Dergila

Journal Home page : http://dergipark.gov.tr/ejens

EJENS

European Journal of Engineering and Natural Sciences CODEN: EJENS

Isotherm and Kinetic Modelling of Azo Dyes Adsorption

Onur Isik¹, Ibrahim Demir¹, Ahmet Yuceer², Ozer Cinar^{3*},

¹Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak/Istanbul, Turkey.

²Department of Environmental Engineering, Cukurova University, 01330, Saricam/Adana, Turkey.

^{3*} Department of Environmental Engineering, Yildiz Technical University, 34220, Esenler/Istanbul, Turkey. *Corresponding Author email: ocinar@yildiz.edu.tr

Publication Info

Paperreceived: 29May 2016

Revisedreceived: 15October 2016

Accepted: 01 March 2017

Abstract

Textile and dye industries' wastewaters are one of the major problem in the water pollution. This wastewater causes serious environmental pollution, because of non-biodegradable and toxic dye molecules. Azo dyes are widely used in the textile industry. In the anaerobic condition azo dyestuff decompose to toxic byproducts. The aim of this work is to understand the adsorption mechanisms of various azo dyestuff adsorbed by domestic wastewater treatment plant inactivated sludge. To determine the adsorption mechanisms, various isotherms and kinetics were used and constants of each isotherms and kinetics were calculated for each dyestuff. In this study, Reactive Black 5 (RB5), Reactive Blue 21 (RB21), Acid Brown 283 (AB283) and Basic Violete 3 (BV3) azo dyestuff adsorption data were used for isotherms and kinetics calculations. The results of this study showed that, the best isotherm which describe the adsorption process was Freundlich. This isotherm model assumes that heterogeneous sorption occurs on adsorbent surface, stated in other words adsorption power varies at every sorption point. For RB5 and AB283 dyes, the best kinetic model which describe the adsorption process was pseudo-secondorder kinetic model. This kinetic model assumes that adsorption rate dependent to adsorbent material quantities and contact time.

Keywords

Azo Dyes, Dyestuff Adsorption, Equilibrium Isotherms and Kinetic Models

1. INTRODUCTION

Dye manufacturing is a large industry. There are more than 100,000 commercially available dyes in the world trade market [1].It is estimated that approximatively 1 million tones dyestuff produced annually, and 20-25% of these produced dyestuff is discharged to the receiving environment as waste [2]. Furthermore, Dyes are widely used in many industries, such as textile, packaging industry, automotive industry, food industry, etc. These industries colored wastewaters are caused serious aesthetic and environmental problems. The colored substances prevent the passes of the sun ray into the water. So that, photosynthetic reactions are reduced [3]. Dyes can cause mutagenic and carcinogenic effects on living organisms. At that, dyes can affect brain, central nervous, reproduction system, and organs such as kidney, lung, liver, etc. [4]. The majority of the synthetic dyes are resistant to biological degradation, because of its' complex structures, such as azo dyes [5]. Azo dyes have at least one double bounded nitrogen (N=N), and these dyes are named according to the number of double bounded nitrogen pairs. Azo dyes which have one double bound nitrogen molecules are called monoazo, and azo dyes which have 2 or 3 double bound nitrogen molecules are called diazo or triazo dyes [6]. In the anaerobic conditions, azo dyes are degraded to colorless and toxic aromatic amines [7]. Many physical, chemical and biological techniques have been developed for dye removal. Adsorption is one of the most important techniques for dye removal. Many adsorbents have been as scientifically or commercially tested for dye removal. Peat, activated sludge, coir pith, waste organic peel, tree fern, red mud and minerals can bered given as examples for these adsorbents [8,9,10,11,12,13,14,15]. Biological activated sludge systems are one of the most common treatment method for colored wastewaters, particularly textile industries wastewater treatment [16].

