GU J Sci 30(1): 17-30 (2017)

Gazi University

Journal of Science

http://dergipark.gov.tr/gujs

A Research on Construction Systems of Double Skin Facades

Esra LAKOT ALEMDAĞ^{1*},Figen BEYHAN²

¹Faculty of Engineering and Architecture, Avrasya University, Trabzon, Turkey

²Faculty of Architecture, Gazi University, Ankara, Turkey

Article Info

Abstract

Received: 21/04/2016 Accepted: 16/01/2017

Keywords

Sustainability Energy efficient design Double skin Facade systems Applications of double skin facade systems developed to reduce energy consumption in buildings and scientific researches on this subject have been increasing recently. In the context the aim of this study is to make energy efficient facade design more understandable as functional, conceptual, and technical by indicating the importance of current architecture and to reveal the responsibility of architects. In this study, facade construction details of 16 sample buildings, having double skin façade system are analyzed and presented in tables. It has been reached the result of the research by evaluating the working principles, the advantages and the disadvantages of facade systems.

1. INTRODUCTION

Environmental challenges increasing in recent years and future anxiety have caused to make provisions against energy consumption. As a consequence of particularly having deliberated the relationship between architecture and environment, it is concluded that energy is a factor leading design process in architecture. This conclusion has resulted in speeding up developments in building industry and yielding new technologies. Today buildings have started to turn into comfortable environments that are designed so as to provide optimum conditions by utilizing minimum energy against changing climatic conditions, being ventilated naturally, in which solar radiation can be controlled by householders, being environmentfriendly, and in which the use of mechanical systems is minimized. These developments emerging in building design assign the task to balance between indoor and outdoor climate particularly to the building envelope as part of energy efficiency. This task leads to the development of a new system and new materials on facades including a large part of the building envelope [1]. These new facade systems enhanced on the purpose of energy efficiency designs take parts in literature as "energy-efficiency double skin façade systems", "ventilated facades", and "double glass façade"...etc. Facade systems that make contributions to energy conservation and enable solar power, a renewable energy source to be used in buildings as part of sustainable and ecological design play a significant role in forming and developing today's architecture. In the literature, there are many researches related to introduction, development, and performance of these facade systems. For instance, in his book, Poirazis reveals double skin facade systems in details making use of examples and scrutinizing relevant researches [2]. Wigginton and Harris analyze double skin facade systems of sample buildings in their book by touching upon development process of intelligent facade systems as part of energy efficient and passive design [3]. Loncour et al. in their researches examines ventilation models and their features by considering examples while categorizing double skin facade systems that contains ventilation systems [4]. Oesterle et al. in their book analyzes double skin facade systems within the context of building physics, construction, ventilation and economic viability [5]. Aycam and Sağıroğlu in their researches examines the changing parameters of double skin facade examples that have been implemented in four different climate types all around the world. [6]. In this study, the double skin facade systems that prevail in energy efficient and sustainable architecture patterns are analyzed in terms of functionality, conceptuality, and technical aspects. Within this framework, facade construction details and operation principles of building samples with different double skin facade systems are studied.

2. DOUBLE SKIN FACADE (DSF) SYSTEMS

Double skin facades are formed placing a second skin onto a single skin facade. A certain cavity must accordingly exist between two skins. Both skins of the facades can be designed in transparent form and are named "double-skin glass facades". Figure 1 simply displays components forming double skin facade installation and operation principles of the facade system. On such facades, clean air taken through the bottom opening into the space placed between two skins rises as it warms and is exhausted through building-high shafts or canals fixed up on each floor level without causing thermal disturbance. As a result of providing a buffer zone by the air in the space during the periods of heating and cooling, and ventilating the space in a controlled manner, energy conservation is achieved [7].

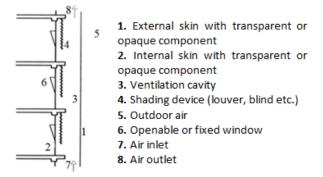


Figure 1. Double skin facade structure [8]

The ventilation cavity in the facade performs some critical functions such as cleaning, maintenance-repair, and prevention of exterior factors by placing solar control elements. Selection of the cavity width depends on some conditions including performance level expected from the system and usage area, climate data, etc. It varies from 20 to 200 cm [9]. The cavity depth, glass type, type and location of solar control elements, size and location of internal and exterior gaps in the cavity, and ventilation system have effects on properties of air in the cavity. In a double skin facade system, air circulation can be provided in 5 different ways in an installed cavity [5].

