ABSTRACT

Pure cobalt (II) boride nanoparticles/nanocylinders were synthesized in aqueous media under Argon blanket using cobalt chloride (CoCl$_2$) and sodium borohydride (NaBH$_4$) as reactants. CoCl$_2$ (0.325 g) was dissolved in cold distilled water (DDI) and the solution was introduced into a sealed glass reactor. Then, NaBH$_4$ was dissolved in DDI (90 mL) and the solution was added drop-wise into the reactor and stirred magnetically at 300 rpm. By the addition of NaBH$_4$ (10 mL, 0.225 g) solution, amorphous black cobalt boride particles were synthesized immediately. The presence of crystalline Co$_2$B phase with high purity in the nanocylinders which is obtained by calcination at 500 $^\circ$C was shown by X-ray diffraction spectroscopy. An amorphous Co$_2$B structure was observed with the sample dried under vacuum. In the synthesis runs, Co$_2$B nanoparticles with different morphological characteristics were achieved by changing the initial CoCl$_2$ concentration and the reaction period. A microscopic structure in the form of nanocylinders was observed for the calcined products. The nanocylinder diameter increased from ca. 30 nm to 100 nm by increasing the reaction time from 3 to 120 min. CoCl$_2$ initial concentration was also found another factor increasing the nanocylinder diameter. The nanocylinders with diameters between 80-500 nm were obtained by increasing CoCl$_2$ concentration from 12.6 to 100.1 mM.

The lowest and highest saturation magnetization values were obtained 19 and 68.5 emu/g for crystalline sample calcined under air (Co-Co$_2$B mixture) and amorphous Co$_2$B sample obtained by vacuum-drying, respectively. Amorphous and crystalline Co$_2$B samples were used as catalyst for Hydrogen generation by the hydrolysis of NaBH$_4$ in aqueous media. Amorphous Co$_2$B gave significantly higher H$_2$ generation rate with respect to the catalysts prepared by calcination of amorphous Co$_2$B under air or Ar at 500 $^\circ$C. The maximum H$_2$ generation rate was obtained as 1.1 L/g catalyst.min by using amorphous Co$_2$B with 1 % w/w of initial NaBH$_4$ concentration.

1. Introduction

Significant attention was paid on H$_2$ carriers due to the difficulties appeared in the storage and transport of H$_2$. The non-toxic character of H$_2$, the flexibility of source materials used for generation, low-cost production and taking place of the source reaction at ambient conditions are known as the basic advantages of the H$_2$ energy. Although various methods have been proposed for H$_2$ generation, the hydrolysis of alkali metal hydrides is mostly preferred as a favorable method. Among these materials, sodium borohydride is the most widely used reactant for H$_2$ generation due to its high H$_2$ content (10.7 % w/w). All of H$_2$ content of NaBH$_4$ have been recovered by using appropriate catalysts in aqueous media. Various types of catalysts have been tried for H$_2$ generation by the hydrolysis of NaBH$_4$ in aqueous-alkaline media [1-43]. Generally, transition metal based catalysts are preferred. Cobalt (II) salts were tried as catalyst for generating H$_2$ from sodium borohydride [1]. On the other hand, various catalysts based on supported cobalt were also tried [2-11].

Metal borides synthesized via mechanochemical, borothermal or carbothermal route, electrolysis in a fused salt, chemical vapor deposition or carbothermal method are another group of materials widely used for H$_2$ generation by the decomposition of NaBH$_4$ [12-14]. On the other hand, the catalysts including the alloys of
metal borides were recently tried for obtaining higher H₂ generation rates in the decomposition of NaBH₄ [15-24].