One of the dye remove mechanisms that occur in activated sludge system is adsorption. Adsorbable substances can transferred into the cell, and take a part in metabolic / co-metabolic activities. In this reason, studies on adsorption of dyestuff with activated sludge, and understand of the adsorption mechanisms of dyestuff is important for colored wastewater treatment [9]. Isotherms and kinetic models are important to understand the adsorption mechanisms, identify optimum operation conditions, and design effective treatment systems.

The aim of this work is to understand the adsorption mechanisms of various azo dyestuff adsorbed by domestic wastewater treatment plant inactivated sludge.

In this paper, some isotherms and kinetics used to understand Reactive Black 5 (RB5), Reactive Blue 21 (RB21), Acid Brown 283 (AB283) and Basic Violete 3 (BV3) azo dyestuff adsorption mechanisms by domestic wastewater plant

	vated sludge.				
,	Table 1. RB5, RB21, AB283	3, and BV3 dyes properties			
	ColorIndex	RB5	RB21	AB283	BV3
	Туре	Anionic	Anionic	Anionic	Cationic
	Chemical Property	Reactive	Reactive	Acidic	Basic
	Chromophore Group	Azo	Azo	Azo	Azo
	CAS	17095-24-8	12236-86-1	12219-66-8	42555
	Molecular Weight	991.82	377.43	882.25	407.99
	Molecule Formula	$C_{26}H_{21}N_5Na_4O_{19}S_6$	$C_{18}H_{15}N_7OS$	C ₃₂ H ₁₉ CrN ₈ O ₁₁ S.H.Na	$C_{25}H_{30}CIN_3$
	λ_{maks}	579	626	328	590

2. MATERIAL AND METHOD

The adsorption data used in the modeling was taken from a MS. Thesis of the year 2014 [17]. The material and method part can be stated in this MS. Thesis. To sum up, adsorption experiments were performed at room temperature, and the study was conducted at different concentrations of initial dye concentrations.

3. RESULT AND DISCUSSION

3.1. Adsorption Isotherms

Adsorption isotherms demonstrate adsorption phenomena during the adsorption process reaches an equilibrium state [18]. Design parameters can be determined fitting isotherm data to different isotherm models [19]. Adsorption isotherm is show the interaction between solutes and adsorbents. It is important for optimizing the use of adsorbents [18].

Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used in this study.

3.1.1. Langmuir Isotherm

Langmuir isotherm model assumes that adsorbent surface has adsorptive points and each point can adsorb one molecule. So that, mono layer occurred on the adsorbent and the layer disperse homogenous [18,20]. Langmuir isotherm equation linearized form is given as:

where; Ce is the equilibrium concentration of adsorbate in solution (mg/L), ge is the equilibrium solid phase concentration (mg/g), KLis the Langmuir constants. Ce/qe data is plotted against Ce to calculate KLand qmax[21,22].

3.1.2. Freundlich Isotherm

Freundlich isotherm model assumes that heterogeneous sorption occurs on adsorbent surface, stated in other words adsorption power varies at every sorption point [23]. Freundlich isotherm equation line arized form is given as:

$$\log(q_e) = \log K_f + \left(\frac{1}{n}\right) \log C_e$$

where; Ce is the equilibrium concentration of adsorbate in solution (mg/L), qe is the equilibrium solid phase concentration (mg/g), Kfand n are Freundlich constant. Kf (L/mg) represents the quantity of dye adsorbet onto adsorbent for a unit equilibrium concentration. n (unitless) shows that the degree of favourability of adsorption. 1/n value change between 0 and 1. Surface heterogeneity increase as 1/n value gets closer to zero. logqe data is plotted against log Ce to calculate Kf and 1/n [18,22,24].

