

Q-FOURIER LIPSCHITZ FUNCTIONS FOR THE GENERALIZED FOURIER TRANSFORM IN THE SPACE $L^2_O(\mathbb{R})$

S. EL OUADIH AND R. DAHER

ABSTRACT. In this paper, we prove the generalization of Titchmarsh's theorem for the generalized Fourier transform for functions satisfying the Q-Fourier Lipschitz condition in the space $L^2_O(\mathbb{R})$.

1. INTRODUCTION AND PRELIMINARIES

In [3], E. C. Titchmarsh's characterizes the set of functions in $L^2(\mathbb{R})$ satisfying the Cauchy-Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transform, namely we have:

Theorem 1.1. ([3]) Let $\delta \in (0,1)$ and assume that $f \in L^2(\mathbb{R})$. Then the following are equivalents

 $(i) \quad \|f(t+h) - f(t)\| = O(h^{\delta}), \quad as \quad h \to 0,$

(*ii*)
$$\int_{|\lambda| \ge r} |\widehat{f}(\lambda)|^2 d\lambda = O(r^{-2\delta}) \quad as \quad r \to \infty,$$

where f stands for the Fourier transform of f.

In this paper, we prove the generalization of Theorem 1.1 for the generalized Fourier transform for functions satisfying the Q-Fourier Lipschitz condition in the space $L^2_O(\mathbb{R})$. For this purpose, we use the generalized dual translation operator.

In this section, we develop some results from harmonic analysis related to the differential-difference operator Λ . Further details can be found in [1]-[2] and [6]. Consider the first-order singular differential-difference operator on the real line defined by

$$\Lambda f(x) = f'(x) + \left(\alpha + \frac{1}{2}\right) \frac{f(x) - f(-x)}{x} + q(x)f(x),$$

Date: January 4, 2016 and, in revised form, August 23, 2016.

²⁰⁰⁰ Mathematics Subject Classification. 42B37.

 $Key\ words\ and\ phrases.$ Generalized Fourier transform; Differential-difference operator; Generalized dual translation operator.

where $\alpha > -\frac{1}{2}$ and q is a C^{∞} real-valued odd function on \mathbb{R} . Put

$$Q(x) = \exp\left(-\int_0^x q(t)dt\right).$$

We denote by

• $\mathcal{S}(\mathbb{R})$ the space of C^{∞} functions f on \mathbb{R} , which are rapidly decreasing together with their derivatives, i.e., such that for all m, n = 0, 1, ...,

$$p_{m,n}(f) = \sup_{x \in \mathbb{R}} (1+|x|)^m \left| \frac{d^n}{dx^n} f(x) \right| < \infty.$$

The topology of $\mathcal{S}(\mathbb{R})$ is defined by the semi-norms $p_{m,n}, m, n = 0, 1, ...$ • $\mathcal{S}_Q(\mathbb{R})$ the space of C^{∞} functions f on \mathbb{R} such that for all m, n = 0, 1, ...,

$$P_{m,n}(f) = p_{m,n}(Qf) < \infty$$

The topology of $\mathcal{S}_Q(\mathbb{R})$ is defined by the semi-norms $P_{m,n}, m, n = 0, 1, ...$

- $\mathcal{S}'(\mathbb{R})$ the space of tempered distributions on \mathbb{R} .
- $\mathcal{S}'_Q(\mathbb{R})$ the topological dual of $\mathcal{S}_Q(\mathbb{R})$.
- $L^2_Q(\mathbb{R})$ be the class of measurable functions f on \mathbb{R} for which

$$||f||_{2,Q} = \left(\int_{\mathbb{R}} |f(x)Q(x)|^2 |x|^{2\alpha+1} dx\right)^{1/2} < \infty$$

