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Abstract 
 

In this paper, we consider a transient thermal stress investigation into an annulus thin elliptical plate in which edges 

are fixed and clamped. The realistic problem of the plate is supposed with mixed-type boundary conditions subjected 

to arbitrary initial temperature on the upper face, and the lower face is kept at zero temperature. Things get further 

complicated when internal heat generation persists in the object and further becomes unpredictable when sectional 

heat supply is impacted on the body. The solution to conductivity equation and the corresponding initial and boundary 

conditions is solved by employing a new integral transform technique. The governing equation for small deflection is 

found and utilized to preserve the intensities of thermal bending moments and twisting moments, involving the 

Mathieu and modified functions and their derivatives. It was found that the deflection result nearly agrees with the 

previously given result. Thus, the numerical results obtained are accurate enough for practical purposes. Conclusions 

emphasize the importance of better understanding the underlying elliptic structure, improved understanding of its 

relationship to circular object profile, and better estimates of the thermal effect of the thermoelastic problem. 
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1. Introduction 

Thermoelastic problems with mixed-type boundary 

conditions frequently occur in engineering applications. 

Such examples include the dip-forming process in 

metallurgy, the surface rewetting during loss-of-coolant 

accidents, the contact resistance between solids, etc. In the 

heat conduction analysis of these problems, the conventional 

integral transform method cannot be applied. We have to rely 

on the Wiener-Hopf technique or the dual integral/series 

equation. Due to the complexity of the problem or the 

existing methodologies, availability of closed-form solutions 

is limited. Nonetheless, numerical solutions are preferred 

and prevalent in practice, due to either non-availability or 

mathematical complexity of the corresponding exact 

solutions. Rather, limited utilization of analytical solutions 

should mustn't diminish their merit over numerical ones; 

since exact solutions, if available, provide an insight into the 

governing physics of the problem, that is often missing in 

any numerical solution. Moreover, analyzing closed-form 

solutions to obtain optimal design options for any particular 

application of interest is relatively simpler.  

Of most recent literature, some authors have undertaken 

the work on mixed-type boundary conditions, which can be 

summarised as given below. Han and Hasebe [1] used 

Green's function of a point heat source for a mechanical 

mixed boundary value problem of an infinite plane with an 

arbitrary hole, for which zero-displacement and traction-free 

boundary conditions are prescribed at its boundary. By 

employing the mapping technique and complex variable 

method, an exact solution including a hyper-geometrical 

function is obtained. In another paper, they [2] derived the 

Green's function for the bending problem of a thin plate with 

an elliptical hole under a bending heat source. Naser [3] 

determined a solution for a non-stationary heat equation in 

axial-symmetric cylindrical coordinates under mixed 

discontinuous boundary of the first and second kind 

conditions, using Laplace transform and separation of 

variables method used to solve the considered problem 

which is the dual integral equations method. Helsing [4] 

formulated an elastic problem with mixed boundary 

conditions, that is, Dirichlet conditions on parts of the 

boundary and Neumann conditions and solved on an interior 

planar domain using an integral equation method. Dang and 

Mai [5] estimated mixed boundary value problem for a 

biharmonic equation of the Airy stress function which 

models a crack problem of a rigid elastic plate using an 

iterative method. Al Duhaim et al. [6] determined the thermal 

stress of a mixed boundary value problem in half space using 

the Jones’s modification of the so-called Wiener-Hopf 

technique.  Parnell et al. [7] employed Wiener-Hopf and 

Cagniard-de Hoop techniques to solve a range of transient 

thermal mixed boundary value problems in the half space. 

Nuruddeen and Zaman [8] obtained the analytical solution of 

transient heat conduction in a solid homogeneous infinite 

circular cylinder using the Wiener-Hopf technique owing to 

the mixed nature of the boundary conditions. 