3.1.3. Temkin Isotherm

Temkin isotherm model is evaluated interactions between adsorbed substances. This isotherm assumed that heat of adsorption decreases linearly with coverage due to adsorbate/adsorbent interactions [18,25]. Temkin isotherm equation line arized form is give as:

$$q_e = \frac{RT}{b_T} \ln K_T + \frac{RT}{b_T} \ln C_e$$
(3)
where; Ce is the equilibrium concentration of adsorbate in solution (mg/L), qe is the equilibrium solid phase concentration (mg/g), 1/bT corresponds to the adsorption potential of the adsorbent (J/mol), KT is the Temkin isotherm constant (L/g), T is temperature (Kelvin) and R gas constant (8.314 J/mol.K). qe data is plotted against lnCe to calculate KT and bT [26].

3.1.4. Dubinin-Radushkevich Isotherm

Dubinin-Radushkevich isotherm model is based on the micro pore volume filling theory. This isotherm assumes that multilayer adsorption mechanisms [27].Dubinin-Radushkevich isotherm equation line arized form is given as:

$$\ln q_e = \ln q_{max} + B_D \varepsilon^2$$

where; qe is the equilibrium solid phase concentration (mg/g), qmax is the maximum solid phase concentration (mg/g), BD is free energy adsorption constant. To calculate the equation (4) the initial value of \mathcal{E} must be calculated with the below equation:

$$\varepsilon = RT \ln \left(1 + \frac{1}{C_e} \right)$$

 $E = \frac{1}{\sqrt{2B_D}}$

where; Ce is the equilibrium concentration of adsorbate in solution (mg/L),T is temperature (Kelvin) and R gas constant (8.314 J/mol.K). Inqe data is plotted against £2 to calculate BD and qmax. Equation (6) is applied after the BD value find. In equation (6), E refers to free energy [27]:

If the free energy value range between 1-8 kj/mol, Van der Waals forces are effective and physical adsorption is happened. If free energy value greater than 8 kj/mol, chemical adsorption is happened [28].

3.1.5. Evaluation of Isotherms:

Calculated isotherm parameters summarized on the Table 2 for RB5, RB21, AB283 and BV3 dyes. The results on the Table 2 show that, the best isotherm which describe the adsorption process was Freundlich for all dyes, because of the higher regression coefficient (R2) values. This isotherm model assumes that heterogeneous sorption occurs on adsorbent surface, stated in other words adsorption power varies at every sorption point. Moreover, calculated "1/n" values were range between 0.378-0.957 (1/n<1). Its mean that chemical adsorption happened. Chemical adsorption is generally irreversible. For AB283 dye, calculated regression coefficient (R2=0.991) was very high for AB283 dye. It means that the heat of adsorption decreased linearly with coverage due to adsorbate/adsorbent interactions, so we assume that the adsorption process of AB283 by inactivated sludge is an endothermic reaction.

Table 2. Isotherms parameters of RB5, RB21, AB283 and BV3 dyes

Ishotherm	Parameters	RB5	RB21	AB283	BV3
	q _{max}	2.956	-0.00295	0.0376	888
Langmuir	K _L	0.0285	-0.0006	0.0237	0.0063
	\mathbb{R}^2	0.715	0.0243	0.875	0.089

(1)

(2)

(3)

(6)

(5)

EJENS, Volume 2, Issue 1 (2017)

	1/n	0.378	0.957	0.625	0.930
Freundlich	K _F	3.01	0.247	3.128	6.045
	\mathbb{R}^2	0.964	0.950	0.960	0.989
	b _t	3655	213	172	83
Tempkin	K _T	5.390	0.060	0.248	0.607
	\mathbb{R}^2	0.915	0.836	0.991	0.865
	q _{max}	2.03	16.665	33.36	47.375
Dubinin- Raduskevich	B _D	8*10 ⁻⁵	9*10-5	2*10-5	1*10 ⁻⁵
indusite (icii	\mathbf{R}^2	0.663	0.671	0.904	0.771

3.2. Adsorption Kinetics

Intraparticle diffusion model, Lagergren kinetic model, Pseudo second order kinetic model and Elovich kinetic model were used in this study. BV3 dye reached equilibrium point in 1 minute. So, BV3 dye data could not use in the kinetic models.

