4)} w_{\sigma(2)} w_{\sigma(3)} i+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(3)} j+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(2)} k\right]_{q} t} d \mu_{-1}(y)
\end{aligned}
\end{aligned}
$$

holds true for any $\sigma \in S_{4}$.
On account of the definition of $[x]_{q}$, we readily find that

$$
\begin{aligned}
& {\left[w_{1} w_{2} w_{3} y+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} } \\
= & {\left[w_{1} w_{2} w_{3}\right]_{q}\left[y+w_{4} x+\frac{w_{4}}{w_{1}} i+\frac{w_{4}}{w_{2}} j+\frac{w_{4}}{w_{3}} k\right]_{q^{w_{1} w_{2} w_{3}}} }
\end{aligned}
$$

which gives
$\int_{\mathbb{Z}_{p}} \chi(y) w^{w_{1} w_{2} w_{3} y}\left[w_{1} w_{2} w_{3} y+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q}^{n} d \mu_{-1}(y)$

So, by the Theorem 2.1 and Eq. (2.2), we procure the following theorem.
Theorem 2.2. Let $w_{i} \in \mathbb{N}$ be any natural number which satisfies the condition $w_{i} \equiv 1(\bmod 2)$, in which $i \in \mathbb{Z}$ lies in $1 \leq i \leq 4$ and χ be the trivial character. For $n \geq 0$, the following expression

$$
\begin{aligned}
I= & {\left[w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}\right]_{q}^{n} \sum_{i=0}^{d w_{\sigma(1)}} \sum_{j=0} \sum_{k=0}^{d w_{\sigma(2)}-1} \sum_{d w_{\sigma(3)}-1}(-1)^{i+j+k} \chi(i) \chi(j) \chi(k) } \\
& \times w^{w_{\sigma(4)} w_{\sigma(2)} w_{\sigma(3)} i+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(3)} j+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(2)} k} \\
& \times \mathcal{E}_{n, \chi, q^{w_{\sigma(1)}} w_{\sigma(2)} w_{\sigma(3)}, w^{w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}}}\left(w_{\sigma(4)} x+\frac{w_{\sigma(4)}}{w_{\sigma(1)}} i+\frac{w_{\sigma(4)}}{w_{\sigma(2)}} j+\frac{w_{\sigma(4)}}{w_{\sigma(3)}} k\right)
\end{aligned}
$$

holds true for any $\sigma \in S_{4}$.
By using the definitions of $[x]_{q}$ and binomial theorem, we see that

$$
\begin{align*}
& {\left[y+w_{4} x+\frac{w_{4}}{w_{1}} i+\frac{w_{4}}{w_{2}} j+\frac{w_{4}}{w_{3}} k\right]_{q^{w_{1} w_{2} w_{3}}}^{n} } \tag{2.3}\\
= & \sum_{m=0}^{n}\binom{n}{m}\left(\frac{\left[w_{4}\right]_{q}}{\left[w_{1} w_{2} w_{3}\right]_{q}}\right)^{n-m}\left[w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k\right]_{q^{w_{4}}}^{n-m} \\
& \times q^{m\left(w_{2} w_{3} w_{4} i+w_{1} w_{3} w_{4} j+w_{1} w_{2} w_{4} k\right)}\left[y+w_{4} x\right]_{q^{w_{1} w_{2} w_{3}}}^{m}
\end{align*}
$$