 It was observed from the previous literature that the 

thermoelastic problems for an elliptical plate with mixed-

type boundary conditions, in which plates are considered to 

be fixed and clamped, have not been taken into account for 

the study. Though, bending problems for fixed and clamped 

elliptical plates under the action of various external forces 

got wide consideration for practical applications in aircraft 

structures during the past years. The solution for elliptical 

thin plates bent by a strong moment placed at the centre of 

the plate is sought for built-in edges and for fixed, and 

clamped edges have been investigated by Cheng [9] with the 

aid of tensor calculus. The expressions for moments, 
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shearing forces and the biharmonic equation for deflection 

were transformed into elliptic coordinates. Sato [10] used 

Mathieu functions to study the bending of a clamped as well 

as simply-supported elliptical plate undergoing the 

combined action of uniform lateral load over its entire 

surface and normal in-plane force distributed in its central 

plane. Most of the studies considered by authors above have 

examined the bending of an elliptical structural element 

subjected to the combined action of uniform lateral load and 

in-plane force treated in terms of the exact analytical method 

in case of simply supported so as to rotate freely. Bhad et al. 

[11] investigated the thermoelastic problems on an elliptical 

plate in which internal heat sources are generated within the 

solid, with compounded effect due to sectional heating and 

boundary conditions of the Dirichlet type based on the theory 

of integral transformations. However, till date, nobody has 

studied any thermoelastic problem for elliptical plates with 

boundary conditions as mixed type, in which plates are 

considered to be fixed and clamped. Based on the thermal 

small-deflection classical theory, the stresses components 

are formulated using resultant forces and resultant moments 

in terms of the elliptical coordinates.   

 

2. Formulation of the Problem  

It is assumed that a thin elliptical plate is occupying the 

space :),,{(: 3RzD  ,ba  ,20   }0  z  

under unsteady-state temperature field due to internal heat 

source within it. The geometry of the plate indicates that an 

elliptic coordinate system ),,( z  is the most appropriate 

choices of the reference frame, which are related to the 

rectangular coordinate system ),,( zyx  by reklations 

,coscosh cx   ,sinsinh cy  zz  . The curves 

constant represent a family of confocal hyperbolas while the 

curves  constant constitute a family of confocal ellipses 

(refer Figure 1). Both sets of curves intersect each other 

orthogonally at every point in space. The geometry 

parameters are given as ],,[ ba  )2,0[   and ).,0( z    

 

Figure 1. Plate physical configuration. 

The heat conduction equation and boundary conditions are 

given as 
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where ),,,( tz is temperature of the plate at point 

),,( z  at t  time,   is the coefficient of thermal 

conductivity, ),,( tQ   represents an energy generation term, 

C /  represents thermal diffusivity in which   being 

the thermal conductivity of the material,   is the density, 

C  is the calorific capacity, assumed to be constant and  

)2cos2(cosh)2/( 22   ch .                                         (2) 

The heat generation term is assumed in the form 

)()2()(),,,( 000  zaQtzQ                     (3) 

in which 0Q  characterises the stream of heat, )( is the 

Dirac delta function in which ],[, 00 baaa   and 

,0z ],0[0   . 

The temperature distribution in the elliptical plate is obtained 

as a solution of the Eq. (1) with the following initial and 

boundary conditions 
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in which ),,( tzf  and ),,( tzg  are separate heat supply on 

the curved surfaces having the boundary conditions of 

mixed-type.  

The most general form of the equation of equilibrium for 

a plate element is expressed in terms of the partial derivatives 

of the deflection is found to satisfy the differential equations 

as  

0)1/(24   MD                                     (9) 

where D  is the stiffness coefficient of the plate and denoted 

as 

)]1(12/[ 23  ED                                                       (10) 

moreover, M  is bending of the plate due to change in the 

temperature and expressed as 




0
dzzEM 

                                                          (11) 

in which 
2  denotes the two-dimensional Laplacian 

operator in ),(  ,   denotes Poisson’s ratio,   and E  

denoting coefficient of linear thermal expansion and 

Young’s Modulus of the material of the plate respectively. 