There have been numerous studies in the literature on the H₂ generation by using cobalt boride as catalyst in the decomposition of NaBH₄ [25-33]. In most of these studies, the crystalline phases containing either -various cobalt borides or metallic cobalt in the form of irregular nanoparticles were tested as catalyst for H₂ production. In our study, both the synthesis of cobalt boride and the drying and calcination of cobalt boride product were carried out under Ar atmosphere. Hence both the synthesis and calcination conditions were carefully controlled. Then amorphous Co₅B or crystalline pure Co₅B phases were obtained in the form of nanocylinders by a modified form of solvothermal method based on the chemical reaction between cobalt chloride and sodium borohydride. Here, we wish to report their properties and catalytic performance of pure amorphous/crystalline Co₅B in H₂ generation by the decomposition of NaBH₄.

2. Experimental procedure

2.1. Materials

Cobalt chloride (CoCl₂), sodium borohydride (NaBH₄) were supplied from Aldrich Chem. Corp., and used as received. The synthesis reactions were conducted under high purity of Ar atmosphere (Habaş, Turkey). Distilled-deionized water was used in all experiments.

2.2. Synthesis of Co₅B particles

The synthesis of cobalt boride (Co₅B) nanoparticles was performed in an aqueous medium. In the synthesis runs, CoCl₂ concentration in the initial reaction medium and the reaction period were changed. Typically, CoCl₂ (0.325 g) was dissolved in cold DDI water (90 mL) and the solution was introduced into a sealed, three-necked glass reactor stirred magnetically at 300 rpm, placed in an ice-bath kept at +4 °C. Then, the flow of Ar into the reactor was initiated. The reactor was stirred for 10 min for thermal equilibrium. NaBH₄ was then dissolved in DDI water (10 mL) and the solution was added drop-wise into the reactor within 3 min. By the addition of NaBH₄ solution (10 mL, 0.225 g), the reaction medium turned to black. The reaction was continued under Ar atmosphere to prevent oxidation. The black cobalt boride nanoparticles were synthesized immediately. Following to the completion of reaction-period selected, the reaction medium was filtrated under Ar-protection. The black cake was extensively washed with DDI water under Ar atmosphere. The nanoparticles isolated were dried in vacuo at 70 °C for 24 h. Dry cobalt boride powder was calcined at 500 °C for 2 hours, under Ar atmosphere with a heating rate of 2 °C/min.

2.3. Characterization

The crystal structure was analysed by X-ray diffraction spectrophotometer (Rigaku, D/MAX-2200) for both dried and calcined Co₅B nanoparticles. The particle morphology was determined by Scanning Electron Microscopy (FEI, Quanta 200F). The magnetic properties of Co₅B nanoparticles were determined by Vibrating Sample Magnetometer (PPMS, P525). The specific surface area (SSA) was measured by a surface area and pore-size analyzer (Quantochrome, Nova 220E) using nitrogen adsorption-desorption method together with Brunauer-Emmett-Teller (BET) equation.

2.4. H₂ generation using Co₅B nanoparticles as catalyst

H₂ generation runs by the hydrolysis of NaBH₄ were conducted in a pyrex glass reactor equipped with an apparatus capable of measuring the H₂ evolved according to the water-displacement method (Figure 1). Two separate sets of H₂ generation runs were performed by using the calcined Co₅B samples obtained with different CoCl₂ initial concentrations and different reaction periods, respectively. A third set of runs for H₂ generation were also performed by using the amorphous Co₅B obtained by vacuum-drying of reaction product at 70 °C, the crystalline Co₅B obtained by calcining the reaction product under Ar at 500 °C and the crystalline Co₅B-Co mixture obtained by calcining the reaction product under air at 500 °C as catalysts.

