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ABSTRACT 

 
In the present study we have formulated a new Maximum Fuzzy Entropy Problem (Max(F)EntP) for fuzzy membership 

function and proposed sufficient conditions for existence of its solution. Mentioned problem consists of approximation fuzzy 

membership function by maximizing Maximum Fuzzy Entropy (Max(F)Ent) measure with respect to membership functions 

with finite number of the fuzzy values subject to constraints generated by given moment functions. The existence of solution 

of mentioned problem is proved by virtue of convexity property of Max(F)Ent measure, the implicit function theorem and 

Lagrange multipliers method. Moreover, by using MATLAB programme one application of suggested method on fuzzy data 

analysis is given. 

 
Keywords: Fuzzy entropy measure, Maximum fuzzy entropy problem, Membership function, Fuzzy data analysis  

 

BULANIK ÜYELİK FONKSİYONUNUN YAKLAŞIMI İÇİN BİR YENİ  

METOT VE UYGULAMA 

 

ÖZET 

 
Bu çalışmada, tarafımızdan bulanık üyelik fonksiyonu için yeni bir maksimum bulanık entropi problemi (Max(F)EntP) 

geliştirilmiş ve bu problemin çözümünün varlığı için yeterli koşullar belirlenmiştir. Söz konusu problem sonlu sayıda bulanık 

değerlere sahip üyelik fonksiyonunu bulanık entropi ölçümünü verilmiş moment fonksiyonları yardımıyla üretilen moment 

koşulları altında maksimize etmekle yaklaşık olarak elde etme problemidir. Söz konusu problemin çözümünün varlığı 

Max(F)Ent ölçümünün konvekslik özelliği, kapalı fonksiyon teoremi ve Lagrange çarpanları yardımıyla ispatlanmıştır. Buna 

ek olarak, bulanık veri analizi üzerine sunulmuş yöntemin bir uygulaması MATLAB programı kullanılarak verilmiştir. 

 
Anahtar Kelimeler: Bulanık entropi ölçümü, Maksimum bulanık entropi problemi, Üyelik fonksiyonu, Bulanık veri analizi 

 

 

1. INTRODUCTION 

 

The concept of entropy and many problems concerned with its applications are given in [1]. Zadeh [2] 

has introduced the concept of fuzzy sets and developed his own theory to measure the uncertainity of a 

fuzzy set. It is known that a fuzzy set 𝐴 is defined in the universal set 𝑋 by a membership function 𝜇𝐴(𝑥)  

and represented as 

 

  𝐴 = { 𝑥𝑖 | 𝜇𝐴(𝑥𝑖) ∶ 𝑖 = 0,1,2, … , 𝑛}. 

 

𝜇𝐴  in crisp set maps whole members in universal set 𝑋 to {0,1}, 𝜇𝐴: 𝑋 → {0,1}. However, in fuzzy sets, 

each element is mapped to [0,1] by membership function,  𝜇𝐴: 𝑋 → [0,1].  For this reason, fuzzy set can 

be described as “vague boundary” set comparing with crisp set in [3,4].  
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By starting from the concept of fuzzy sets De Luca and Termini [5] suggested that corresponding to 

Shannon’s [6] probabilistic entropy the fuzzy entropy measure 𝐻(𝐴) for fuzzy set 𝐴 containing finite 

number elements can be expressed by formula  
 

𝐻(𝐴) = − ∑ [𝜇𝐴(𝑥𝑖)𝑙𝑜𝑔𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))𝑛
𝑖=0 𝑙𝑜𝑔(1 − 𝜇𝐴(𝑥𝑖))] ,   

  

where 𝐴 is a fuzzy set, 𝜇𝐴(𝑥) is membership function and 𝜇𝐴(𝑥𝑖) are the fuzzy values.  

 

After the development of fuzzy entropy measure formula 𝐻(𝐴)  given in [5], a large number of measures 

of fuzzy entropy were discussed, characterized and generalized by various authors. Some other 

interesting findings are related with theoretical measures of fuzzy entropy and their applications have 

been provided by Kapur [7], Parkash and Sharma [8], Yager [9], Bhandari and Pal [10], Parkash, Sharma 

and Kumar [11] etc. In [12], Parkash, Sharma and Mahajan introduced new measures of weigted fuzzy 

entropy including two moment conditions. 

 

The aim of this study consists of developing a new Generalized Maximum Fuzzy Entropy Methods in 

the form of MinMax(F)EntM and MaxMax(F)EntM on the basis of entropy optimization theory [13-15] 

and present an application.  

 

The suggested paper is formed as follows. In Section 2,  a complete definition of Maximum Fuzzy 

Entropy Problem, Method and Distribution are proposed. In Section 3,  the convexity of Max(F)Ent 

measure is introduced. In Section 4,  the existence of Maximum Fuzzy Entropy Problem (Max(F)EntP)  

is proved by using Lagrange multipliers methods [16] and implicit function theorem [17]. In Section 5, 

the evaluation of Lagrange multipliers for Maximum Fuzzy Entropy Problem (Max(F)EntP) is 

formulated by Existence theorem. In Section 6, the maximum fuzzy entropy value is achieved. In Section 

7, new Generalized Maximum Fuzzy Entropy Problems (MinMax(F)Ent)m,  (MaxMax(F)Ent)m  and 

methods of solving these problems are developed [18-20]. In Section 8, it is given an application about 

GMax(F)EntM. Finally, the main results obtained in this study are summarized.  