Outdoor air curtain (1): In this type of ventilation, air in cavity is supplied from outside and then exhausted outside.

Indoor air curtain (2): Air in cavity comes from inside the room and then goes into the room. This circulation occurs automatically or is carried out by means of ventilation systems.

Air supply (3): Ventilation of facade is performed with the help of air outside. Fresh air supplied from outside automatically blows or is taken into room by means of ventilation systems.

Exhaust air (4): Dirty air aspirated from indoors of building is exhausted outside through facade cavity.

Buffer zone (5): Each of double facade layers is airtight and cavity between layers is not ventilated so that a buffer zone is provided between indoor and outdoor.

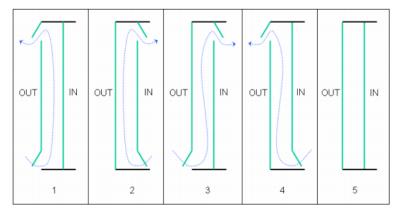


Figure 2. The five main ventilation mode of DSF [4]

2.1. Classification of DSF

Double skin energy efficient facades are categorized in 4 types by considering the types of ventilation cavity partition [4].

• Building-high DSF

In this facade system, air cavity provided between exterior and internal skin horizontally and vertically has no cut. Passive heat gain is provided by means of solar power in the building-high cavity [10]. In the ventilation cavity functioning as air well, dirty air warms and rises and is exhausted through the outlet on the top of building [11]. Throughout the cavity in the facade, catwalks that do not prevent ventilation are planned for staff to carry out cleaning and maintenance-repair. For the ventilation way in building-high facades, outdoor air curtain and buffer zone are generally preferred. Such facades provide an efficient acoustical performance and a thermal isolation [4].

• Storey-high DSF

This facade system, commonly used in double skin facade systems, is also called "corridor facades" in the literature. The story-high air cavity in the system is formed as an intermediate zone travelling around the building. Air ducts through which fresh air enters and dirty air goes out are placed on the wall near the ground floor and the ceiling so that all stories are ventilated separately. In order to prevent dirty air that comes out from a story from entering through air ducts into another story, the staggered duct installation is required. In case air cavity that is placed throughout each story increase sound transmission between indoors in the story, sound isolation required on inner surface of building have to be provided [10]. Such facades also prevent fire from spreading between stories.

Box Window DSF

In this facade system, air cavity placed between exterior and interior skin is partitioned into horizontal modules at floor level and vertical modules at window level. Each story has its own outlet and inlet ducts that provide natural ventilation and are founded in window modules. As in story-high double skin facade systems, vertical-staggered duct installation is required in order to prevent dirty air that comes out from a story from entering through air ducts into another story. Such facade systems have an effect on fire insulation between stories [12].

Shaft Box DSF

Operation principles of such facade systems are a combination of principles of building-high double skin facade systems and story-high double skin facade systems. Building-high air cavity is partitioned by a central vertical shaft that enables to exhaust dirty air. There is story-high cavity connected with the shaft and available on both sides of the vertical shaft. Warming dirty air is transmitted into central vertical shaft through the story-high cavity. Dirty air that rises due to chimney effect in shaft is exhausted outside from outlet on the top [12].

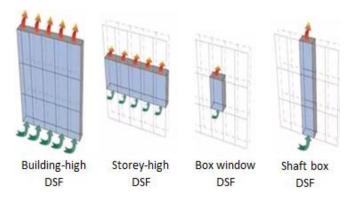


Figure 3. Fresh and warm air flows of DSF Systems [13]

3. METHOD

For this study, 34 samples of buildings that display one of 4 types of energy efficient facade systems [building-high, story-high, box-window, and shaft box] and that have taken places in the literature due to their sustainable structural features are determined. However, due to page limitation related to the article, analyses concerning 16 sample buildings in total - 4 samples for each type – are presented. ID cards prepared for sample buildings are available in Appendix of the study. After that, inquiry-based analysis tables are edited in order to determine the features of energy efficiency façade constructions.

There is a table of analysis of each type of façade in the article. The titles relating to these analysis tables are identification of façades, façade function, façade ventilation type, façade ventilation form, façade construction, size and type of openings in air shafts, direction of air flow in shafts, shading element used, maintenance and repair of façade, HVAC systems (heating, ventilating and air conditioning).