3.2.1. Intraparticle Diffusion Model

Intraparticle diffusion model assumes that adsorbate substances in solution enter the pores which are state at the adsorbate, and hold on the surface of the pores [29,30]. Intraparticle diffusion equation is given as:

 $q_t = k_p t^{0.5}$

(7)

where; qt is the amount of material collected on the adsorbent during the t time (mg/g), t is the time (minute), kp is the intraparticle diffusion rate constant. qt data is plotted against t0.5 to calculate kp [31,22].

Intraparticle diffusion model parameters calculated and summarized on the Table 3 for RB5, RB21 and AB283 dyes. High regression coefficient values proved that the intraparticle diffusion theory is valid for all these dyes. It can be assumed, the adsorbent substances which come to the adsorbent pores were entered the pores and kept the pore surface.

Initial Dye Parameters RB5 **RB21** AB283 Concentration \mathbb{R}^2 0.994 0.974 0.961 25 mg/L K_L (mg/g.min^{0.5}) 0.323 1.053 2.396 \mathbb{R}^2 0.973 0.968 0.979 50 mg/L K_L (mg/g.min^{0.5}) 0.363 1.413 4.933 \mathbf{R}^2 0.978 0.994 0.958 75 mg/L K_L (mg/g.min^{0.5}) 6.002 0.4513 1.834 \mathbb{R}^2 0.9821 0.995 0.964 100 mg/L K_L (mg/g.min^{0.5}) 0.5327 3.013 7.893 \mathbf{R}^2 0.950 0.988 0.991 150 mg/L $K_L (mg/g.min^{0.5})$ 0.6828 4.197 9.67

Table 3. Intraparticle diffusion model parameters of RB5, RB21 and AB283 dyes

3.2.2. Lagergren (First Order) Kinetic Model

Lagergren equation is used to evaluate the relationship between adsorption rate and adsorption capacity [32]. This model generally in compliance with low adsorbent concentration process [33]. Lagergren kinetic model equation is given as:

$$\log \frac{q_e - q_t}{q_e} = -\frac{k_1 t}{2.303}$$

where; qe is the equilibrium solid phase concentration (mg/g), qt is the amount of material collected on the adsorbent during the t time (mg/g), k1 is the Lagergren rate constant adsorption (min-1), t is the time (min) [34, 18].

Table 4. Lagergren kinetic model parameters of RB5, RB21 and AB283 dyes

Initial Dye Concentration	Parameters	RB5	RB21	AB283
25 mg/L	R ²	0.996	0.934	0.962

(8)

	$K_L (min^{-1})$	0.171	0.149	0.150
50 mg/L	R^2	0.997	0.968	0.857
	$K_L (min^{-1})$	1.170	0.103	0.220
75 mg/L	R^2	0.981	0.981	0.922
	$K_L (min^{-1})$	0.210	0.0744	0.189
100 mg/L	R^2	0.976	0.996	0.897
	$K_L (min^{-1})$	0.216	0.076	0.171
150 mg/L	R^2	0.919	0.997	0.893
	$K_L (min^{-1})$	0.231	0.073	0.157

Lagergren kinetic model parameters calculated and summarized on the Table 4 for RB5, RB21 and AB283 dyes. Calculated regression coefficient values for RB21 were increased in direct proportion to initial dye concentration. However, RB5 and AB283 dyes regression coefficient values were decreased depending on the increase initial dye concentration. So, it can be said that Lagergren kinetic model is available for RB21 dye.

3.2.3. .Pseudo Second Order Kinetic Model

This kinetic model assumes that adsorption rate dependent to adsorbent material quantities and contact time [35]. This kinetic model equation linearized form is given as:

(9)

$$\frac{1}{q_t} = \frac{1}{q_e} + \left(\frac{1}{k_2 q_e^2}\right) \frac{1}{t}$$

where; qe is the equilibrium solid phase concentration (mg/g), qt is the amount of material collected on the adsorbent during the t time (mg/g), k2 is the pseudo second order rate constant (g/mg.min), t is the time (minute) [36,37].