 

2. MAXIMUM FUZZY ENTROPY PROBLEM (MAX(F)ENTP) 

On the basis of entropy optimization theory we have suggested a new Generalized Maximum Fuzzy 

Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM.  These 

methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in 

order to define the special functional with maximum values of Max(F)Ent measure and secondary 

optimization of mentioned functional with respect to moment vector functions. Distribution, in other 

words a set of successive values of estimated membership function closest to (furthest from) the given 

membership function in the sense of Max(F)Ent measure, for the first time, obtained by mentioned 

methods is defined as (MinMax(F)Ent)m  ((MaxMax(F)Ent)m) distribution which can be applied in 

many problems of fuzzy data analysis. One of mentioned applications is approximately obtaining fuzzy 

membership function according to given fuzzy data. 

In formula for fuzzy set 𝐴 containing finite number elements suggested by De Luca and Termini [5] we 

write “ln” instead of  “log” in order to simply operations. Therefore, we shall consider the following 

formula  

 

𝐻(𝐴) = − ∑ [𝜇𝐴(𝑥𝑖)𝑙𝑛𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))𝑛
𝑖=0 𝑙𝑛(1 − 𝜇𝐴(𝑥𝑖))].       (1) 

 

Maximum Fuzzy Entropy Problem (Max(F)EntP) consists of maximizing Max(F)Ent measure (1) with 

respect to  membership functions 𝜇𝐴(𝑥)  with finite number of the fuzzy values 𝜇𝐴(𝑥𝑖), 𝑖 = 0,1,...,𝑛 

subject to constraints  

 

∑ 𝜇𝐴(𝑥𝑖)𝑛
𝑖=0 𝑔𝑗(𝑥𝑖) = 𝜇𝑗, 𝑗 = 0,1,2, … , 𝑚                         (2) 
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where 𝑔0(𝑥) ≡ 1;  𝜇𝑗, 𝑗 = 0,1,2, … , 𝑚 are moment values of 𝜇𝐴(𝑥𝑖), 𝑖 = 0,1,...,𝑛 with respect to 

moment functions 𝑔𝑗(𝑥), 𝑗 = 0,1,2, … , 𝑚; 𝑚 < 𝑛 . 
 

The distribution of fuzzy values (𝜇𝐴(𝑥0), 𝜇𝐴(𝑥1), … , 𝜇𝐴(𝑥𝑛)) maximizing function (1) subject to 

constraints (2) (briefly stated problem (1),(2)) we call Maximum Fuzzy Entropy Distribution 

(Max(F)EntD) just as Maximum Entropy Distribution (MaxEntD) of probabilistic entropy optimization 

problem. 

 

Fuzzy Entropy Optimization Problem (1),(2) is a conditional extremum problem. The solvability of this 

problem requires to fulfillment of several conditions. Mentioned conditions are following: 

 

1)  Moment functions 𝑔𝑗(𝑥), 𝑗 = 0,1,2, … , 𝑚 are linearly independent; 

2)  The inequality 𝑛 > 𝑚 is satisfied; 

3) Moment values �̃�𝑗, 𝑗 = 0,1,2, … , 𝑚 are obtained by virtue of given fuzzy values  �̃�𝐴(𝑥𝑖), 𝑖 =

0,1, … , 𝑛 and moment functions 𝑔𝑗(𝑥)  , 𝑗 = 0,1, … , 𝑚 in the form of equalities 

 

∑ 𝑔𝑗(𝑥𝑖) �̃�𝐴(𝑥𝑖)𝑛
𝑖=0  

= �̃�𝑗, 𝑗 = 0,1, … , 𝑚.          (21) 

 

Remark. (21) means that there are linear dependency between  the column �̃� = (�̃�0, �̃�1, … , �̃�𝑚)𝑇 and 

all columns of matrix 𝐴 = (𝑔𝑗(𝑥𝑖))𝑗=0,1,..,𝑚
𝑖=0,1,…,𝑛

. Consequently, 𝑟𝑎𝑛𝑘𝐴 is equal to 𝑟𝑎𝑛𝑘(𝐴: �̃�), where 

(𝐴: �̃� ) is augmented matrix for system (2) as the matrix 𝐴 with column �̃� added to it. Therefore, system 

(2) with respect to 𝜇𝐴(𝑥𝑖),  𝑖 = 0,1,...,𝑛 has a solution. Note that from condition 1)  follows that 

𝑟𝑎𝑛𝑘𝐴 = 𝑚 + 1. 

 

3. CONVEXITY OF MAX(F)ENT MEASURE 

 

In order to simplify mathematical operations constrained with (1) we use conventional signs 𝜇𝐴(𝑥𝑖) =
𝑋𝑖,  𝑖 = 0,1,...,𝑛 and write (1) in the form  

 

𝐻 = − ∑ [𝑋𝑖𝑙𝑛𝑋𝑖 + (1 − 𝑋𝑖)𝑛
𝑖=0 𝑙𝑛(1 − 𝑋𝑖)].             (1′) 

 

From (1′) follows that  
𝜕𝐻

𝜕𝑋𝑖
= 𝑙𝑛 (

1−𝑋𝑖

𝑋𝑖
) ;   

𝜕2𝐻

𝜕𝑋𝑖𝜕𝑋𝑗
= {

−
1

𝑋𝑗(1−𝑋𝑗)
 , 𝑖 = 𝑗

          0       , 𝑖 ≠ 𝑗 .
  