3.1. Analysis of DSF Construction

Information regarding facade types and buildings of which facade construction analyze is carried out is available in Table 1. Beside this, detailed construction analyzes concerning facade type of 4 sample buildings which are randomly chosen are also presented in tables (Table 2, 3, 4, 5).

		TYPE 1	TYPE 2	TYPE 3	TYPE 4				
		Building-high DSF	Storey-high DSF	Box window DSF	Shaft box DSF				
	1	GSW Headquarters	Deutsche Messe AG Administration	Kista Science Tower	ARAG 2000				
SAMPLES	2	Victoria Life Insurance	High Tech Centre Helsinki	Eurotheum	Photonics Centre				
SAM	3	Occidental Chemical Centre	Galeries Lafayette	RWE AG	Building Research Establishment				
	4	Martela Business Centre	Düsseldorf City Gate	Print Media Academy	Halenseestrabe				

 Table 1. Building samples with analysis of facade construction

 Table 2. Facade construction analysis of GSW Headquarters building [14]

	Type: Building-high DSF							
Facade system	Number of building facade - Number of DSF facade: 4 – 2							
	Total size (m ²): No information							
Function of DSF	Energy efficiency, Optimum air-conditioning, External noise control, Efficient usage of							
Function of DSF	daylight							
	Natural 🗸	Air that enters through gaps from eastern facade						
Ventilation type of	Mechanical	circulates inside place and then automatically flows						
DSF	Hybrid (Mechanical +Natural)	back into place by passing through western facade						
		cavity.						
	Outdoor air curtain							

	Indoor air cur	rtain	√	Free	sh air coming from outside is drawn into western						
Ventilation mode of	Supply air			faca	facade cavity flowing through indoor spaces. After						
DSF	Exhaust air			ventilating western facade, it returns inside.							
	Buffer zone √				1						
		First la	yer: 8 mr	m Low-E glass							
	Internal skin		14 mm air cavity								
	construction		8 mr	m clear glass (low-ferrous flat glass)							
	(single-layer)	Frame	type: 1,8	×1,9 1	n openable aluminium frame						
Construction of DSF	External skin construction (single-layer)			d, 10mm tempered glass							
			• -		n aluminium frame						
	Air cavity	Narrow Wide (20–200	v (10−20 c ✓ 0 cm)	m)	There is 90 cm air cavity between exterior and interior skins.						
Open junctions type	On the topside	and unders	side of ven	tilatio	on space, air intake & vent grates exist. When the						
of DSF	grilles are close				-						
	Vertical	√	Air that	is d	rawn into inside from eastern front gaps is						
Air flow direction	Diagonal			ed into western front cavity and so a vertical air flow							
through the cavity	Horizontal		is provid	led.							
		In the mi	iddle of ai	r cav	ity						
		Inside air cavity, near-internal skin									
	Position	Inside air cavity, near-external skin 🔨									
<i>a</i>		Outside of external skin									
Shading device		Indoor									
	Туре	0,6×2,9 n	n, entirely	colla	psible aluminium louvre blind						
	Control system	Manually and mechanically									
Service and	Maintenance of	ce of interior front and ventilation cavity is conducted through service hallways									
maintenance of DSF	located on each										
Hvac (Heating,		s are naturally ventilated by means of cross - ventilation. In the case that									
Ventilating and Air	•••	not sufficient in winter, HVAC systems are									
Conditioning sys.)	activated.	ted.									

	Type: Storey-hig	gh DSF						
Facade system	Number of building facade - Number of DSF facade: 4–4							
	Total size (m ²): ~6800							
Function of DSF	Energy efficiency	, Optimum air-condit	ioning, Efficient usage of daylight					
Ventilation type of	Natural	×	Air is drawn into facade and then exhausted					
Ventilation type of DSF	Mechanical		outside through vertical grates on each floor					
DSF	Hybrid (Mechan	ical +Natural)	level.					
	Outdoor air curt	tain 🗸						
	Indoor air curtai	in	When air intake & vent grates on facade are					
Ventilation mode of	Supply air	√	open, warming air continuously circulates in each floor. Beside this, a cross-ventilation is					
DSF	Exhaust air	\checkmark	provided as a result of opening windows.					
	Buffer zone	\checkmark	r · · · · · · · · · · · · · · · · · · ·					
		First layer: 4 mm laminated glass						
Construction of DSF	Internal skin	16 mm air cavity						
Construction of DSF	construction	6 mm	laminated glass					
	(single-layer)	Frame type: steel frame, sliding, openable						