The generalized Fourier transform of a function f in $\mathcal{S}_Q(\mathbb{R})$ is defined by

$$\mathcal{F}(f)(\lambda) = \int_{\mathbb{R}} f(x)Q(x)e_{\alpha}(-i\lambda x)|x|^{2\alpha+1}dx, \quad \lambda \in \mathbb{R}.$$

where e_{α} denotes the Dunkl kernel on \mathbb{R} defined by

$$e_{\alpha}(z) = j_{\alpha}(iz) + \frac{z}{2(\alpha+1)}j_{\alpha+1}(iz) \quad (z \in \mathbb{C}),$$

 j_{α} being the normalized spherical Bessel function of index α given by

$$j_{\alpha}(z) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n (z/2)^{2n}}{n! \Gamma(n+\alpha+1)} \quad (z \in \mathbb{C}),$$

The following properties collected from [4]-[5] will play a key role in the sequel.

Lemma 1.1. (i) For all $x \in \mathbb{R}$, $|e_{\alpha}(ix)| \leq 1$. (ii) For all $x \in \mathbb{R}$,

$$|1 - e_{\alpha}(ix)| \le |x|.$$

(iii) There is $c_{\alpha} > 0$ such that

$$|1 - e_{\alpha}(ix)| \ge c_{\alpha},$$

for all $x \in \mathbb{R}$ with $|x| \ge 1$.

From [6], we have two following theorems

Theorem 1.2. (i) The dual operator of Λ , defined by

$$\widetilde{\Lambda}f(x) = f'(x) + \left(\alpha + \frac{1}{2}\right)\frac{f(x) - f(-x)}{x} - q(x)f(x),$$

100

is a linear bounded operator from $S_Q(\mathbb{R})$ into itself. (ii) The generalized Fourier transform \mathcal{F} is a topological isomorphism from $S_Q(\mathbb{R})$ onto $\mathcal{S}(\mathbb{R})$. The inverse transform is given by

$$\mathcal{F}^{-1}(g)(\lambda) = \frac{1}{Q(x)} \int_{\mathbb{R}} g(\lambda) e_{\alpha}(i\lambda x) d\sigma(\lambda),$$

where

$$d\sigma(\lambda) = \frac{|\lambda|^{2\alpha+1}}{2^{2\alpha+2}(\Gamma(\alpha+1))^2} d\lambda.$$

Theorem 1.3. (i) For every $f \in S_Q(\mathbb{R})$ we have the Plancherel formula

(1.1)
$$\int_{\mathbb{R}} |f(x)|^2 (Q(x))^2 |x|^{2\alpha+1} dx = \int_{\mathbb{R}} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda).$$

(ii) The generalized Fourier transform \mathcal{F} extends uniquely to an isometric isomorphism from $L^2_Q(\mathbb{R})$ onto $L^2(\mathbb{R}, \sigma)$.

The generalized Fourier transform of a distribution $S \in S'_Q(\mathbb{R})$ is defined by

$$\langle \mathcal{F}(S), \psi \rangle = \langle S, \mathcal{F}^{-1}(\psi) \rangle, \quad \psi \in S(\mathbb{R}).$$

Theorem 1.4. ([6]) (i) The generalized Fourier transform \mathcal{F} is one-to-one from $S'_Q(\mathbb{R})$ onto $S'(\mathbb{R})$.

(ii) If $f \in L^2_Q(\mathbb{R})$, then the functional

$$\langle T_f, \psi \rangle = \int_{\mathbb{R}} f(x)\psi(x)|x|^{2\alpha+1}dx, \quad \psi \in S(\mathbb{R}),$$

is a tempered distribution \mathbb{R} . Moreover,

1

$$\mathcal{F}(T_{Q^2f}) = T_g,$$

with

$$g(\lambda) = \frac{1}{2^{2\alpha+2}(\Gamma(\alpha+1))^2} \mathcal{F}(f)(-\lambda)$$

In all what follows assume m = 1, 2, Let $\mathcal{W}_{2,Q}^m$ be the Sobolev type space constructed by the differential-difference operator $\widetilde{\Lambda}$, i.e.,

$$W_{2,Q}^m = \{ f \in L_Q^2(\mathbb{R}) : \widetilde{\Lambda}^j f \in L_Q^2(\mathbb{R}), j = 1, 2, ..., m \}.$$

More explicitly, $f \in \mathcal{W}_{2,Q}^m$ if and only if for each j = 1, 2, ..., m, there is a function in $L^2_Q(\mathbb{R})$ abusively denoted by $\widetilde{\Lambda}^j f$, such that $\widetilde{\Lambda}^j T_f = T_{\overline{\Lambda}^j f}$.