 

Consequently, Hessian matrix ℋ is defined in the following form 

ℋ = (
𝜕2𝐻

𝜕𝑋𝑖𝜕𝑋𝑗
)

𝑗=0,1,..,𝑛
𝑖=0,1,…,𝑛

. 

 

Since eigenvalues of ℋ matrix are negative : −
1

𝑋𝑖(1−𝑋𝑖)
< 0, 𝑖 = 0,1, … , 𝑛 ,  therefore this matrix is 

negative defined. This result shows that function 𝐻 is convex and at critical point (𝑋0
0, 𝑋1

0, … , 𝑋𝑛
0),   𝑋𝑖

0 =
1

2
  for which  

𝜕𝐻

𝜕𝑋𝑖
= 0 function 𝐻 reaches maximum value.  
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4. THE EXISTENCE OF SOLUTION OF MAX(F)ENTP 

 

Maximum Fuzzy Entropy Problem (1),(2) is a conditional extremum problem and can be solved by 

Lagrange multipliers method. According to Lagrange multipliers method firstly the new auxiliary 

function 𝑈 is constructed: 

𝑈 = − ∑ [𝜇𝐴(𝑥 𝑖)𝑙𝑛𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))𝑛
𝑖=0 𝑙𝑛(1 − 𝜇𝐴(𝑥𝑖)) − ∑ 𝜆𝑗(∑ 𝜇𝐴(𝑥𝑖)

𝑛
𝑖=0 𝑔𝑗(𝑥) − 𝜇𝑗)𝑚

𝑗=0 ], (3) 

 

where 𝜆𝑗 are certain constant factors and the function 𝑈 is now investigated for an unconditional 

extremum; we form a system  of equations  
𝜕𝑈

𝜕𝜆𝑗
= 0, 𝑗 = 0,1, … , 𝑚   supplemented by the constraint 

equations (2) from which all the 𝑛 + 𝑚 + 2 unknowns 𝜇𝐴(𝑥𝑖), 𝑖 = 0,1, … , 𝑛 and 𝜆𝑗 , 𝑗 = 0,1, … , 𝑚 are 

determined.  

 

From (3) follows that 

 
𝜕𝑈

𝜕𝜇𝐴(𝑥𝑖)
= [−𝑙𝑛𝜇𝐴(𝑥𝑖) + 𝜇𝐴(𝑥𝑖)

1

𝜇𝐴(𝑥𝑖)
− 𝑙𝑛(1 − 𝜇𝐴(𝑥𝑖)) + (1 − 𝜇𝐴(𝑥𝑖))

1

𝜇𝐴(𝑥𝑖)
(−1)] −

                                − ∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚
𝑗=0 = 0,            

             [−𝑙𝑛𝜇𝐴(𝑥𝑖) + 1 − 𝑙𝑛(1 − 𝜇𝐴(𝑥𝑖)) − 1] − ∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚
𝑗=0 = 0; 

             −𝑙𝑛
𝜇𝐴(𝑥𝑖)

(1−𝜇𝐴(𝑥𝑖))
= ∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚

𝑗=0 ; 

1−𝜇𝐴(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
= 𝑒∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚

𝑗=0 ,    𝑖 = 0,1, … , 𝑛                                 

1

𝜇𝐴(𝑥𝑖)
= 1 + 𝑒∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚

𝑗=0 , 

                                                                                                                                                          

𝜇𝐴(𝑥𝑖) =
1

1+𝑒
∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚

𝑗=0
,   𝑖 = 0,1, … , 𝑛.                                       (4) 

Also, from (1) follows that 

𝜕𝑈

𝜕𝜆𝑗
= −(∑ 𝜇𝐴(𝑥𝑖)𝑚

𝑗=0 𝑔𝑗(𝑥) − 𝜇𝑗) = 0,    𝑗 = 0,1, … , 𝑚.    

If we take (4) into account in (2), then  

 ∑
1

1+𝑒
∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚

𝑗=0

𝑛
𝑖=0 𝑔𝑗(𝑥𝑖) = 𝜇𝑗 ,    𝑗 = 0,1,2, … , 𝑚.            (5) 

If denote the left-hand of (5) by 𝑓𝑗(𝜆0, 𝜆1, … , 𝜆𝑚), then (5) can be written as  

𝑓𝑗(𝜆0, 𝜆1, … , 𝜆𝑚) = ∑
1

1+𝑒
∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚

𝑗=0

𝑛
𝑖=0 𝑔𝑗(𝑥𝑖) = 𝜇𝑗,    𝑗 = 0,1, … , 𝑚.                          (6) 

From (21) follows that  

∑ 𝑔𝑗(𝑥𝑖) �̃�𝐴(𝑥𝑖)𝑚
𝑖=0  

= �̃�𝑗 − ∑ 𝑔𝑗(𝑥𝑖) �̃�𝐴(𝑥𝑖),𝑛
𝑖=𝑚+1    𝑗 = 0,1, … , 𝑚 .                        (7) 
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(7) shows that there are linear correlations between  �̃�𝐴(𝑥𝑖), 𝑖 = 0,1, … , 𝑚 and �̃�𝐴(𝑥𝑖), 𝑖 = 𝑚 + 1, … , 𝑛. 