which yields

$$
\begin{align*}
& {\left[w_{1} w_{2} w_{3}\right]_{q}^{n} \sum_{i=0}^{d w_{1}-1} \sum_{j=0}^{d w_{2}-1} \sum_{k=0}^{d w_{3}-1}(-1)^{i+j+k} w^{w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k} \chi(i) \chi(j) \chi(k)} \tag{2.4}\\
& \quad \times \int_{\mathbb{Z}_{p}} \chi(y) w^{w_{1} w_{2} w_{3} y}\left[y+w_{4} x+\frac{w_{4}}{w_{1}} i+\frac{w_{4}}{w_{2}} j+\frac{w_{4}}{w_{3}} k\right]_{q^{w_{1} w_{2} w_{3}}}^{n} d \mu_{-1}(y) \\
& =\sum_{m=0}^{n}\binom{n}{m}\left[w_{1} w_{2} w_{3}\right]_{q}^{m}\left[w_{4}\right]_{q}^{n-m} \mathcal{E}_{m, \chi, q^{w_{1} w_{2} w_{3}, w^{w_{1} w_{2} w_{3}}}\left(w_{4} x\right) \sum_{i=0}^{d w_{1}-1} \sum_{j=0}^{d w_{2}-1}}^{\sum_{k=0}^{d w_{3}-1}}(-1)^{i+j+k} \chi(i) \chi(j) \chi(k) w^{w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k} \\
& \quad \sum_{k=0}^{m} \sum_{m=0}^{m\left(w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right)}\left[w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k\right]_{q^{w_{4}}}^{n-m} \\
& \quad \sum_{m}^{n}\binom{n}{m}\left[w_{1} w_{2} w_{3}\right]_{q}^{m}\left[w_{4}\right]_{q}^{n-m} \mathcal{E}_{m, \chi, q^{w_{1} w_{2} w_{3}, w^{w_{1} w_{2} w_{3}}}\left(w_{4} x\right) \tilde{U}_{n, m, q^{w_{4}, w^{w_{4}}}}\left(w_{1}, w_{2}, w_{3} \mid \chi\right),}
\end{align*}
$$

where

$$
\begin{align*}
& \quad \tilde{U}_{n, m, q, w}\left(w_{1}, w_{2}, w_{3} \mid \chi\right) \tag{2.5}\\
& =\sum_{i=0}^{d w_{1}-1} \sum_{j=0}^{d w_{2}-1} \sum_{k=0}^{d w_{3}-1}(-1)^{i+j+k} \chi(i) \chi(j) \chi(k) w^{w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k} \\
& \times q^{m\left(w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k\right)}\left[w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k\right]_{q}^{n-m}
\end{align*}
$$

Consequently, from Eqs. (2.5) and (2.5), we present the following theorem.
Theorem 2.3. Let $w_{i} \in \mathbb{N}$ be any natural number which satisfies the condition $w_{i} \equiv 1(\bmod 2)$, where $i \in \mathbb{Z}$ lies in $1 \leq i \leq 4$, χ be the trivial character and $n \in \mathbb{N}$. Hence, the following expression

$$
\begin{aligned}
& \sum_{m=0}^{n}\binom{n}{m}\left[w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}\right]_{q}^{m}\left[w_{\sigma(4)}\right]_{q}^{n-m} \\
& \times \mathcal{E}_{n, \chi, q^{w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}, w^{w}{ }_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}}}\left(w_{\sigma(4)} x\right) \tilde{U}_{n, m, q^{w_{\sigma(4)}}, w^{w_{\sigma(4)}}}\left(w_{\sigma(1)}, w_{\sigma(2)}, w_{\sigma(3)} \mid \chi\right)
\end{aligned}
$$

holds true for some $\sigma \in S_{4}$.

3. Conclusion

In this study, we have obtained some new symmetric identities for generalized Carlitz's twisted q-Euler polynomials attached to χ associated with the p-adic invariant integral on \mathbb{Z}_{p} under the symmetric group of degree four. We note that for $w=1$, all our results in this paper reduce to the results of the generalized q-Euler polynomials attached to χ under S_{4} in [18]. Moreover while $q \rightarrow 1$, all our results in this paper reduce to the results of the generalized twisted Euler polynomials attached to χ under S_{4}. Furthermore, for $w=1$ and $q \rightarrow 1$, all our results in this paper reduce to the results of the generalized Euler polynomials attached to χ under S_{4}.