Proposition 1.1. ([6]) For $f \in W_{2,Q}^m$ we have

(1.2)
$$\mathcal{F}(\widetilde{\Lambda}^m f)(\lambda) = (i\lambda)^m \mathcal{F}(f)(\lambda).$$

Recall that the Dunkl translation operators $\tau^x,\,x\in\mathbb{R}$ are defined by

$$\begin{aligned} \tau^{x}f(y) &= \frac{1}{2}\int_{-1}^{1}f(\sqrt{x^{2}+y^{2}-2xyt})\left(1+\frac{x-y}{\sqrt{x^{2}+y^{2}-2xyt}}\right)A_{\alpha}(t)dt \\ &+ \frac{1}{2}\int_{-1}^{1}f(-\sqrt{x^{2}+y^{2}-2xyt})\left(1-\frac{x-y}{\sqrt{x^{2}+y^{2}-2xyt}}\right)A_{\alpha}(t)dt, \end{aligned}$$

where

$$A_{\alpha}(t) = \frac{\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+1/2)} (1+t)(1-t^2)^{\alpha-1/2}.$$

The generalized translation operators \mathcal{T}^x , $x \in \mathbb{R}$, tied to Λ are defined by

$$\mathcal{T}^x(y) = Q(x)Q(y)\tau^x(f/Q)(y).$$

The generalized dual translation operators are given by

$${}^t\mathcal{T}^x f(y) = \frac{Q(x)}{Q(y)} \tau^{-x} (Qf)(y).$$

Proposition 1.2. ([6]) (i) Let $f \in L^2_Q(\mathbb{R})$, Then for all $x \in \mathbb{R}$, ${}^t\mathcal{T}^x f \in L^2_Q(\mathbb{R})$ and

$$\|{}^t \mathcal{T}^x f\|_{2,Q} \le 2Q(x) \|f\|_{2,Q}.$$

(ii) For $f \in L^2_Q(\mathbb{R})$ we have

(1.3)
$$\mathcal{F}({}^{t}\mathcal{T}^{x}f)(\lambda) = Q(x)e_{\alpha}(-i\lambda x)\mathcal{F}(f)(\lambda).$$

Let $f \in L^2_Q(\mathbb{R})$. We define the differences of the orders m with a step h > 0 by

$$\Delta_h^m f(x) = ({}^t \mathcal{T}^h - Q(h)I)^m f(x),$$

where I is the unit operator in $L^2_Q(\mathbb{R})$.

2. Main Results

Lemma 2.1. For all $f \in W_{2,Q}^m$ and h > 0 we have

$$\|\Delta_h^m \widetilde{\Lambda}^k f\|_{2,Q}^2 = (Q(h))^{2m} \int_{\mathbb{R}} |1 - e_\alpha(-i\lambda h)|^{2m} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda),$$

where k = 0, 1, ..., m.

Proof. The result follows readily by using (1.1), (1.2), (1.3) and an induction on m.

Definition 2.1. Let $\delta > 1$ and $\beta > 0$. A function $f \in \mathcal{W}_{2,Q}^m$ is said to be in the Q-Fourier Lipschitz class, denoted by $Lip(Q, \delta, \beta)$, if

$$\|\Delta_h^m \widetilde{\Lambda}^k f\|_{2,Q} = O((Q(h))^m h^\delta \psi(h^\beta)) \quad \text{as} \quad h \to 0,$$

where

(a) k = 0, 1, ..., m and ψ is a continuous increasing function on $[0, \infty)$, (b) $\psi(0) = 0$, $\psi(ts) = \psi(t)\psi(s)$ for all $t, s \in [0, \infty)$, (c) and $c_{1/h}$

$$\int_0^{1/n} s^{1-2\delta} \psi(s^{-2\beta}) ds = O(h^{2\delta-2} \psi(h^{2\beta})), \quad h \to 0.$$