![Figure 1. H₂ generation measuring apparatus](image-url)

Typically, the solution (10 mL) DDI and NaBH₄ (1 % w/w) were prepared. Then, Co₅B catalyst (0.1 g) was added into the solution under magnetic stirring at 300 rpm. The valve on the line passing to the displacement tube was opened. The volume of H₂ generated was measured by water-displacement method with the progressing hydrolysis.
3. Results and discussion

3.1. Characterization of \(\text{Co}_2\text{B} \) nanostructures

Cobalt boride particles were obtained by the reaction of \(\text{CoCl}_2 \) with \(\text{NaBH}_4 \) in the aqueous media kept at +4 °C, under Ar atmosphere according to the following equation [44].

\[
2\text{CoCl}_2 + 4\text{NaBH}_4 + 9\text{H}_2\text{O} \rightarrow \text{Co}_2\text{B} + 4\text{NaCl} + 12.5\text{H}_2 + 3\text{B(OH)}_3
\] (1)

Equation 1 shows the reduction reaction of \(\text{CoCl}_2 \) with effective reducing agent \(\text{NaBH}_4 \). During the reduction, while Co ions reacts rapidly with boron to form \(\text{Co}_2\text{B} \) nanoparticles, as a by-product, \(\text{NaCl} \) and \(\text{H}_3\text{BO}_3 \) compounds were formed and \(\text{H}_2 \) gas was released. The synthesized \(\text{Co}_2\text{B} \) particle size distributions were in the range of nano-size due to the fast reaction but also high surface energy causes to agglomeration due to the non-crystalline structure of particles [17, 26, 30]. SEM images and XRD patterns of the powders obtained after the synthesis experiments according to the reactions in Equation 1 and the powders calcined under Ar atmosphere and air are given in Figure 2. The figure shows that the black powders obtained after synthesis experiments have amorphous structure and composed of irregular nanoparticles ranging from 10 to 300 nm. The calcined powder under air conditions at 500 °C was found to consist of \(\text{Co-Co}_2\text{B} \) fingertype structured particles ranging from 50-300 nm. Calcining the powders under the Ar atmosphere at the same temperature resulted in fingertype pure \(\text{Co}_2\text{B} \) of 50-100 nm size. The specific surface areas (SSA) were determined as 10.0, 6.0 and 3.0 m\(^2\)/g for the amorphous \(\text{Co}_2\text{B} \), \(\text{Co}_2\text{B} \) calcined under Ar and \(\text{Co}_2\text{B} \) calcined under air, respectively. Wu et al. have calcined the powders they synthesized in a similar study under vacuum at 90-300-500-700 °C. They reported that the structure at 90 °C was amorphous while the structures at 300 and 500 °C consisted of \(\text{Co-Co}_2\text{B} \) and the structure at 700 °C was composed of metallic Co [25]. In another similar study conducted by Jeong et al., it is reported that powders produced were calcined at 500 °C under 1% air-mixed \(\text{N}_2 \) gas atmospheres were composed of mainly by \(\text{Co}_3\text{O}_4 \) phase and some \(\text{CoB} \), \(\text{Co}_2\text{B} \), \(\text{Co}_3\text{B} \) phases [28].

Pure \(\text{Co}_2\text{B} \) synthesis experiments were performed in two sets, and the effect of reaction time and \(\text{CoCl}_2 \) concentration on the morphology of nanoparticles was investigated. In the first set of the synthesis runs, the reaction time was changed by keeping the other conditions as constant. The SEM images and X-ray diffraction spectra of \(\text{Co}_2\text{B} \) particles obtained with different reaction periods and calcined under Ar at 500 °C.
are given in Figure 3. As seen here, Co$_2$B particles in the form of nanocylinders were observed. Both the diameter and the length of the nanocylinders increased with increasing reaction period. The aspect ratio of the nanocylinders roughly changed from 2.3 to 4.0 by increasing reaction period from 3 to 120 min (i.e. determined by SEM photos in Figure 3).

X-ray diffraction spectra of Co$_2$B particles obtained with different reaction periods and calcined under Ar at 500 °C are given in Figure 3, only the peaks specific to the crystalline Co$_2$B phase were observed in the spectra obtained with the nanocylinders synthesized with the reaction periods of 12, 60 and 120 min. The peaks belonging to minor impurities were detected at 50-54 degrees in the spectrum belonging to the nanocylinder sample obtained with the shortest reaction period (i.e. 3 min).

