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Abstract
This paper is concerned with the giving a generalization of statistically limit inferior and statistically limit
superior defined in [15]. Properties of A-limsup,_o f(t) and A-liminf,_,, f(t) is given for a function

defined on time scale T.
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1 Introduction

The theory of statistical convergence has been in-
troduced in [1]. This concept become useful tool for
some fundamental subjects of mathematics the last
half of the century such as number theory [4], [5],
trigono-metric series [6], summability theory [7],
measure theory [8], optimization theory [9] and
approximation theory [10]. Fridy progressed with
the concept of statistically Cauchy sequence in [2]
and proved that it is equivalent to statistical con-
vergence. Besides in [3], the notion of the statistical
limit point is defined by him.

The theory of time scales was first constructed by
Hilger in his Ph. D. thesis in [11]. The concept of
time scale is based on the aspect of unite discrete
analysis and continuous analysis. The time scale T
is an arbit-rary nonempty closed subset of the real
numbers R. In fact, T is a complete metric space
with the usual met-ric. Throughout this paper we
consider a time scale T with the topology that
inherits from the real numbers with the standart
topology. For detailed information about time scale
theory, one can see [12] and [13]. Measure theory on
time scales has been introduced in [16], then further

studies were made by in [17] and [18]. Deniz-
Ufuktepe defined Lebesgue-Stieltes A and V-
measures and by using these measures they de-
fined an integral which is adaptable to the time
scale, specifically Lebesgue-Stieltjes A-integral, in
[19]. In the light of these studies, let us introduce
some time scale and measure theoretic notations.
The forward jump operator 6: T —» T for eacht € T
by via formula,
o(t):=inf{s € T:s > t}
For a,b € T with a < b we define the interval [a, b]
inT by
[a,b] ={t€ T:a<t<b}

Open intervals and half-open intervals are defined
similarly. Let § be semiring of left-closed and
right-open intervals and m* be Caratheodory
extension of the Lebesgue set function m
which is defined by m([a, b)) = b — a, associ-
ated with the family § in the time scale T as in
the real case. Also let Mt(m*) be the o-algebra of all
m* measurable sets. Recall that I(m*) consists of
such a subset E has the property that m*(4) =
m(ANE)+m*(ANE®) for all AcT. It is well
known that the restriction of m* to 9 (m") which
we denote by u, is a countably additive measu-re
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on M(m*). This measure called Lebesgue A-
measure. The measurable subsets of T is called A-
measurable and a function f: T — R is called A-
measu-rable function, if f71(0) € M(m*) for every
open subsets 0 of R. From [16] we know that if
a,b € Tand a < b then
ua(lab)) =b—a, ps((@,b)) =b—o(a)
Ifa,b € T —{maxT}and a < b then
pua((a,b]) = a(b) —o(a), pa(la,b]) = o) —a.

In [14], the concept of A-density which is generali-
zation of the of concept natural density by using
measu-re theoretic approach is given. If 4 is a A-
measurable subset of T and a =minT , the A-
density of A in T is defined by

- 1a(A(s))

lim ———

s—00 O'(S) —a
(if this limit exists) where A(s) = {t € A:t < s}. The
A-density function can be considered as a probabil-
istic finite additive measure on the algebra of sub-
set of T which have a A-density. By using the A-
density we obtained a new type of convergence
which is generalization of the natural statistical
convergence and statistical Cauchy sequences defi-
nitions. In [20],
the concepts of the A-limit and the A-cluster point
are given. These concepts are generalization of the
concept of the statistical limit and statistical cluster
point defining in [3]. Let us remember some of
these notions. A A-measurable function f is called
A-convergent to the number L if

Sa (f—l((L —s L+ s))) =1

for all s > 0. A measurable set K is called A-non
thin subset of T if it may have a positive A-density
or may not have even a A-density and a measurable
set K is called a A-null subset of T if §,(K) =0. A
measurable function f: T — R is called A-bounded
if there exists a real number r such that §,({t €
T: |f(t)| < r}) = 1. The number L is called A-cluster
point of a measurable function f if 8,(f7*((L —
s,L+ s))) is a A-non thin subset of T. We will use
the symbol Iy to denote all A-cluster points of a A-
measurable function f. The set I is closed subset
of T.
The main purpose of the present paper is to extend
the notions of statistical limit inferior and statistical
limit superior point defined in [15] by using real
valued functions defined on time scale.
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2 A-limit superior and A-limit inferior

In this section, we introduce the notion of A-limit
superior a A-limit inferior for a A-measurable func-
tion defined on T. We will further with properties
of these concepts and we will give the some rela-
tions with the A-cluster points defined in [20] and
classical limit inferior and limit superior points
concepts.

Definition 2.1 Let f:T - R be a A-measurable
function. If we consider the following subsets of :

A(f) ={y € R: f7}((—==,¥)) is a A-non thin set}
B(f) = {y € R: f7*((y,)) is a A-non thin set}
Then the following extended real number

A-limsup f(t): = sup B(f)

t—>oo

is called A-limit supreior of the function f

whenever t — oo. Similarly follwing extended

number
A- litminff(t): = infA(f)
is called A-limit inferior of the function f whenever

t —» oo. Let us start with the expecting property of
A-limsup f(t) and A- liminf f(t) .