Furthermore, the thermal stress components in terms of 

resultant forces and resultant moments are given [11,12] as  
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in which components of resultant moments and resultant 

force are related to the thermal deflection.  

    The complementary component of resultant forces 

),,,( jiNij  can be defined as 
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0  NNN                                                        (13) 

moreover, the thermally induced resultant force is 




0
dzEN 

                                                            (14) 

The complement components of resultant bending moments 

can be defined as 

In order to complete the formulation of the problem, it is 

necessary to introduce suitable boundary conditions. The 

plate edge is assumed to be fixed and clamped, that is  

0
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The Eqs. (1)-(16) constitute the mathematical formulation of 

the problem under consideration. 

 

3. Solution to the Problem 

To solve fundamental differential Eq. (1), Firstly we 

introduce the new integral transformation of order n and m 

over the variable  and  as  
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The inversion theorem of (17) is 
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where, the kernel is given as 
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in which mnq ,2  is a root of the transcendental equation  
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The kernel of above transform is indicated in elliptical 

function, and it removes the variable  and  from the 

differential equation defined in (1) for the mixed-type 

boundary conditions given in Eqs. (5) and (6). On applying 

new integral transform in Eq. (17) to the differential Eq. (1), 

and taking the property (19) into account under the 

conditions (5) and (6), the differential equation for the 

temperature ),,,( tz  is reduced to 
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Then, applying Fourier finite sine transform to the Eq. (20) 

moreover, taking into account the boundary conditions (7) 

and (8), the differential equation for ),,( ,2 tzq mn  is 

transformed into 
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where  
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and p  is a positive root of the transcendental equation 

0)sin( p , / mp  .  

Thus, temperature solution in the transformed domain 

reduces to 
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Finally, using the inversion of the Fourier finite sine 

transform and the inversion theorem (18), we obtain the 

solution as 
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The above function is given in Eq. (23) represents the 

temperature at every instance and at all points of the elliptical 

annulus of finite height under the influence of mixed-type 

boundary conditions. On substituting Eq. (23) in (9), one 

obtains the thermal moment as 
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Using Eq. (23) into Eq. (14), one obtains 
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Using Eq. (24) into Eq. (9) satisfying boundary conditions 

(16), we obtain the expression for thermal deflection as 
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Substituting Eqs. (24) and (26) in Eq. (15), one obtains the 

resultant moment as    
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4.  Transition to Annulus Circular Plate 

When the elliptical annulus plate tends degenerates into a 

circular annulus plate with the thickness 0 , internal 

radius a , and outer radius b , occupying the space 

:),,{( 3RzyxD  ,)( 2/122 byxa  },z where 

,)( 2/122 yxr   in such a way that ,2/)exp( rh   

,2/)exp( aah   and bbh 2/)exp(  [14] and taking   

independent of  . 

For that we take,  
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Eq. (21) degenerates into temperature distribution in hollow 

circular disc 
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in which 
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moreover, the kernel can be defined as 
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in which )(0 mrJ   and )(0 mrY  are  Bessel’s function of 

the first kind and second kind respectively. 

The results above agree with the results [13]. 

 

5. Numerical Results, Discussion and Remarks 

For the sake of simplicity of calculation, we introduce the 

following dimensionless values 
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Substituting the value of Eq. (33) in Eqs. (26)-(32), we 