Pseudo second order kinetic model parameters calculated and summarized on the Table 5 for RB5, RB21 and AB283 dyes. Calculated regression coefficient values for RB5 and AB283 were increased in direct proportion to initial dye concentration. However, RB21 dye regression coefficient values were decreased depending on the increase initial dye concentration. So, it can be said that adsorption rate of RB5 and AB283 dependent to adsorbent material quantities and contact time.

Initial Dye Concentration	Parameters	RB5	RB21	AB283
25 mg/L	\mathbb{R}^2	0.990	0.958	0.922
20 mg/L	K _L (g/mg.min)	0.078	0.085	0.034
50 mg/L	\mathbb{R}^2	0.998	0.990	0.909
	K _L (g/mg.min)	0.087	0.020	0.061
75 mg/L	\mathbb{R}^2	0.996	0.976	0.964
/ e 111g/ 25	K _L (g/mg.min)	0.169	0.009	0.026
100 mg/L	\mathbb{R}^2	0.994	0.978	0.964
	K _L (g/mg.min)	0.163	0.005	0.018
150 mg/L	\mathbb{R}^2	0.898	0.991	0.971
	K _L (g/mg.min)	0.237	0.002	0.011

Table 5. Pseudo Second Order kinetic model parameters of RB5, RB21 and AB283 dyes

3.2.4. Elovich Kinetic Model

Elovich kinetic model has been determined the kinetics of the adsorption and desorption of inorganic substances on solid surface [38]. This kinetic model assumes that the solid (adsorbent) surface is heterogeneous, and adsorption kinetic not affected the low adsorption/desorption interaction [39]. This kinetic model equation linearized form is given as:

$$q_t = \frac{1}{\beta} \ln(\alpha\beta) + \frac{1}{\beta} \ln t \tag{10}$$

where; qt is the amount of material collected on the adsorbent during the t time (mg/g), t is the time (minute), α is the adsorption rate constant (mg/g.min). β is a constant related with to expand the activation energy for chemical sorption and the surface coverage (g/mg). qt data is plotted against lnt to calculate α and β [40,41].

Elovich kinetic model parameters calculated and summarized on the Table 5 for RB5, RB21 and AB283 dyes. High regression coefficient values proved that the Elovich kinetic model is valid for all these dyes. It can be assumed that desorption phenomena do not occur, and adsorption rate decrease with the coverage of adsorbent surface.

	2			
	\mathbb{R}^2	0.979	0.998	0.971
25 mg/L	α (mg/g.min)	0.486	17.121	22.623
	β (g/mg)	2.547	1.442	0.598
	\mathbb{R}^2	0.994	0.992	0.992
50 mg/L	α (mg/g.min)	0.663	0.973	89182
	β (g/mg)	2.300	0.579	0.785
	\mathbb{R}^2	0.996	0.967	0.988
75 mg/L	α (mg/g.min)	2.180	2.264	948
	β (g/mg)	2.809	0.319	0.397
	\mathbb{R}^2	0.997	0.985	0.998
100 mg/L	α (mg/g.min)	3.237	3.460	604
	β (g/mg)	2.557	0.183	0.272
	\mathbb{R}^2	0.967	0.989	0.985
150 mg/L	α (mg/g.min)	17.125	4.459	186
	β (g/mg)	2.796	0.119	0.176

4. CONCLUSION

The study was carried out to understand adsorption mechanisms of RB5, RB21, AB283 and BV3 dyes. Four different isotherms and four different kinetics were used and constants of each isotherms and kinetics were calculated for each dyestuff. The best isotherm which describe the adsorption process was Freundlich isotherm. The best kinetic model which has the highest regression coefficient values was Pseudo second order kinetic model for RB5 and AB283 dyes and Lagergren kinetic model for RB21 dye.