Theorem 2.1. Let $f \in W_{2,Q}^m$. Then the following are equivalents

(i)
$$f \in Lip(Q, \delta, \beta),$$

(ii) $\int_{|\lambda| \ge r} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) = O(r^{-2\delta}\psi(r^{-2\beta})), \quad as \quad r \to \infty.$

102

Proof. $(i) \Rightarrow (ii)$ Let $f \in Lip(Q, \delta, \beta)$. Then we have

$$|\Delta_h^m \widetilde{\Lambda}^k f\|_{2,Q} = O((Q(h))^m h^\delta \psi(h^\beta)) \quad \text{as} \quad h \to 0$$

If $|\lambda| \in [\frac{1}{h}, \frac{2}{h}]$, then $|\lambda h| \ge 1$ and (*ii*) of Lemma 1.1 implies that

$$1 \le \frac{1}{c_{\alpha}^{2m}} |1 - e_{\alpha}(-i\lambda h)|^{2m}.$$

Then

$$\begin{split} \int_{\frac{1}{h} \le |\lambda| \le \frac{2}{h}} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) &\leq \frac{1}{c_\alpha^{2m}} \int_{\frac{1}{h} \le |\lambda| \le \frac{2}{h}} |1 - e_\alpha(-i\lambda h)|^{2m} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) \\ &\leq \frac{1}{c_\alpha^{2m}} \int_{\mathbb{R}} |1 - e_\alpha(-i\lambda h)|^{2m} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) \\ &\leq \frac{1}{(Q(h))^{2m} c_\alpha^{2m}} ||\Delta_h^m \widetilde{\Lambda}^k f||_{2,Q}^2 \\ &= O(h^{2\delta} \psi(h^{2\beta})). \end{split}$$

We obtain

$$\int_{r \le |\lambda| \le 2r} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) \le Cr^{-2\delta} \psi(r^{-2\beta}), \quad r \to \infty,$$

where C is a positive constant. Now,

$$\begin{split} \int_{|\lambda| \ge r} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) &= \sum_{i=0}^{\infty} \int_{2^i r \le |\lambda| \le 2^{i+1}r} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) \\ &\le Cr^{-2\delta} \psi(r^{-2\beta}) \sum_{i=0}^{\infty} (2^{-2\delta} \psi(2^{-2\beta}))^i \\ &\le CC_{\delta,\beta} r^{-2\delta} \psi(r^{-2\beta}), \end{split}$$

where $C_{\delta,\beta} = (1 - 2^{-2\delta}\psi(2^{-2\beta})))^{-1}$ since $2^{-2\delta}\psi(2^{-2\beta}) < 1$. Consequently

$$\int_{|\lambda| \ge r} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) = O(r^{-2\delta} \psi(r^{-2\beta})), \quad as \quad r \to \infty.$$

 $(ii) \Rightarrow (i)$. Suppose now that

$$\int_{|\lambda| \ge r} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) = O(r^{-2\delta} \psi(r^{-2\beta})), \quad as \quad r \to \infty,$$

and write

$$\|\Delta_h^m \widetilde{\Lambda}^k f\|_{2,Q}^2 = (Q(h))^{2m} (I_1 + I_2),$$

where

$$I_1 = \int_{|\lambda| < \frac{1}{h}} |1 - e_\alpha(-i\lambda h)|^{2m} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda),$$

and

$$I_2 = \int_{|\lambda| \ge \frac{1}{h}} |1 - e_\alpha(-i\lambda h)|^{2m} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda).$$