obtained the expressions for the temperature and stresses, 

respectively for our numerical discussion. The numerical 

computations have been carried out for Aluminum metal 

with parameter a = 1 cm, b = 2 cm,   = 0.128 cm, ),( tzf  

),( tzg  )()( 0 tz   , ,0z ],,0[ z Modulus of 

Elasticity E = 6.9  106 N/cm2, Shear modulus G = 2.7  106 

N/cm2, Poisson ratio = 0.281, Thermal expansion 

coefficient,  = 25.5 10-6 cm/cm-0C, Thermal diffusivity  

= 0.86 cm2/sec, Thermal conductivity  = 0.48 calsec-1/cm0C 

with mn,2 0.0986, 0.3947, 0.8882, 1.5791, 2.4674, 

3.5530, 4.8361, 6.3165, 7.9943, 9.8696, 11.9422, 14.2122, 

16.6796, 19.3444, 22.2066, 25.2661, 28.5231, 31.9775, 

35.6292, 39.4784 are the positive & real roots of the 

transcendental equation. In order to examine the influence of 

heating on the plate, we performed the numerical calculation 

for all variables, and numerical calculations are depicted in 

the following figures with the help of MATHEMATICA 

software.  Figures 2–7 illustrate the numerical results of 

temperature distribution, bending moments, thermal 

deflection, and stresses of the elliptical plate due to internal 

heat generation within the solid, under thermal mixed-type 

boundary conditions. Figure 2(a) indicates the temperature 

distribution along the  -direction of the plate. The 

maximum value of temperature magnitude occurs at the 

outer face due to additional heat supply, and internal heat 

energy throughout the body. The distribution of the 

temperature gradient at each instance decreases towards 

inner face along the radial direction. 

 

 
Figure 2(a) Distribution of the dimensionless temperature 

along   for the different values of . 

Figure 2(b) illustrates temperature profile along the 

angular direction for various values of z. At the center of the 

core, temperature fluctuation is high compared to the inner 

and outer edge. This appearance may be due to more 

accumulation of heat energy, and hence thermal expansion is 

more giving high tensile force. Vis-à-vis, similar 

characteristic, was found during axis change in the graph as 

shown in Figure 2(c). As expected in Figure 2(d), with an 

increase of time in small value, the temperature increases 
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along a radial direction towards the outer edge. This increase 

could be due to thermal deformation occurring with 

additional sectional heat.  

 

 
Figure 2(b) Distribution of the dimensionless temperature 

along   the various values of z . 

 

 

Figure 2(c) Temperature distribution along z  for the 

different dimensionless values of  .  

 

Figure 2(d) Temperature distribution along  for the 

different dimensionless values of  . 

 

 

Figure 3(a) Dimensionless thermal deflection along  for 

the different values of . 

Figure 3(a) illustrates thermal deflection along the radial 

direction for different angles which increase with an increase 

in angular degree towards the outer edge. Whereas it also 

agrees on Eq. (16), which claims 0),,( ta  . In Figure 3(b) 

thermal deflection is higher at the center of the plate 

compared to the inner and outer edge of the plate and it may 

be due to accumulation of energy. Figure 3(c) defection 

increases along the radial direction for different values of 

time. It was observed that this graph satisfies Eq. (16) 

showing 0)0,,(  . It may be due to more exposure 

towards heat sources at the outer edge, and hence thermal 

expansion is more giving high tensile force. Figure 3(d) 

indicates that the ,M M  and M  approaches near to 

each other towards the centre of the elliptical plate. The 

residual bending moments are maximum for M  and M

, whereas M  is minimum at the outer edge. 

 

 

Figure 3(b) Thermal deflection along  for the different 

dimensionless values of . 
 

 

Figure 3(c) Dimensionless thermal deflection along  for 

the different values of  . 
 

 

Figure 3(d) Thermally induced bending moments along  .  
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Figure 4(a) Dimensionless Radial stress along z  for the 

different values of . 

 

 
Figure 4(b) Dimensionless Radial stress along  for the 

different values of . 

 

 

Figure 4(c) Dimensionless Radial stress along  for the 

different values of z  
 

Figure 4(a) depicts radial stress along the axial direction 

and attains zero at the inner boundary satisfying the 

condition, but increases towards outer edge even with the 

growth of oblique angles. This changes could be owing due 

to thermal expansion. Figure 4(b) illustrates that absolute 

value of stresses decreases at centre with the different 

angular angle, but increase at the outer edge. Similar radial 

inherent nature was found in Figure 4(c) along the radial 

direction for various value of z. Figure 4(d) shows radial 

stress attains maximum expansion at central part due to the 

accumulation of heat energy dissipated by sectional and 

internal heat supply which further decreases at the two 

extreme ends.  Figures 5-6 illustrate the circumferential and 

shear thermal stresses. 