REFERENCE

- J.W. Lee, S.P. Choi, R. Thiruvenkatachari, W.G. Shim, H. Moon, "Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes," Dyes Pigments, 69 (2006) 196–203.
- [2]. A.B. dos Santos, F.J. Cervantes, J.B. van Lier, "Review Paper on Current Technologies for Decolourisation of Textile Wastewaters: Perspectives for Anaerobic Biotechnology," Bioresource Technology, 98 (2007) 2369-2385.
- [3]. A.A. Attia, B.S. Girgis, N.A. Fathy, "Removal Of Methylene Blue Bycarbons Derived From Peach Stones By H3PO4 Activation: Batch And Columnstudies," Dyes And Pigments, (2008) 282-289.
- [4]. M.A.M. Salleh, D.K. Mahmoud, W.A. Karim, A. Idris, "Cationic and anionic dye adsorption by agricultural solid wastes: A Comprehensive review," Desalination, 280 (2011) 1-13.
- [5]. A. Stolz, "Basic and applied aspects in the microbial degradation of azo dyes," Appl. Microbiol. Biotechnol. 56 (2001) 69-80.
- [6]. H. Zollinger, Synthesis, Properties and Applications of Organic Dyes and Pigments, Weinheim, (1991) 367p.
 [7]. O. Cinar, K. Demiroz, Biodegradation of Azo Dyes in Anaerobic–Aerobic Sequencing Batch Reactors, Handbook Environmental Chem., Biodegradation Azo Dyes, (2010) 215.
- [8]. Y.S. Ho, G. McKay, Chemical Eng. J., 70 (1998) 115.
- [9]. M. Basibuyuk, C.F. Forster, "An Examination of Adsorption Characteristics of A Basic Dye (Maxilon Red BL-N) on to Live Activated Sludge System," Process Biochemistry, 38 (2013) 1311-1316.
- [10]. C. Namasivayam, R. Radhika, S. Suba, Waste Manag., 1 (2001) 381.
- [11]. C. Namasivayam, N. Muniasamy, K. Gayatri, M. Rani, Bioresour. Technol., 57(1996) 37.
- [12]. Y.S. Ho, T.H. Chiang, Y.M. Hsueh, Process. Biochem., 40 (2005) 119.
- [13]. C. Namasivayam, D. Arasi, Chemosphere, 34 (1997) 401.
- [14]. A.S. Ozcan, A. J. Ozcan, Colloid. Interf. Sci., 276 (2004) 39.
- [15]. B. Meroufel, O. Benali, M. Benyahia, Y. Benmoussa, M.A. Zenasni, "Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies," J. Mater. Environ. Sci. 4 (3) (2013) 482-491.
- [16]. M. Basibuyuk, C.F. Forster, "The Use of SequentualAnaerobic/Aerobic Process for the Biotreatment of A Simulated Dying Wastewater," Environmental Technology, 28 (1997) 843-845.
- [17]. Isik, "Inaktif Camurla Cesitli Boyar Maddelerin Adsorpsiyonu," MS Thesis, Cukurova University, Institute of Natural and Applied Sciences, Adana, Turkey, Aug. 2014.
- [18] I.A.W. Tan, B.H. Hammed, A.L. Ahmad, "Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon," Chemical Eng. J., 127 (2007) 111-119.