Let us estimate the summands I_1 and I_2 from above. To estimate I_1 , we use both the first two estimates of e_{α} in Lemma 1.1. Therefore

$$\begin{split} I_1 &= \int_{|\lambda| < \frac{1}{h}} |1 - e_{\alpha}(-i\lambda h)|^{2m} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) \\ &= \int_{|\lambda| < \frac{1}{h}} |1 - e_{\alpha}(-i\lambda h)|^{2m-2} |1 - e_{\alpha}(-i\lambda h)|^2 |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) \\ &\leq 2^{2m-2} \int_{|\lambda| < \frac{1}{h}} |1 - e_{\alpha}(-i\lambda h)|^2 |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) \\ &\leq 2^{2m-2} h^2 \int_{|\lambda| < \frac{1}{h}} |\lambda|^{2k+2} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda). \end{split}$$

Now, we apply integration by parts for a function

$$\phi(x) = \int_{x}^{+\infty} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda),$$

to get

$$\begin{split} \int_0^x \lambda^{2k+2} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) &= \int_0^x -\lambda^2 \phi'(\lambda) d\lambda = -x^2 \phi(x) + 2 \int_0^x \lambda \phi(\lambda) d\lambda \\ &\leq C_1 \int_0^x \lambda^{1-2\delta} \psi(\lambda^{-2\beta}) d\lambda = O(x^{2-2\delta} \psi(x^{-2\beta})), \end{split}$$

where C_1 is a positive constant. Hence

$$I_1 = O(h^{2\delta}\psi(h^{2\beta})), \quad as \quad h \to 0.$$

On the other hand, it follows from the first inequality of Lemma 1.1 that

$$I_2 \le 4^m \int_{|\lambda| \ge \frac{1}{h}} |\lambda|^{2k} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) = O(h^{2\delta} \psi(h^{2\beta})), \quad as \quad h \to 0.$$

Consequently,

$$\|\Delta_h^m \widetilde{\Lambda}^k f\|_{2,Q} = O((Q(h))^m h^\delta \psi(h^\beta)) \quad \text{as} \quad h \to 0.$$

and this ends the proof of the theorem.

Corollary 2.1. Let $f \in \mathcal{W}_{2,Q}^m$. If

then

$$\int_{|\lambda| \ge r} |\mathcal{F}(f)(\lambda)|^2 d\sigma(\lambda) = O(r^{-2k-2\delta}\psi(r^{-2\beta})), \quad as \quad r \to \infty,$$

 $\|\Delta_h^m \widetilde{\Lambda}^k f\|_{2,Q} = O((Q(h))^m h^\delta \psi(h^\beta)) \quad as \quad h \to 0,$

where k = 0, 1, ..., m.

References

- E. A. Al Zahran, H. El Mir and M. A. Mourou: Intertwining operators associated with a Dunkl type operator on the real line and applications. Far East J. Appl. Math. Appl. 64(2), 129-144 (2012).
- [2] E. A. Al Zahrani and M. A. Mourou: The continuous wavelet transform associated with a Dunkl type operator on the real line. Adv. Pure Math. 3(5), 443-450 (2013).
- [3] E. C. Titchmarsh: Introduction to the theory of Fourier integrals. Claredon, oxford, (1948), Komkniga. Moxow. (2005).

- [4] E. S. Belkina and S. S. Platonov: Equivalence of K-functionals and modulus of smoothness constructed by generalized Dunkl translations. Izv. Vyssh. Uchebn. Zaved. Mat 8, 315 (2008).
- [5] R. F. Al Subaie and M. A. Mourou: Equivalence of K-functionals and modulus of smoothness generated by a generalized Dunkl operator on the real line. Adv. Pure Math. 5(6), 367-376 (2015).
- [6] R. F. Al Subaie and M. A. Mourou: The equivalence theorem for a K-functional and a modulus of smoothness constructed by a singular differential-difference operator on R. BJMCS, 10(4), 1-14 (2015). DOI: 10.9734/BJMCS/2015/19652.

Departement of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II, Casablanca, Morocco

 $E\text{-}mail\ address: \texttt{salahwadih@gmail.com}$

Departement of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II, Casablanca, Morocco

E-mail address: rjdaher024@gmail.com