The SEM images and X-ray diffraction spectra of Co$_2$B particles obtained with different CoCl$_2$ initial concentrations and calcined under Ar at 500 °C are given in Figure 4. As can be seen from this figure, the size of nanocylinders markedly increased with the increasing CoCl$_2$ initial concentration. XRD spectra exhibited the peaks specific to the crystalline Co$_2$B phase for all CoCl$_2$ initial concentrations. From the SEM images, it can be seen that the smallest grain size was obtained at the concentration of 25.0 mM CaCl$_2$, about 80-100 nm. It was found that the finitetype structure was irregularly shaped with a size of about 500 nm by increasing the concentration.

The magnetization curves of the amorphous and crystalline Co$_2$B nanocylinders are given in Figure 5. As seen from this figure, all samples exhibited ferromagnetic behavior. The highest saturation magnetization
was observed with the Co-Co$_2$B sample calcined under air. XRD examination of this sample showed the presence of metallic Co phase after calcination under air (as will be seen in Figure 2b). The saturation magnetization values were measured as 19.0, 44.0 and 68.5 emu/g for the amorphous and crystalline Co$_2$B samples calcined under Ar and air, respectively (Figure 5). We have obtained similar results in another study of the production of Co$_2$B nanocrystals by mechanochemical method. It was determined that pure Co$_2$B nanocrystals showed ferromagnetic characteristics with a saturation magnetization changing between 38-48 emu/g [45].

Figure 5. Magnetization curves of the cobalt boride nanoparticles calcined under different conditions

3.2. H_2 generation runs

In the H_2 generation runs, the effect of calcination conditions on the catalytic activity of Co$_2$B samples was tested. The variation of H_2 volume with the time by using amorphous and crystalline Co$_2$B samples is given in Figure 6. The H_2 generation rates achieved with amorphous and crystalline Co$_2$B catalysts with the initial NaBH$_4$ concentration of 1% w/w are given in Table 1 (Runs C1, C2 and A1). As seen here, the highest H_2 generation rate was obtained with the amorphous Co$_2$B obtained by drying the reaction product at 70 °C in vacuo. The crystalline Co$_2$B samples obtained by the calcination of reaction product (under Ar or air) gave lower H_2 generation rates with respect to the amorphous one. Note that the lowest H_2 generation rate was obtained with the Co$_2$B sample obtained by calcination in air (Figure 6 and Table 1). The H_2 generation rates found with amorphous and calcined Co$_2$B samples obeyed the order observed for SSA (Table 1). Higher H_2 generation rates were also reported for the amorphous Co$_2$B samples with respect to the crystalline ones [26, 27, 30, 31].

Figure 6. The variation of hydrogen volume with the time by using cobalt boride nanoparticles/nanocylinders obtained with different calcination conditions as catalyst in the hydrolysis of NaBH$_4$ (Co$_2$B concentration: 10 mg/mL, Initial NaBH$_4$ concentration: 263.1 mM (~1% w/w), NaOH concentration: 250 mM, Room temperature).

<table>
<thead>
<tr>
<th>Run code</th>
<th>Catalyst</th>
<th>NaBH$_4$ concentration (% w/w)</th>
<th>Co$_2$B concentration (mg/mL solution)</th>
<th>H_2 generation rate (mLH$_2$/gcat.min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Crystalline Co$_2$B (Calcined under air)</td>
<td>1.0</td>
<td>10.0</td>
<td>132</td>
</tr>
<tr>
<td>C2</td>
<td>Crystalline Co$_2$B (Calcined under Ar)</td>
<td>1.0</td>
<td>10.0</td>
<td>338</td>
</tr>
<tr>
<td>A1</td>
<td>Amorphous Co$_2$B (Dried in vacuo)</td>
<td>1.0</td>
<td>10.0</td>
<td>1110</td>
</tr>
<tr>
<td>A2</td>
<td>Amorphous Co$_2$B (Dried in vacuo)</td>
<td>1.0</td>
<td>5.0</td>
<td>859</td>
</tr>
<tr>
<td>A3</td>
<td>Amorphous Co$_2$B (Dried in vacuo)</td>
<td>1.0</td>
<td>1.0</td>
<td>675</td>
</tr>
<tr>
<td>A4</td>
<td>Amorphous Co$_2$B (Dried in vacuo)</td>
<td>10.0</td>
<td>1.0</td>
<td>757</td>
</tr>
<tr>
<td>A5</td>
<td>Amorphous Co$_2$B (Dried in vacuo)</td>
<td>20.0</td>
<td>1.0</td>
<td>774</td>
</tr>
</tbody>
</table>