Consequently, from the assumption  1), that moment functions 𝑔𝑗(𝑥), 𝑗 = 0,1, … , 𝑚 are  linearly 

indepedent, then  the following condition is satisfied 

 𝑑𝑒𝑡 (𝑔𝑗(𝑥𝑖))𝑗=0,1,..,𝑚
𝑖=0,1,…,𝑚

≠ 0.                              (22) 

In (7), �̃�𝐴(𝑥𝑖), 𝑖 = 0,1, … , 𝑚 by Cramer method of solving linear nonhomojenus  algebrical equations 

can be expressed via  �̃�𝑗, 𝑗 = 0,1, … , 𝑚  and  �̃�𝐴(𝑥𝑖), 𝑖 = 𝑚 + 1, … , 𝑛  in the form  

 

�̃�𝐴(𝑥𝑖) = 𝐹(�̃�0, �̃�1, … , �̃�𝑚, �̃�𝐴(𝑥𝑚+1), … , �̃�𝐴(𝑥𝑛)), 𝑖 = 0,1, … , 𝑚.    (23) 

 

From (4) follows that  

 

∑ 𝜆𝑗𝑔𝑗(𝑥𝑖) = ln (
1−𝜇𝐴(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
) ,𝑚

𝑗=0   𝑖 = 0,1, … , 𝑚.          (8) 

 

If subsitute (23) in (8) and solve the getting equations with respect to 𝜆0, 𝜆1, … , 𝜆𝑚, then it is possible 

to find �̃�0, �̃�1, … , �̃�𝑚  satisyfing (6) and the equations  

 

𝑓𝑗(�̃�0, �̃�1, … , �̃�𝑚) = �̃�𝑗,   𝑗 = 0,1, … , 𝑚        (9) 

 

are arised. Therefore, subject to assumption (22) by solving (7) with respect to �̃�𝐴(𝑥𝑖), 𝑖 = 0,1, … , 𝑚  

and substituting (23)  in (8)  the relations (9) are appeared. 

 

Note that relations (9) are one of  the important conditions to solve equations (6) with respect to 

𝜆0, 𝜆1, … , 𝜆𝑚. The other condition to solve equations (6) with respect to 𝜆0, 𝜆1, … , 𝜆𝑚 in the some 

neighbourhood of (�̃�0, �̃�1, … , �̃�𝑚)  satisfiying (9) is the condition 

 

𝐽 =
𝐷(𝑓0,𝑓1,… ,𝑓𝑚)

𝐷(𝜆0,𝜆1,… , 𝜆𝑚)
≠ 0.            (10) 

 

Now, we prove the fulfillment of (10). From (6), it follows that  

 
𝜕𝑓𝑗

𝜕𝜆𝑘
= ∑ 𝜇𝐴(𝑥𝑖)(1 − 𝜇𝐴(𝑥𝑖))𝑛

𝑖=0 𝑔𝑗(𝑥𝑖)𝑔𝑘(𝑥𝑖),  𝑗 = 0,1, … , 𝑚, 𝑘 =  0,1, … , 𝑚.    (11) 

 

Let us ∑ 𝜇𝐴(𝑥𝑖)(1 − 𝜇𝐴(𝑥𝑖))𝑛
𝑖=0 = 𝛼. Then, 

 

 ∑
𝜇𝐴(𝑥𝑖)(1−𝜇𝐴(𝑥𝑖))

𝛼
= 1𝑛

𝑖=0 .             (12) 

 

In (12), if the ratio  
𝜇𝐴(𝑥𝑖)(1−𝜇𝐴(𝑥𝑖))

𝛼
  is considered as probability measure, then  

 
𝜇𝐴(𝑥𝑖)(1−𝜇𝐴(𝑥𝑖))

𝛼
= 𝑃𝑖,   𝑖 = 0,1, … , 𝑛; ∑ 𝑃𝑖

𝑛
𝑖=0 = 1  

 

and from (11) it follows that  

 
𝜕𝑓𝑗

𝜕𝜆𝑘
= 𝛼 ∑

𝜇𝐴(𝑥𝑖)(1−𝜇𝐴(𝑥𝑖))

𝛼
𝑛
𝑖=0 𝑔𝑗(𝑥𝑖)𝑔𝑘(𝑥𝑖) = 𝛼 ∑ 𝑃𝑖

𝑛
𝑖=0 𝑔𝑗(𝑥𝑖)𝑔𝑘(𝑥𝑖) = 𝛼𝐸[𝑔𝑗𝑔𝑘]  

and   
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𝑅 = (
𝜕𝑓𝑗

𝜕𝜆𝑘
)

𝑗,𝑘=0,1,…,𝑚
= 𝛼 (

𝐸[𝑔0𝑔0]    𝐸[𝑔0𝑔1] …   𝐸[𝑔0𝑔𝑚]

𝐸[𝑔1𝑔0]    𝐸[𝑔1𝑔1] …   𝐸[𝑔1𝑔𝑚]
       ⋮              ⋮              ⋱           ⋮       

𝐸[𝑔𝑚𝑔0]    𝐸[𝑔𝑚𝑔1] …   𝐸[𝑔𝑚𝑔𝑚]

) . 

 

Since 𝑅 is correlation matrix of random variables 𝑔0(𝑥), … , 𝑔𝑚(𝑥) each of  which has  𝑛 + 1 number 

of values, then   

𝐽 =
𝐷(𝑓0,𝑓1,…,𝑓𝑚)

𝐷(𝜆0,𝜆1,…,𝜆𝑚)
= 𝑑𝑒𝑡 (𝑅) ≠ 0.  