Proposition 2.2 Let f:T —» R be a A-measurable
function. Then we have

A-limsup,_e £(t) = — A-liminf,_ e, (— £ ().
Proof From definition of A(f) and B(f) we have,
A=) = {y e R:6y({t € T: f(£) > —y}) > 0}
and
—A(=f) = {-y € R:§,({t € T: () > —y}) > 0}
={y eR:5,({t € T: f(t) > ¥}) > 0}
=B(f).
So that we have,
—sup B(f) = — sup(—A(—f)) = inf A(—f).

Desired equality is easily obtained from above
equality.

The following two theorems tell us a necessary and
sufficient condition for being a finite valued A-limit
supreior point and A-limit inferior point of a
function defined on time scale T.
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Theorem 2.3 Let f: T — R be a A-measurable func-
tion. The real number L is A-limit supreior point of
the function f if and only if for all s > 0,

i) f7((L — s,)) is a A-non thin subset of T,
ii) f71((L + s,0)) is a A-null subset of T.

Proof We will show that (i) and (ii) hold for all
s> 0. A-limsup;, f(t) =L €R then
B(f) # @. From sup properties of real numbers, for
all s > 0 there exists y € B(f) such that L —s < y.
Since Y@y, ) c fH(L—-5s) and
f7*((y,»)) is a A-non thin subset of T then
f‘l((L -5, 00)) is a A-non thin subset of T. Now
assume that (ii) does not hold. Then there exists
s> 0 such that f‘l((L+s,00)) is a A-non thin
subset of T. That means L+ s € B(f). This
contrdicts with L = sup B(f). Therefore (i) and (ii)
hold for all s>0. Now we will show that
A-limsup;, f(t) =L € R. From (ii) the
number L is an upper bound of B(f). If M is

Since

real

another upper bound of B(f) then from (i) it
should be greater than or equal to L. So that

supB(f) =L.
Theorem 2.4 Let f: T —» R be a A-measurable func-

tion. The real number L is A-limit inferior point of
the function f if and only if for all s > 0,

i) f71((=o,L +s)) is a A-non thin subset of T,
ii) f7*((—o,L — 5)) is a A-null subset of T.

Proof It is easily obtained from Proposition 2.2 and
Theorem 2.3.

Theorem 2.5 Let f: T — R be a A-measurable func-
tion. The real number L is A-limit supreior of the
function f if and only if = sup I .

Proof We will show that sup B(f) = sup [y . If [} is
an unbounded subset of R then the set B(f) is also
unbounded then equality holds. Now let define
suply = L; and sup B(f) = L, then since the real
number L, is the A-limit supreior of the function f,
from Theorem 2.3-(i), f™*((L, —s,)) is a A-non
thin and f‘l((L2 +s, 00)) is a A-null subset of T. If
we subtract a A-null set from a A-non thin set then
we obtain a A-non thin set. Therefore

Ly =Ly +5)) = fH((Ly — 5,))
= (L2 +5,))
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is a A-non thin subset of T. So that L, is a A-cluster
point of f and we have L; = L,. Now we assume
that L, > L, and s; := L; — L, > 0. Since

f1 ((L1 - %,Ll + %1)) cf ((L2 + %oo))

and Theorem 2.3 (i), f~! <(L1 — 52—1, Ly + %1)) isa A-

null subset of T. This contradicts with closedness
of Ir. That means L; < L, and so L; = L,.

Theorem 2.6 Let f: T —» R be a A-measurable func-
tion. The real number L is A-limit inferior of the
function f if and only if = infT} .

Proof It is easily obtained from Proposition 2.2 and
Theorem 2.5.

Theorem 2.7 Let f: T — R be a A-measurable func-
tion. Then we
liminf,_,, f(t) < A-liminf;_,, f(t) <
A-limsup;_,o, f (t) < limsup;_,e f ().

have

Proof The case of A-limsup;,e f(t) =0 or
A-liminf; ,, f(t) = —oo0 are obvious. Now, assume
that A-limsup;_., f(t) =L, ER and

A-liminf; ,, f(t) = L, € R. From Theorem 2.3 (ii),
for any s > 0, the set f‘1((L1 +s, 00)) is a A-null
subset of T then f‘l((—OO, L, + s)) is a A-non thin
subset of T. From this, we have L, < L; + s for all
s > 0. Therefore

A-liminf, ., f(t) < A-limsup;_ f(t).

Now, first inequality is easily obtained from Propo-
sition 2.2.

Example Let T = [0, o0) and (M,,) strictly increasing
unbounded sequence in T. Take a sequence (s,)
such that 0 <s, < M, — M, and s,, = 0. One can
easily see that A :=U, ¢y [M;,, M, + s,] is a A-null set.
If we define f: T - R
L', ted
f(t)'_{L ,tET—A

where L and L' fixed real numbers such that L < L’
then we have A-limsup;,, f(t) =L
limsup;_,. f(t) = L.

Theorem 2.8 Let f: T - R be a A-bounded function.
The function f is A-converge to the real number L if
and only if

and
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A-liminf, _, f(t) = A-limsup;_, f(t).

Proof If f is A-converge to the real number L then
8a(f((L=sL+s))) =1 for all s> 0. This im-
plies that both of f™1((L +s,)) and f~((—oo,L —
s)) are A-null subsets of T for all s > 0. By same
argument both of f~*((—o,L +5)) and f~1((L -
s, 00)) are A-non thin subset of T for all s > 0.
Therefore from Theorem 2.3 and Theorem 2.4 we
have,

A-liminf;_,,, f(t) = A-limsup;, f(t) = L.

Now let A-liminf,_, f(t) = A-limsup;_, f(t) = L.
From Theorem 2.3 and Theorem 2.4 we have

Sa (f—l((L — s L+ s))) = 1.
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