	External skin construction (single-layer)		First layer: 8mm laminated glass 16mm air cavity 8mm laminated glass Frame type: Fixed, steel frame						
	Air cavity	Wide	ow (10−20 cm) ✓ 00 cm)	There is 56 cm air cavity between exterior and interior skins.					
Open junctions type of DSF	In cavity on ex	terior wall	in each floor, 8 me	tal stripe grates, 3m-high, exist.					
Air flow direction	Vertical	√	Flow direction of	f air drawn into cavity each floor level is					
through the cavity	Diagonal		provided verticall	y and horizontally. Fitted into cavity, floor					
un ough the cavity	Horizontal	\checkmark	slabs prevent air f	rom transmitting into other floors.					
		In the middle of air cavity							
		Inside air cavity, near-internal skin							
	Position	Inside air cavity, near-external skin 🔨							
Shading device		Outside of external skin							
Shaung device		Indoor		√					
	Туре	Aluminiu	m louvre blind in th	e air cavity, roller blind indoor					
	Control system	Manually and mechanically							
Service and	By means of s	service hal	lway and gaps ope	ening into ventilation cavity, maintenance					
maintenance of DSF	service of cavi	ty is carrie	d out.						
Hvac (Heating,			-	be ventilated in summer and in the case that					
Ventilating and Air Conditioning sys.)	the system is in	nsufficient	in winter, in-floor l	neating and cooling systems are activated.					

 Table 4. Facade construction analysis of Kista Science Tower [2]

	Type: Box windo	ow DSF							
Facade system	Number of building facade - Number of DSF facade: 4–4								
	Total size (m²): 6000								
Function of DSF	Energy efficiency	, Optimum air-condit	itioning, Efficient usage of daylight						
Ventilation type of	Natural		Fres	h air is taken from grates on each floor					
Ventilation type of DSF	Mechanical		leve	l. Beside this, mechanical systems also					
DSF	Hybrid (Mechan	ical +Natural) 🔨	cont	ribute air flow.					
	Outdoor air curt	tain 🔨							
	Indoor air curtai	in		en air intake & vent grates of box window lules on facade are open, warming air					
Ventilation mode of	Supply air			inuously circulates in each floor. When they					
DSF	Exhaust air		are closed, a buffer zone is formed.						
	Buffer zone	\checkmark	are closed, a bullet zone is formed.						
		First layer: 4 mm clear glass							
	Internal skin construction	12 mm	air cavity						
	(single-layer)	4 mm	clear glass						
	(single-layer)	Frame type: Fixed, storey-high steel frame							
Construction of DSF	External skin	First layer: 10 mm	n fixed	l clear glass					
	construction	Frame type: Store	high how frame						
	(single-layer)								
		Narrow (10–20 cm	l)	There is 70 cm air cavity between exterior					
	Air cavity	Wide 🗸		and interior skins.					
		(20–200 cm)							

Open junctions type of DSF	Mechanical ventilation grates are on topside and underside of box windows, on exterior wall, on each floor in cavity, and on roof level.							
Air flow direction through the cavity	Vertical Diagonal Horizontal	 ✓ Air drawn into cavity on each floor vertically rises and is exhausted ✓ outside through grates on other box window modules. Thus, air flow is vertically and horizontally performed. As a result that there is no air circulation area on floor levels between floors, inter-story air flow does not exist. 						
Shading device	Position	In the middle of air cavity ✓ Inside air cavity, near-internal skin Inside air cavity, near-external skin Outside of external skin Indoor						
	Туре	Aluminium louvre blind						
	Control system	Mechanically						
Service and maintenance of DSF	Maintenance of interior wall is conducted through service hallway in ventilation cavity while that of exterior wall is by means of service lifts hanging from roof.							
Hvac (Heating, Ventilating and Air Conditioning sys.)		the the windows on interior facade can not be opened, indoors are ventilated nically and are heated with radiators.						