 

Note that the satisfiability of last condition can be also proved as following:    

 

0 ≤ 𝐸{|𝑎0𝑔0 + 𝑎1𝑔1 + ⋯ + 𝑎𝑚𝑔𝑚|2} = 𝐸{∑ ∑ 𝑎𝑗𝑎𝑘𝑔𝑗
𝑚
𝑘=0

𝑚
𝑗=0 𝑔𝑘} =  

 

   = ∑ ∑ 𝑎𝑗𝑎𝑘𝐸{𝑔𝑗𝑔𝑘}𝑚
𝑘=0

𝑚
𝑗=0 = 𝑎 𝑅𝑎𝑇 , 𝑎 ≠ 0, 𝑎 = (𝑎0, … , 𝑎𝑚).       (13) 

 

It is seen that random variables  𝑔𝑗(𝑥), 𝑗 = 0,1, … , 𝑚 are linearly independent according to assumption 

1),  the left-hand of (13) is equal to  zero if and only if at 𝑎 = 0, consequently 𝑅 is positive defined 

matrix, therefore  𝑑𝑒𝑡𝑅 ≠ 0 and condition (10) is satisfied.   

 

The satisfability of (9) and (10) indicates that the implicit function theorem [16] can be applied to  

solvability of (6) with respect to 𝜆0, 𝜆1, … , 𝜆𝑚 .  

 

The obtained results for solvability of (6) can be expressed in the following theorem. 

 

Existence Theorem. Let us the conditions 1), 2) and 3)  are satisfied.    

 

Then, Maximum Fuzzy Entropy Problem (Max(F)EntP) which consists of  maximizing  Max(F)Ent 

measure (1) with respect to  membership functions 𝜇𝐴(𝑥)  with finite number of the fuzzy values 𝜇𝐴(𝑥𝑖),

𝑖 = 0,1,...,𝑛  subject to constraints (2) has a solution (𝜇𝐴(𝑥0), 𝜇𝐴(𝑥1), … , 𝜇𝐴(𝑥𝑛)). 

 

5. EVALUATION OF LAGRANGE MULTIPLIERS FOR MAX(F)ENTP 

 

From the proof of Existence theorem, it is indicated that evaluation of Lagrange multipliers occupies 

very important place. For this reason, it is required to consider this problem in more detail. One of basic 

stages of application of numerical methods is the choice of any initial point. 

 

The mean problem consists of solving system of equations (6) with respect to  𝜆0, 𝜆1, … , 𝜆𝑚 by starting 

any initial point (�̃�0, �̃�1, … , �̃�𝑚). Mentioned point is obtained by following way. From (21) follows (7)  

and from (22)   �̃�𝐴(𝑥𝑖), 𝑖 = 0,1, … , 𝑚   are obtained in the form of (23), later (23) is taken into account 

in (8). Solving (8) with respect to  𝜆0, 𝜆1, … , 𝜆𝑚 and  showing obtained values as �̃�0, �̃�1, … , �̃�𝑚 it is seen 

that these values satisfy  (9). Consequently to solve system (6) by some numerical methods 

(�̃�0, �̃�1, … , �̃�𝑚) can be taken as initial point. 

 

6. MAXIMUM FUZZY ENTROPY VALUE   

 

In Section 4, maximization of Max(F)Ent measure (1) is realized by Lagrange multipliers method and 

membership function 𝜇𝐴(𝑥)  which gives maximum value to (1) is expressed by formula  (4). By virtue 

of formula (4) from (1) follows that  
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𝑚𝑎𝑥𝐻𝐴 = − ∑  𝑙𝑛
𝑒

∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚
𝑗=0

1+𝑒
∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚

𝑗=0
 𝑛

𝑖=0 + ∑ 𝜆𝑗𝜇𝑗
𝑚
𝑗=0 .                         (14) 

 

The formula (14) represents maximum value of Max(F)Ent measure (1). It is seen that 𝑚𝑎𝑥𝐻𝐴 depends 

on Lagrange multipliers 𝜆0, 𝜆1, … , 𝜆𝑚, moment functions  𝑔0(𝑥), 𝑔1(𝑥), … , 𝑔𝑚(𝑥) and moment fuzzy 

values 𝜇0 , 𝜇1, … , 𝜇𝑚.    
 

7. GENERALIZED MAXIMUM FUZZY ENTROPY PROBLEMS 
 

Before it is showed that maximum value of Max(F)Ent measure 𝐻𝐴  is represented by formula (14) in 

the dependency of moment functions 𝑔0(𝑥), 𝑔1(𝑥), … , 𝑔𝑚(𝑥), Lagrange multipliers 𝜆0, 𝜆1, … , 𝜆𝑚, and 

moment fuzzy values 𝜇0 , 𝜇1, … , 𝜇𝑚. Let us 𝑔 = (𝑔0, 𝑔1, … , 𝑔𝑚) be vector moment functions with 

components 𝑔0, 𝑔1, … , 𝑔𝑚. If we take into account  that  according to condition (2) both Lagrange 

multipliers 𝜆0, 𝜆1, … , 𝜆𝑚 and moment fuzzy values 𝜇0 , 𝜇1, … , 𝜇𝑚 are generated by moment vector 

fuction 𝑔 and given fuzzy values of 𝜇𝐴(𝑥𝑖), 𝑖 = 0,1, … , 𝑛,  then the 𝑚𝑎𝑥𝐻𝐴 defined by formula (14) 

can be expressed as a functional 𝑈(𝑔) depended on moment vector fuction 𝑔. That is to say 
 