Table 1. Hydrogen generation rates obtained with the crystalline and amorphous Co$_2$B samples at different conditions.
The effects of the synthesis parameters on H₂ production were examined. The H₂ production of the amorphous powders obtained by changing the reaction time and the CoCl₂ concentration were found to be close to each other. The highest H₂ generation rate was calculated as 1110 mL H₂/min.g catalyst by using the initial slope of the curve obtained with the Co₄B sample produced with the reaction period of 12 min (Table 1). Co₂B samples with other reaction periods gave lower H₂ generation rates. For the amorphous Co₂B samples produced with different CoCl₂ initial concentrations, the variation of volume of H₂ generated with the time was also determined. However, no significant effect of CoCl₂ initial concentration used in the synthesis of Co₂B was observed on the H₂ generation rate.

A separate set of H₂ generation runs was performed to determine the effects of catalyst (Co₂B) concentration and initial NaBH₄ concentration on the H₂ generation rate. The variation of H₂ volume with the time for different catalyst (amorphous Co₂B) and initial NaBH₄ concentrations is given in Figure 7. The H₂ generation rates calculated from the curves in Figure 7 are given in Table 1.

Table 2. The properties of hydrogen generation rates of catalysts containing Co₂B phase

<table>
<thead>
<tr>
<th>Properties of Catalyst</th>
<th>Particle form</th>
<th>Temperature (°C)</th>
<th>NaBH₄ conc. (% w/w)</th>
<th>H₂ generation rate (mL H₂/g cat.min)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcined-crystalline catalyst containing Co and Co₂B</td>
<td>powder</td>
<td>15</td>
<td>2</td>
<td>2970</td>
<td>[25]</td>
</tr>
<tr>
<td>Amorphous cobalt boride catalyst in the form of Co-B alloy</td>
<td>irregular nanoparticles</td>
<td>20</td>
<td>20</td>
<td>900</td>
<td>[26]</td>
</tr>
<tr>
<td>Calcined cobalt boride catalyst containing Co⁵⁺ on Ni foam</td>
<td>irregular nanoparticles and nanocylinders</td>
<td>20</td>
<td>25</td>
<td>7300⁰/1900⁰</td>
<td>[27]</td>
</tr>
<tr>
<td>Calcined-crystalline catalyst particles containing Co, Co₂O₄, CoB, Co₂B and Co₄B</td>
<td>irregular</td>
<td>20</td>
<td>20</td>
<td>2400</td>
<td>[28]</td>
</tr>
<tr>
<td>Amorphous cobalt boride catalyst containing cobalt oxide</td>
<td>Irregular nanoparticles</td>
<td>20</td>
<td>1</td>
<td>1800</td>
<td>[30]</td>
</tr>
<tr>
<td>Mesoporous-amorphous cobalt boride catalyst</td>
<td>irregular nanoparticles</td>
<td>RT</td>
<td>ca 0.1</td>
<td>3350</td>
<td>[31]</td>
</tr>
<tr>
<td>Amorphous cobalt boride catalyst</td>
<td>irregular nanoparticles</td>
<td>18</td>
<td>10</td>
<td>1110</td>
<td>This study</td>
</tr>
</tbody>
</table>