 Table 5. Facade construction analysis of Halenseestrabe [2]

Table 5. Facuae constru	Type: Shaft box									
Facade system	Number of building facade - Number of DSF facade: 2–1									
·	Total size (m ²): ~1200									
Function of DSF	Energy efficiency	, Optimum air-	conditionin	g, External noise control						
	Natural	\checkmark		Air taken into vertical air-hole located on the						
Ventilation type of	Mechanical			rs of building from roof level gets dirty						
DSF	Hybrid (Mechan			passing throughout floors and is exhausted le from vertical shaft located in the center.						
	Outdoor air curt	tain 🔨	Air di	rawn into shaft through air doors on roof						
	Indoor air curta	in		ates indoors by means of gaps while						
Ventilation mode of	Supply air	×		ng towards in horizontal ducts throughout						
DSF	Exhaust air	×		. When air doors on the roof are closed, a						
	Buffer zone	٧	buffer	zone is provided.						
	Internal skin construction	First layer:	Openable, s	nable, sliding laminated glass						
	(single-layer)	Frame type: Aluminium								
Construction of DSF	External skin construction	First layer:	Fixed 12 m	d 12 mm clear glass						
	(single-layer)	Frame type: Frameless curtain wall								
	Air cavity	Narrow (10– Wide (20–200 cm)	20 cm) ✓	There is 85 cm air cavity between exterior and interior skins.						
Open junctions type of DSF		•		air doors on roof level that are operated ing on floor level throughout story.						
	Vertical			rom roof level is vertically referred to floors						
Air flow direction	Diagonal			ming here is referred to the central shaft ipes in air cavity. Finally the dirty air rises						
through the cavity	Horizontal	-	-	id is exhausted here.						

		In the middle of air cavity						
		Inside air cavity, near-internal skin						
	Position	Inside air cavity, near-external skin 🔨						
Shading device		Outside of external skin						
Shading device		Indoor						
	Туре	Louvre blind						
	Control	Mechanically						
	system	Weenanieany						
Service and maintenance of DSF	Maintenance of the cavity is carried out by means of windows on interior wall.							
Hvac (Heating,	When glass doors on interior wall are opened, indoors are ventilated by cross-ventilation							
Ventilating and Air	method. In win	ters when the system is insufficient, mechanical ventilation system is						
Conditioning sys.)	activated.							

4. FINDINGS

In this section, data obtained as a result of analyzing facade systems of 16 sample buildings in order to determine the specific construction features of each facade type and to compare 4 double skin facade systems with each other is presented in Table 6. Inquiry parameters that are used to create the assessment table are; Double Skin Facade Function, Facade Number, Facade Ventilation Type, Interior Facade Construction, Exterior Facade Construction, Interior Windows, Exterior Windows, Air cavity in Facade, Gap Types in Air Cavity, Flow Direction in Air cavity, Type of Shade Element, Location of Shade Element, Maintenance Opportunity, HVAC Systems [heating, ventilating, and air conditioning].

As is seen from the study including the comparison of the sample buildings that have the four types of double skin facade construction, the buildings provide energy efficiency and optimum air conditioning functions. On the other hand, noise control and efficient usage of daylight are preferred functions depending on the intended purpose and location of the buildings. Beside this, it is seen that natural ventilation is used as ventilation form of façade cavity and thus indoor space for almost all types of façades. In case of insufficient natural ventilation, mechanical ventilation is additionally activated.

For the large majority of the sample buildings, air circulation in facade system is provided through the principle consisting of outdoor air curtain, air supply, air exhaust, and buffer zone. As for glass types used for internal and external skin constructions, low-e and laminated glass is mostly preferred for internal skin clear glass (low-ferrous flat glass) and laminated glass with high solar radiation transmittance for external skin.

Considering the different types of the double skin facades of the sample buildings analyzed, it is seen that the most of the windows in the inner skin are designed as opening while those in the outer skin are as fixed windows. Beside this, the analysis suggests that the windows in the inner skin of the buildings with double skin facade, building-high, are also designed as fixed windows in order to provide a buffer zone.

On the other hand, considering the dimensions and geometry of the air well, it is seen that they are designed as a wide air well (20-200cm) for all the 4 types of the energy efficiency facades. Air flow in the well is vertically oriented in all the sample buildings. Only for the sample buildings with box-window double-skin façade, cross air flow exists additionally in order to prevent mixing of dirty air with clean air. Preferred as shading elements for the most of the sample buildings, jalousies are placed rather into facade cavity. For almost all of the sample buildings, service & maintenance opportunity is provided depending on the design of the facade system.

In case of being insufficient in providing climatic comfort conditions, HVAC systems (heating, ventilating and air conditioning) are used as supportive agent for all the façade types.