  𝑈(𝑔) = 𝑚𝑎𝑥
𝑔

𝐻𝐴 = − ∑  𝑙𝑛
𝑒

∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚
𝑗=0

1+𝑒
∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)𝑚

𝑗=0
 𝑛

𝑖=0 + ∑ 𝜆𝑗𝜇𝑗
𝑚
𝑗=0 .         (15) 

 

According to  [13-15], let 𝐾 be the compact set of moment vector functions 𝑔(𝑥).  𝑈(𝑔) reaches its least 

and greatest values in this compact set, because of its continuity property. For this reason, 
 

𝑚𝑖𝑛
𝑔∈𝐾

𝑈(𝑔) = 𝑈(𝑔(1))     ;     𝑚𝑎𝑥
𝑔∈𝐾

𝑈(𝑔) = 𝑈(𝑔(2)).   

 

Consequently, 
 

 𝑈(𝑔(1)) ≤ 𝑈(𝑔(2)). 
 

Distributions 𝜇 
(1) = (𝜇(1)(𝑥0), 𝜇(1)(𝑥1), … , 𝜇(1)(𝑥𝑛) )  

 and 𝜇 
(2) = (𝜇(2)(𝑥0), 𝜇(2)(𝑥1), … , 𝜇(2)(𝑥𝑛) ) 

 

corresponding to the moment functions  𝑔(1)(𝑥) and 𝑔(2)(𝑥) respectively, we call as MinMax(F)Ent and 

MaxMax(F)Ent distributions. Methods obtaining distributions MinMax(F)Ent and  MaxMax(F)Ent  we 

call as MinMax(F)EntM and MaxMax(F)EntM, respectively.  

Now, MinMax(F)EntM and MaxMax(F)EntM for a finite set of characterizing moment functions can 

be defined in the following form. 

Let  𝐾0 = {𝑔1, … , 𝑔𝑟}  be the set of characterizing moment vector functions and all combinations of    𝑟   
elements of   𝐾0   taken   𝑚   elements at a time be   𝐾0,𝑚 . We note that each element of    𝐾0,𝑚 is vector 

𝑔 with 𝑚 components. Note that the number of vectors 𝑔  is equal to ( 𝑟
𝑚

).  

 

Solving the MinMax(F)Ent and MaxMax(F)Ent problems require to find vector functions (𝑔0, 𝑔(1)(𝑥)) 

and  (𝑔0, 𝑔(2)(𝑥)) , where 𝑔0(𝑥) ≡ 1, 𝑔(1) ∈ 𝐾0,𝑚,    𝑔(2) ∈ 𝐾0,𝑚 minimizing and maximizing 

functional 𝑈(𝑔)  defined by (15). It should be noted that 𝑈(𝑔)  reaches its minimum (maximum) value 

subject to constraints (2) generated by function  𝑔0(𝑥)  and all 𝑚 −dimensional vector functions  𝑔(𝑥), 
 𝑔 ∈ 𝐾0,𝑚. In other words, minimum (maximum) value of  𝑈(𝑔) is least (greatest) value of values  𝑈(𝑔)  

corresponding to 𝑔(𝑥),    𝑔 ∈ 𝐾0,𝑚.  In other words,  MinMax(F)Ent (MaxMax(F)Ent) is distribution 

giving minimum (maximum) value to functional 𝑈(𝑔) along of all distributions generated by ( 𝑟
𝑚

) 

number of moment vector functions 𝑔(𝑥), 𝑔 ∈ 𝐾0,𝑚 . Mentioned distributions can be denoted by 

(MinMax(F)Ent)m  and  (MaxMax(F)Ent)m. 
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If (𝑔0 , 𝑔(1)(𝑥))     gives the minimum value to 𝑈(𝑔), then distribution 𝜇 
(1) =

(𝜇(1)(𝑥0), 𝜇(1)(𝑥1), … , 𝜇(1)(𝑥𝑛) ) 
 is called (MinMax(F)Ent)m  distribution. In a similar way, if 

(𝑔0 , 𝑔(1)(𝑥)) gives the maximum value to 𝑈(𝑔), then distribution of 𝜇 
(2) =

(𝜇(2)(𝑥0), 𝜇(2)(𝑥1), … , 𝜇(2)(𝑥𝑛) ) 
is called  (MaxMax(F)Ent)m distribution. MinMax(F)Ent and 

MaxMax(F)Ent methods represent maximum fuzzy entropy distributions in the form of 

(MinMax(F)Ent)m  and  (MaxMax(F)Ent)m distributions. It should be noted that both distributions can 

be applied in solving proper problems in fuzzy data analysis. 

 

8. APPLICATION OF MINMAX(F)ENT AND MAXMAX(F)ENT METHODS  
 

In this section, (MinMax(F)Ent)m  and  (MaxMax(F)Ent)m  distributions are obtained for the following 

membership function values in fuzzy data given by Table 1. It should be noted that mentioned 

distributions are calculated by using MATLAB.  

 

Table 1. Membership function  values  𝜇(𝑥𝑖) = 𝜇𝑖 ,   𝑖 = 1,2, . . . ,18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to calculate (MinMax(F)Ent)m  and  (MaxMax(F)Ent)m distributions for fuzzy data given in 

Table 1, it is required to realize the following steps: 

 

1. Determine Max(F)Ent characterizing moments 𝐸{𝑔0(𝑥)}, 𝐸{𝑔1(𝑥)}, … , 𝐸{𝑔𝑚(𝑥)} 

according to fuzzy data. 