 
 

 
Figure 4(d) Dimensionless Radial stress along   for 

different values of z . 

 

 
Figure 5(a) Dimensionless tangential stress along z  for the 

different values of . 

 

 
Figure 5(b) Dimensionless tangential stress along  for the 

various values of z . 
 

 

Figure 5(c) Tangential stress along  for the various 

values of z . 
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Figure 5(a) displays that the initial stress is zero which 

further increase along z for different values of  for different 

values of oblique angles. It might be because of sectional 

heat supply. When axes were flipped, total different 

characteristic was found as shown in Figure 5(b), the stresses 

are at the maximum at the centre core and attains zero at two 

edges. Figure 5(c) depicts tangential stress along the radial 

direction for different value of z, and it was observed that 

initially stress are minimum, but as it approaches towards the 

outer edge, it increases gradually due to sources of heat. 

Finally, Figure 5(d) illustrates the thermal bending moments 

exhibiting its effect along the angular direction. Here 

moments are maximum for 
M  and 

M , and 
M  is 

minimum at the central with both edges attaining zero’s. 

 

 
Figure 5(d) Thermal induced bending moments along . 

 

 
Figure 6(a) Dimensionless Shear stress along   for the 

different values of z . 

 

 
Figure 6(b) Dimensionless Shear stress along  for the 

different values of z . 

 

 

Figure 6(c) Dimensionless Shear stress along  for the 

various values of z . 

 

 
Figure 6(d) Thermally induced bending moments along  . 
 

Figure 6(a) shows shear stress sinusoidal in nature, and it 

attains zero at 2/,0  and 2   along the angular direction 

for different value of z . Figure 6(b) depicts decreasing stress 

trend with time for the various values of z . Figure 6(b) 

gradually increases towards its peak and then decreases to 

zero at b  for the different values of z . Figure 6(d) 

illustrates ,M M  and 
M  variation along with time. The 

residual bending moments are maximum for  
M  and 

M , 

whereas 
M  indicates negative value at the outer edge. 

Biswas [15] has assumed the following data in calculating 

the deflection at a point of a heated elliptical plate under 

stationary temperature based on the method devised by small 

deflection method as 

1 , 2/  , 1 , 3.00  , 01.02  , 1c , 

3.0 , ,102.1 5 12102E , 6000 T                (52) 

The central deflection obtained was 018.0  

(approx.). 

The author has applied the proposed method as given in 

equation (26) with same parameter above given in equation 

(52) and the axial deflection obtained was 0185.0 . The 

result above nearly agrees with the previously given result. 

 

6. Conclusions 

In this article, we have described the theoretical treatment 

of temperature distribution and the deflection in the form of 

ordinary and modified Mathieu functions used to determine 

thermal stresses by proposed new operational methods in-

line with other integral transform developed by authors[16-

18]. The analytical technique proposed here is relatively 
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straightforward and widely applicable compared to the 

methods proposed by other researchers. The results 

mentioned which were obtained while carrying out our 

research are illustrated as follows, 

 The advantage of this approach is its generality and its 

mathematical power to handle different types of 

mechanical and thermal boundary conditions during 

significant deflection under thermal loading. 

 The maximum tensile stress shifting from the outer surface 

due to maximum expansion at the outer part of the plate 

and its absolute value increases with radius may be 

attributable to heat, stress, concentration or available 

internal heat sources under known temperature field. 

 Finally, the maximum tensile stress occurs in the circular 

core on the major axis as compared to elliptical central part 

indicates the distribution of weak heating. It might be due 

to insufficient penetration of heat through the elliptical 

inner surface.  
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