FACADE TYPES			TYPE 1					PE 2		TYPE 3				TYPE 4			
	OF SAMPLES	1	2	3	4	1	2	3	4								4
			_								_				_		-
	Energy efficiency	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Francisco of DOF	Optimum	х	Х	х	х	х	х	Х	х	х	х	Х	Х	х	х	х	х
Function of DSF	hir-conditioning																
	Noise control	Х	X			Х								Х	Х		
	Efficient usage of daylight									Х	Х	Х	Х				<u> </u>
Number of DSF	DSF at all facades	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х		Х			┣
	DSF at some facades	Х								Х			<u> </u>	Х	Х	Х	L
	Natural	Х	Х	Х		Х	Х	Х	Х	Х	Х			Х	Х	Х	
Type of ventilation	Mechanical																
	Hybrid	х								х	х			х			
	Outdoor air curtain	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Vandilation and e	Indoor air curtain	х															
Ventilation mode of	Supply air	х				Х	Х	Х	Х	х	х	Х		х	Х	Х	х
	Exhaust air	х				Х	х	х	х	х	X	х		х	х	х	X
	Buffer zone	x	х	X	х	X	X	X	X	X	X	X	х	X	X	X	
	Clear glass			_	_	X				X						_	
Pane type of	Tempered glass	х	X														
internal skin	Laminated glass	X	X			х	X			х	x	X		х			
internal skin	Low-E glass	Λ	л				Λ			л	Λ	Λ			v	v	
	Clear glass	87				X					**			X	X	X	
Dono trino of	-	Х				Х				X	X			Х	X	X	
Pane type of	Tempered glass									X							
external skin	Laminated glass	Х				Х	Х	<u> </u>		Х	<u> </u>	<u> </u>	<u> </u>	Х			<u> </u>
	Low-E glass	Х	Х			Х											
Windows of internal		Х	X	X						Х							
skin	Openable	Х				Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
Windows of external		Х	Х			Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х
skin	Openable	Х	Х						ļ					Х			
Air cavity of facade	Narrow (10-20 cm)																
in cavity of facaue	Wide (20-200 cm)	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Grate	х	Х	Х		Х	Х			Х	Х	Х		Х	Х		
- I - J	Duct					Х	Х			Х	Х	Х					
facade	Window	х															
	Damper	х				Х				х				Х	Х		
	Vertical	х	х	х	Х	х	Х	х	х	х	х	Х	х	х	х	х	X
Air flow direction	Diagonal									х	X	х	Х				
through the cavity	Horizontal					х								х			
Type of shading	Venetian blind	х	X	x	X	X	х	X		х	x	X	X	X	x	X	x
device	Roller blind	Λ	Λ	Λ	Λ	х	Х	Λ		Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
	At external skin					Λ	Λ							v			
Position of shading	Inside the air cavity	87	v	v		v	77	v			**	77	v	X	v	77	
device		X	X	Х		X	X	X		Х	X	X	X	Х	Х	Х	
a •	At internal skin	Х				Х	Х	Х					<u> </u>				
Service-maintenance		Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х		Х	Х	Х	X
possibility	Non-available									Х							
HVAC	Available	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Non-available																

 Table 6. Comparative analysis of DSF systems of sample buildings

Positive and negative features of double skin facade systems are summarized in Table 7 based on analyzes carried out as part of the study and the literature.