- [19]. M. El-Guendi, "Homogeneous surface diffusion model of basic dyestuffs onto natural clay in batch adsorbers," Adsorpt. Sci. Technol., 8 (2) (1991) 217–225.
- [20]. Balci, "Atıksulardan Bisfenol-A Gideriminde Biyotik ve Abiyotik Süreçlerin Araştırılması," PhD Thesis, , Cukurova University, Institute of Natural and Applied Sciences, Adana, Turkey, 2014
- [21]. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918)
- [22]. O. Keskinkan, B. Balci, "Adsorptive Removal of Dyes Using Crude Tree Barks: Equilibrium Isotherm and Kinetics," Asian J. of Chem., 25 (8) (2013) 4693-4698.
- [23]. M.S.Chiou, H.Y.Li, "Equilibrium And Kinetic Modeling of Adsorption of Reactive Dye on Cross-Linked Chitosan Beads," Journal of Hazardous Materials, 93(2) (2002) 233-248
- [24]. F. Haghseresht, G. Lu, "Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents, Energy Fuels," 12 (1998) 1100–1107.
- [25]. J. Febrianto, A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati, S. Ismadji, "Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies," Journal of Hazardous Materials, 162 (2009) 616–645.
- [26]. J.F. Farah, Nour Sh. El-Gendy, "Performance, Kinetics and Equilibrium in Biosorption of Anionic Dye Acid Red 14 by the Waste Biomass of Saccharomyces cerevisiae as a Low-Cost Biosorbent," Turkish J Eng Env Sci., 37 (2013) 146-161.
- [27]. A. Dabrowski, "Adsorption-From Theory To Practice. Advances in Colloid and Interface Science," 93 (2001) 135-224.
- [28]. A.H. Chen, S.M.Chen, "Biosorption of Azo Dyes from Aqueous Solution Byglutaraldehyde-Cross Linked Chitosans," Journal Hazardous Material, 172 (2009) 1111-1121.
- [29]. H.C. Chu, K.M. Chen, "Reuse of Activated Sludge Biomass: I. Removal of Basic Dyes from Wastewater By Biomass," Process Biochemistry, 37 (2002) 595-600.
- [30]. O. Keskinkan, A. Yuceer, M.Z.L. Goksu, M. Basibuyuk, C.F. Forster, "Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum)," Process Biochemistry, 39 (2003) 179-183.
- [31]. W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. Am. Soc. Siv. Eng., 89 (1963) 31.
- [32]. Y. Song, Y. Du, D. Lu, G. Ye, J. Wang, "Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: A comparative study," Journal of Hazardous Materials, 274 (2014) 221-228.
- [33]. W. Hassan, U. Farooq, M. Ahmad, M. Athar, M.A. Khan, "Potential biosorbent, Haloxylon Recurvum plant systems, for the removal of methylene blue dye," Arabian Journal of Chemistry (2013).
- [34]. S. Langergren, B.K. Svenska, "Zur theorie der sogenannten adsorption geloester stoffe," Veternskapsakad Handlingar 24 (4) (1898) 1–39.
- [35]. H. Ghodosi, J. Farhoudi, M.H. Omid, A. Mahdavi, Mazdeh, "Comparison of different methods for linear regression of pseudo second order adsorption kinetics of cadmium," Journal of Civ. Eng. and Urb. 3, Issue 2 (2013) 73-76.
- [36]. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
- [37]. N. Ghasemi, P. Tamri, A. Khademi, N.S. Nezhad, ALWI, "Alwi, Linearized equations of pseudo second-order kinetic for the adsorption of Pd(II) on Pistacia Atlantica Shells," IERI Procedia, 5 (2013) 232-237.
- [38]. D.L. Sparks, Environmental Soil Chemistry, Academic Press, Second Edition, 350 p., USA, 2002.
- [39]. S.S. Gupta, K.G. Bhattacharyya, "Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science," 162 (1–2) (2011) 39–58.
- [40]. Y.S. Ho, G. Mckay, "Comparative Sorption Kinetic Studies of Dye and Aromatic Compounds onto Fly Ash," J. Environ. Sci. Health, A34 (35) (1999) 1179-1204.
- [41]. F.E. Erkurt, B. Balci, "Investigation of Adsorption of Reactive Black 5 Dye onto Activated Carbon by Using Kinetic and Adsorption Models," Cukurova Uni. J. of the Faculty of Engi. And Arch., 30(1) (2015) 257-269.