References

[1] Apostol T. M., Introduction to Analytic Number Theory, New York, Splinger-Verlag, 1976.
[2] Araci S., Acikgoz M., Bagdasaryan A., Şen E., The Legendre polynomials associated with Bernoulli, Euler, Hermite and Bernstein polynomials, Turkish J. Anal. Number Theory, 1(2013), no. 1, 1-3.
[3] Araci S., Duran U., Acikgoz M., Symmetric identities involving q-Frobenius-Euler polynomials under Sym (5), Turkish J. Anal. Number Theory, 3(2015), no. 3, 90-93.
[4] Choi J., Anderson P. J., and Srivastava H. M., "Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler Polynomials of Order n and the Multiple Hurwitz Zeta Function," Appl. Math. Comput., 199(2008), 723-737.
[5] Choi J., Anderson P. J., and Srivastava H. M., "Carlitz's q-Bernoulli and q-Euler Numbers and Polynomials and a Class of q-Hurwitz Zeta Functions," Appl. Math. Comput., 215(2009), 1185-1208.
[6] Dolgy D. V., Jang Y. S., Kim T., Kwon H. I., Seo J.-J., Identities of symmetry for q-Euler polynomials derived from fermionic integral on \mathbb{Z}_{p} under symmetry group S_{3}, Appl. Math. Sci., 8(2014), no. 113, 5599-5607.
[7] Dolgy D. V., Kim T., Rim S.-H., Lee S.-H, Some Symmetric Identities for h-Extension of q-Euler Polynomials under Third Dihedral Group D_{3}, Internat. J. Math. Anal., 8(2014), no. 48, 2369-2374.
[8] Duran U., Acikgoz M., Esi A., Araci S., Some new symmetric identities involving q-Genocchi polynomials under S_{4}, J. Math. Anal., 6(2015), no. 4, 22-31.
[9] Duran U., Acikgoz M., Araci S., Symmetric identities involving weighted q-Genocchi polynomials under S_{4}, Proc. Jangjeon Math. Soc., 18(2015), No. 4, 455-465.
[10] Duran U., Acikgoz M., New identities for Carlitz's twisted (h, q)-Euler polynomials under symmetric group of degree n, J. Anal. Number Theory, (2016), 4(2016), no. 2 133-137.
[11] Kim T., On the analogs of Euler numbers and polynomials associated with p-adic q-integral on \mathbb{Z}_{p} at $q=-1$, J. Math. Anal. Appl., 331(2007), 779-792.
[12] Kim T., Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}, Russ. J. Math. Phys., 16(2009), no. 4, 484-491.
[13] Kim T., A note on the p-adic invariant integral in the rings of p-adic integers, arXiv:math/0606097v1 [math.NT] (2006).
[14] Ozden H., Simsek Y., and Cangul I. N., Euler polynomials associated with p-adic q-Euler measure, Gen. Math., 15(2007), No. 2-3, 24-37.
[15] Rim S. H., Kim T., Lee S. H., Symmetric identities of generalized (h, q)-Euler polynomials under third dihedral group, Appl. Math. Sci., 8(2014), no. 145, 7207-7212.
[16] Ryoo C. S., Symmetric properties for Carlitz's twisted (h, q)-Euler polynomials associated with p-adic q-integral on \mathbb{Z}_{p}, Internat. J. Math. Anal., Vol. 9 (2015), no. 40, 1947-1953.
[17] Ryoo C. S., Symmetric properties for Carlitz's twisted q-Euler numbers and polynomials associated with p-adic integral on \mathbb{Z}_{p}, Internat. J. Math. Anal., 9 (2015), no. 83, 4129-4134.
[18] Seo J. J., Kim T., Identities of symmetry for generalized q-Euler polynomials attached to χ under symmetric group S_{4}, Adv. Stud. Theoret. Phys., 9(2015), no. 8, 353-359.
[19] Simsek Y., Complete sum of products of (h, q)-extension of Euler polynomials and numbers, J. Difference Equ. Appl., 16(2010), no. 11, 1331-1348.
[20] Srivastava H. M., Some generalizations and basic (or $q-$) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci., 5(2011), 390-444.
[21] Srivastava H. M., Kim T., and Simsek Y., q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math Phys., 12(2005), 241-268.

University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, TR-27310 GaZiantep, TURKEY

E-mail address: duran.ugur@yahoo.com
University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, TR-27310 GaZiantep, TURKEY

E-mail address: acikgoz@gantep.edu.tr

[^0]: Date: January 25, 2015 and, in revised form, November 23, 2016.
 2000 Mathematics Subject Classification. 05A19, 05A30, 11S80, 11B68.
 Key words and phrases. Fermionic p-adic invariant integral on \mathbb{Z}_{p}; Invariant under S_{4}; Symmetric identities; Generalized Carlitz's twisted q-Euler polynomials.