Table 7. Positive and negative features of DSF systems

Luvu	e 7. i ostive una negative fedures of DSI systems
	Natural Ventilation : In all types of DSF, user comfort is enhanced by providing natural ventilation by means of air cavity designed in facade.
	Heat Insulation: Of all types of DSF systems, exterior skin makes contribution to heat insulation
	by reducing heat transmission resistance. Beside this, air cavity designed in facade minimalizes
	heat loss on glass surface of interior facade by balancing temperature difference between indoor
	and outdoor.
	Sound Insulation: Particularly building-high DSF reduces sound transmission from outdoor to
	indoor in areas where noise ratio is high due to intense traffic flow. However, noise pollution may
	occur between stories of building with such a facade because there is no separating layer along the
ES	building height. On the other hand, other types of DSF including story-high, box-window, and shaft
R	
POSITIVE FEATURES	enable to dramatically reduce inter-floor sound transmission because air cavity is not continuous.
V	Night Ventilation: It is most likely that indoor temperature readily increases during summer
E	months in DSF systems. Moreover, indoor outfits and construction elements are not allowed to
E	accumulate heat by way of natural ventilation conducted when mechanical ventilation systems are
	off at night so that daytime indoor thermal comfort is enhanced.
LI	Energy Conservation and Reduction of Environmental Factors: Owing to natural ventilation
SO	in DSF systems, energy conservation is provided as a result of reducing usage of mechanical air
Ā	conditioning systems. Double skin system protects building against external factors.
	Visual Communication: wide glazing area ratio in double skin glass facades enhances visual
	communication between users and outdoor, and increases indoor lighting level.
	Reduction of Wind Effect: When the windows installed in buffer zone between two skins in DSF
	systems are opened, wind pressure on the exterior surface can be reduced by transmitting into center
	section.
	Protective Effects of Shading and Lighting Elements: Damages that may occur due to external
	climatic changes are prevented as a result of installation of shading- lighting elements into facade
	cavity.
	Overheating Problems: Overheating DSF cavity may have a negative effect on indoor comfort.
	For this reason, it is so critical to properly design air cavity, air flow way there and also exterior
	and interior gaps that contribute air flow.
	Daylight Problems: In DSF systems, transmission of sun radiation from external skin to indoor
7.0	• •
TURES	may reduce quantity of daylight.
B	High Construction Cost: As compared to other types of facade systems, DSF systems cost higher
E	due to the material used. However, they soon have an advantage owing to energy conservation that
EA	is provided in operating process.
Ξ.	
	High Air Flow Speed in Cavity: In high-rise buildings with DSF systems, air flow speed in facade
VE	High Air Flow Speed in Cavity: In high-rise buildings with DSF systems, air flow speed in facade cavity may rise. Unbalanced air flow speed may cause failure in function that facade is supposed
IIVE	cavity may rise. Unbalanced air flow speed may cause failure in function that facade is supposed
ATIVE	cavity may rise. Unbalanced air flow speed may cause failure in function that facade is supposed to conduct.
EGATIVE	cavity may rise. Unbalanced air flow speed may cause failure in function that facade is supposed to conduct.Fire Problems: In building-high DSF systems, a fire breaking out on a lower floor may easily
NEGATIVE FE	 cavity may rise. Unbalanced air flow speed may cause failure in function that facade is supposed to conduct. Fire Problems: In building-high DSF systems, a fire breaking out on a lower floor may easily spread to upper floors as a result of rising throughout the facade cavity. Required technical
NEGATIVE	 cavity may rise. Unbalanced air flow speed may cause failure in function that facade is supposed to conduct. Fire Problems: In building-high DSF systems, a fire breaking out on a lower floor may easily spread to upper floors as a result of rising throughout the facade cavity. Required technical preventions including fire insulation must be taken. In story-high and box-window types of DSF
NEGATIVE	 cavity may rise. Unbalanced air flow speed may cause failure in function that facade is supposed to conduct. Fire Problems: In building-high DSF systems, a fire breaking out on a lower floor may easily spread to upper floors as a result of rising throughout the facade cavity. Required technical preventions including fire insulation must be taken. In story-high and box-window types of DSF systems, this problem does not exist because the cavity is partitioned.
NEGATIVE	 cavity may rise. Unbalanced air flow speed may cause failure in function that facade is supposed to conduct. Fire Problems: In building-high DSF systems, a fire breaking out on a lower floor may easily spread to upper floors as a result of rising throughout the facade cavity. Required technical preventions including fire insulation must be taken. In story-high and box-window types of DSF systems, this problem does not exist because the cavity is partitioned. Problems Related To Mechanical System: Problems that occur based on mechanically
NEGATIVE	 cavity may rise. Unbalanced air flow speed may cause failure in function that facade is supposed to conduct. Fire Problems: In building-high DSF systems, a fire breaking out on a lower floor may easily spread to upper floors as a result of rising throughout the facade cavity. Required technical preventions including fire insulation must be taken. In story-high and box-window types of DSF systems, this problem does not exist because the cavity is partitioned.

5. RESULT

Usage rate of energy efficiency double skin facades is increasing as days pass due to its favorable features such as; minimizing heat loss in buildings, benefiting from the sun in a controlled manner, establishing optimum balance between inner and outer climate, therefore drawing more advantages from the space near the window, making a contribution to sound insulation, providing the opportunity of natural ventilation

particularly on the top floors of high-rise buildings, bringing innovations to architecture and building sector. Some parameters that must be primarily considered in design process of double skin facade systems for system efficiency, reduction in building-operating cost, and energy conservation can be summarized as follows;

- Building's Function [affecting selection of type and design of double skin facade],
- Climatic Features, Geographical Location, Topographic Structure of Construction Area [affecting selection of type and design of double skin facade],
- DSF Direction [affecting heat loss and gain on facade],
- Cavity Geometry and Dimensions of Facade Construction [affecting air temperature and flow in cavity],
- Ventilation Way in Cavity [affecting indoor thermal comfort],
- Selection of Material Used in Double Skin Facade Systems [physical, technical etc. features of glazing and shading elements affect natural ventilation and users' visual comfort],
- Position and Design of Window Openings Planned on Exterior and Interior Facade [affecting air flow format, speed, and direction in cavity].