a: Cobalt boride nanoparticles calcined at 250 °C,
b: Cobalt boride nanocylinders calcined at 500 °C,
c: metallic Co was seen in the calcinations performed at the temperatures higher than 300 °C.
generation rate, the initial NaBH₄ concentration was changed in three levels (i.e. 1, 10 and 20 % w/w). In this set, the catalyst (amorphous Co₃B) concentration was kept constant at 1 mg/mL (Experiments A3, A4 and A5 in Table 1). The H₂ generation curves obtained with the initial NaBH₄ concentrations of 1 and 10 % w/w are also shown in Figure 7. It can be observed from the figure, the H₂ generation rates obtained with the NaBH₄ concentrations of 1 and 10 % w/w were almost the same. As seen in Table 1, no significant change in the H₂ generation rate was observed when NaBH₄ concentration was changed between 1-20 % w/w (Experiments A3, A4 and A5). Nearly zeroth order rate behavior with respect to initial NaBH₄ concentration was observed in the presence of Co₂B catalysts as also reported elsewhere [26, 31].

The comparison of maximum H₂ generation rate achieved in our study with the Co₃B based catalysts produced in the previous studies is given in Table 2. As seen here, the maximum H₂ generation rate observed in our study was lower with respect to those obtained with the similar Co₂B containing catalysts. This should be related to lower SSA of the amorphous Co₃B catalyst synthesized in our study (i.e. 10 m²/g).

In the studies included in Table 2, relatively higher H₂ generation rates were obtained by using porous catalysts containing Co₃B with the SSA values ranging between 30-114 m²/g [25, 27, 28, 30, 31]. On the other hand, the H₂ generation rate based on surface area was also calculated by considering the SSA values of the catalysts listed in Table 2. The H₂ generation rate based on surface area is considered, one can conclude that, amorphous Co₂B nanoparticles synthesized in our case exhibited a satisfactory catalytic performance with respect to the similar catalytic materials listed in Table 2. The synthesis conditions providing amorphous-pure Co₂B in the porous form with high SSA are still under investigation.

4. Conclusion

Cobalt (II) boride nanoparticles/nanocylinders with high purity were synthesized. The synthesized powders were amorphous and composed of irregular nanoparticles ranging from 10 to 300 nm. The calcined powder under air conditions at 500 °C was found to be consist of Co-Co₂B fingertype structured particles ranging from 50-300 nm while calcining the powders under the Ar atmosphere at the same temperature resulted in fingertype pure Co₂B of 50-100 nm size. Nanocylinder diameter increased from 30 to 100 nm by increasing reaction time. The saturation magnetization values were measured as 19.0, 44.0 and 68.5 emu/g for the amorphous and crystalline Co₂B samples calcined under Ar and air respectively while the SSA were determined as 10.0, 6.0 and 3.0 m²/g for the amorphous Co₂B, Co₂B calcined under Ar and Co₂B calcined under air, respectively. Co₂B nanoparticles/nanocylinders were used as catalyst for H₂ generation.

The highest H₂ generation rate was calculated as 1110 mL H₂/min g catalyst by using the initial slope of the curve obtained with the Co₂B sample produced with the reaction period of 12 min. Amorphous Co₂B gave higher H₂ generation rate than crystalline samples and H₂ generation rate based on surface area was very close to similar catalysts.

Acknowledgements

The authors are very grateful to Eti Maden Works General Management for financial support and laboratory facilities usage.

References

[36] Kun-Yi L. A., Hsuan-Ang C., Efficient hydrogen production from NaBH₄ hydrolysis catalyzed by a magnetic cobalt/carbon composite derived from a zeolitic im-

[40] Özsaçmacı G., Çakanyıldırım Ç., Gürü M., Co-Mn/TiO$_2$ catalyst to enhance the NaBH$_4$ decomposition, Boron, 1 (1), 1-5, 2016.