 

2. Calculate Max(F)Ent distributions subject to each of Max(F)Ent characterizing  moments 

𝐸{𝑔0(𝑥)}, 𝐸{𝑔1(𝑥)}, … , 𝐸{𝑔𝑚(𝑥)}. 

 

3. Determine (MinMax(F)Ent)m  and  (MaxMax(F)Ent)m distributions corresponding to 

selected Max(F)Ent characterizing moments 𝐸{𝑔0(𝑥)}, 𝐸{𝑔1(𝑥)}, … , 𝐸{𝑔𝑚(𝑥)} 

 

4. Along obtained distributions choose the accepted Generalized Maximum Fuzzy Entropy  

distributions.  

 

𝑥𝑖 𝜇𝑖 

0.1000 

0.6000 

1.1000 

1.6000 

2.1000 

2.6000 

3.1000 

3.6000 

4.1000 

4.6000 

5.1000 

5.6000 

6.1000 

6.6000 

7.1000 

7.6000 

8.1000 

8.6000 

0.0004 

0.0011 

0.0030 

0.0082 

0.0219 

0.0573 

0.1419 

0.3100 

0.5498 

0.7685 

0.9002 

0.9608 

0.9852 

0.9945 

0.9980 

0.9993 

0.9997 

0.9999 
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It is noted that selection of moment functions set is important in the application of Max(F)Ent method. 

In our investigation, Max(F)Ent characterizing moments 𝐸{√𝑥}, 𝐸{𝑙𝑛𝑥}, 𝐸{𝑙𝑛(1 + 𝑥)}, 𝐸{𝑙𝑛 (1 + 𝑥2)} 

are acquired by experimental way. 

 

In order to obtain (MinMax(F)Ent)m  and  (MaxMax(F)Ent)m (𝑚 = 1,2) distributions, we should 

choose the moment vector functions giving the maximum and minimum values to the Max(F)Ent 

functional 𝑈(𝑔). Here, we used the moment functions  

 

𝑔0(𝑥) = 1, 𝑔1(𝑥) = √𝑥 , 𝑔2(𝑥) = 𝑙𝑛𝑥, 𝑔3(𝑥) = 𝑙𝑛(1 + 𝑥) , 𝑔4(𝑥) = 𝑙𝑛 (1 + 𝑥2).  

According to suggested method, 𝐾0 = {𝑔0, 𝑔1, 𝑔2, 𝑔3, 𝑔4}  and all combinations of 𝑟 elements of 𝐾0 

taken 𝑚 elements at a time are denoted by 𝐾0,𝑚.  Max(F)Ent values subject to moment  constraints 

generated by elements of  𝐾0,𝑚 , m=1,2 is given in Tables 2,3. 

 

Table 2. Entropy of calculated Max(F)Ent values subject to two moment functions 

 
Moments Functions   Fuzzy  Entropy 

(1, √𝑥)                         0.0375 

(1, 𝑙𝑛𝑥)                        0.0896 
(1, 𝑙𝑛(1 + 𝑥))              0.0379   

(1, 𝑙𝑛 (1 + 𝑥2))           0.0464              

 

Table 3. Entropy of calculated Max(F)Ent values subject to three moment functions 

Moment  Functions            Fuzzy  Entropy 

(1, √𝑥 , 𝑙𝑛𝑥)                               0.0351 

(1, √𝑥, 𝑙𝑛 (1 + 𝑥))                      0.0182 

(1, √𝑥 , 𝑙𝑛 (1 + 𝑥2))                   0.0277 

(1, 𝑙𝑛𝑥, 𝑙𝑛 (1 + 𝑥))                     0.0268 

(1, 𝑙𝑛𝑥, 𝑙𝑛 (1 + 𝑥2))                   0.0281 
(1, 𝑙𝑛(1 + 𝑥) , 𝑙𝑛 (1 + 𝑥2))        0.0280 

 

For  𝑚 = 1, 𝐾0,1 = {(1, √𝑥), (1, 𝑙𝑛𝑥), (1, 𝑙𝑛 (1 + 𝑥)), (1, 𝑙𝑛 (1 + 𝑥2))}. 

 

From Table 2, it is shown that  (𝑔0 , 𝑔(1)) = (1, √𝑥)  , 𝑔(1)  ∈ 𝐾0,1 gives to least value to 𝑈(𝑔), 

consequently corresponding distribution is (MinMax(F)Ent)1, and (𝑔0 , 𝑔(2)) = (1, 𝑙𝑛𝑥), 𝑔(2)  ∈ 𝐾0,1 

gives to greatest value to 𝑈(𝑔), consequently corresponding distribution is (MaxMax(F)Ent)1. In a 

similar way,  

 

For 𝑚 = 2, 𝐾0,2 = {(1, √𝑥 , 𝑙𝑛𝑥), (1, √𝑥 , ln(1 + 𝑥)), (1, √𝑥 , 𝑙𝑛(1 + 𝑥2)), (1, 𝑙𝑛𝑥, 𝑙𝑛(1 +

𝑥)), (1, 𝑙𝑛𝑥, 𝑙𝑛 (1 + 𝑥2)}. 

 

From Table 3, it is shown that  (𝑔0 , 𝑔(1)) = (1, √𝑥, 𝑙𝑛 (1 + 𝑥)), 𝑔(1)  ∈ 𝐾0,2 gives to least value to 

𝑈(𝑔), consequently corresponding distribution is (MinMax(F)Ent)2 and (𝑔0 , 𝑔(2)) = (1, √𝑥, 𝑙𝑛𝑥), 

𝑔(2)  ∈ 𝐾0,2 gives to greatest value to 𝑈(𝑔), consequently corresponding distribution is 

(MaxMax(F)Ent)2.  

 

Calculated (MinMax(F)Ent)m  and  (MaxMax(F)Ent)m  , 𝑚 = 1,2 distributions are given in Table 4. 
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Table 4. Distributions of  (MinMax(F)Ent)m  and (MaxMax(F)Ent)m  , m = 1,2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to obtain the performance of (MinMax(F)Ent)m  and  (MaxMax(F)Ent)m  distributions, we 

use various criterias as Root Mean Square Error (RMSE), Chi-Square (𝜒2) and Max(F)Ent measure 

(𝐻). The acquired results are demonstrated in Table 5-6. 

 

Table 5. The obtained results for (MinMax(F)Ent)m  , m = 1,2  distributions 

Distributions of 

(MinMax(F)Ent)m 

Moment Constraints 𝐻 RMSE 

 
𝜒2 

(MinMax(F)Ent)1 (1, √𝑥) 0.0375 0.6367 0.5212 

(MinMax(F)Ent)2 (1, √𝑥 , 𝑙𝑛 (1 + 𝑥)) 0.0182 0.6368 0.5213 

 

Table 6. The obtained results for (MaxMax(F)Ent)m , m = 1,2  distributions 

Distributions of 

(MaxMax(F)Ent)m 

Moment Constraints 𝐻 RMSE 

 
𝜒2 

(MaxMax(F)Ent)1 (1, 𝑙𝑛𝑥) 0.0896 0.6363 0.5205 

(MaxMax(F)Ent)2 (1, √𝑥 , 𝑙𝑛𝑥) 0.0351 0.6366 0.5211 

 

Tables 5-6 show that in the sense of RMSE and 𝜒2 criteria each of (MaxMax(F)Ent)m , (m = 1,2) 

distribution is better than each of (MinMax(F)Ent)m, (m = 1,2)  distribution. Moreover,  

(MaxMax(F)Ent)1  distribution shows better performance along (MaxMax(F)Ent)m, m = 1,2 

distributions. 

 

8. CONCLUSION 

 

In the present study the following results are achieved. 

 

 It is proved the convexity property of Max(F)Ent measure, then it is formulated a Maximum 

Fuzzy Entropy Problem and proposed sufficient conditions for existence of its solution.  

 A special functional 𝑈(𝑔) depended on moment vector functions 𝑔 is defined by applying 

Lagrange multipliers method. 

(MinMax(F)Ent)1    (MinMax(F)Ent)2    (MaxMax(F)Ent)1  (MaxMax(F)Ent)2  

0.9997 

0.9998 

0.9998 

0.9998 

0.9998 

0.9998 

0.9998 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9998 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.9963 

0.9991 

0.9995 

0.9996 

0.9997 

0.9997 

0.9998 

0.9998 

0.9998 

0.9998 

0.9998 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9982 

0.9996 

0.9998 

0.9999 

0.9999 

0.9999 

0.9999 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 
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 Maximum Fuzzy Entropy Distribution (Max(F)EntD) is distribution of fuzzy values 

(𝜇𝐴(𝑥0), 𝜇𝐴(𝑥1), … , 𝜇𝐴(𝑥𝑛)) maximizing Max(F)Ent measure subject to constraints 

generated by fixed moment vector function. Maximum Fuzzy Entropy Distribution 

(𝜇𝐴(𝑥0), 𝜇𝐴(𝑥1), … , 𝜇𝐴(𝑥𝑛))  can be considered geometrically as points (𝑥𝑖, 𝜇𝐴(𝑥𝑖)) , 𝑖 =

0,1, … , 𝑛  of membership function 𝜇𝐴(𝑥). Consequently, interpreting these points as 

experimental data it is possible to select formula, in other words membership function, in 

accordance on mentioned data by known methods. 

 Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of 

MinMax(F)Ent and MaxMax(F)Ent methods are suggested on the basis of primary 

maximizing Max(F)Ent measure 𝐻𝐴 for fixed moment vector function in order to obtain the 

special functional 𝑈(𝑔) with maximum entropy values of Max(F)Ent measure and 

secondary optimization for mentioned functional with respect to moment vector functions.  

Distributions obtained by these methods are defined as (MinMax(F)Ent)m  and 

 (MaxMax(F)Ent)m  distributions. 

 

According to obtained results, for this fuzzy data, (MinMax(F)Ent)m  and  (MaxMax(F)Ent)m  , m =
1,2 distributions are compared by using different criterias in terms of modellig data. It is shown that the 

each of (MaxMax(F)Ent)m, m = 1,2 distribution is more suitable in modelling fuzzy data than each of 

(MinMax(F)Ent)m, m = 1,2 distributions in the sense of RMSE and 𝜒2 criterias. It is found that 

(MaxMax(F)Ent)1 distribution can provide better results for the fuzzy data in terms of RMSE and 𝜒2 

criterias. Consequently, obtained results are shown that developed methods can be applied succesfully 

in fuzzy data analysis.  
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