In this regard, it is certain that technical data and experience are required to determine the most optimal facade system in designing buildings with double skin facade (thermo-physical properties of materials chosen for inner and outer skins, air flow and thermal changes in facade cavity, measurement of temperatures in inlet/outlet air ducts, building thermal performance, heat recovery from indoor solar radiation, and in facade cavity etc.).

In the early of design process, conducting analyzes of buildings including CFD Analyzes [Computational Fluid Dynamics] and Heating & Cooling Load Analyzes by energy simulation programs will make contributions to enhancement in system efficiency, energy conservation, determination of optimal facade system for a project. Building patterns with double skin facade systems prevail around the world. In our country which thermal solar capacity is quite high in and is located on the temperate climate zone, the number of double skin facade systems that have been practiced is so few. Therefore it is necessary to increase the number of patterns which are properly designed and can make positive contributions to building energy management.

*This article was based on Esra Lakot Alemdağ's MSc Thesis 'The Study Of Analysis About The Position And Performance In The Current Architecture Of Energy Efficient Double Skin Building Façade Designs In The Content Of Ecologic And Sustainable Architecture'.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors

REFERENCES

- [1]. Lakot, E., " The Study Of Analysis About The Position And Performance In The Current Architecture Of Energy Efficient Double Skin Building Façade Designs In The Content Of Ecologic And Sustainable Architecture ", MSc Thesis., KTU, Graduate School Of Natural and Applied Sciences, Trabzon, (2007).
- [2]. Poirazis, H., "Double Skin Façades For Office Buildings", Lund Institute Of Technology Department Of Construction And Architecture, Lund University, Lund, (2004).
- [3]. Wigginton, M., J. Harris., "Intelligent Skins", Oxford: Butterworth-Heinemann, (2002).

[4]. Loncour, X., vd., "Ventilated Double Facades", Belgian Building Research Institute, (2004).

http://www.bbri.be/activefacades/new/download/pdf. Erişim Tarihi: 15.11.2012.

- [5]. Oesterle, E., vd., "Double Skin Facades- İntegrated Planning", Prestel Verlag, Munich, Germany, (2001).
- [6]. Ayçam İ., Sarıoğlu E., Energy Efficient Double Skin Facade in Different Climates. International Journal of Academic Research, 7, 2, s. 554-562, (2015).
- [7]. Li, S., "A Protocol To Determine The Performance Of South Facing Double Glass Façade System", MSc Thesis in Architecture, The Faculty Of The Virginia Polytechnic Institute and State University, Virginia Polytechnic Institute And State University, USA, (2001).
- [8]. Daniels, K., "Technologie Des Ökologischen Bauens: Grundlagen Und Maßnahmen", Beispiele Und Ideen, Basel, (1995).
- [9]. Göksal, T., "Çift Kabuk Cam Cephe Kuruluşları Ve Enerji Etkin Tasarım", TTMD, 36, 3–4, s. 27–34, (2005).
- [10]. Bilgiç, S., "Akıllı Cephe Sistemleri", Ege Mimarlık, 44, 1, s. 21-25, (2003).
- [11]. Compagno, A., "Intelligent Glass Facades", Birkhäuser Publishers, Basel, (2002).
- [12]. Uuttu, S., "Study of Current Structures in Double-Skin Facades", MSc Thesis In Structural Engineering and Building Physics, Helsinki University of Technology, Department of Civil and Environmental Engineering, Finland, (2001).
- [13]. Vaglio, J., "Double Skin Facades", (2012). www.jeffvaglio.com. Erişim Tarihi: 08.04.2014.
- [14]. Edwards, B., "Green Buildings Pay", Spon Press, London, (2003).
- [15]. Schittich, C., "In Detail Building Skins", Birkhäuser Publishers, Basel, (2001).

APPENDIX

 Table 1. ID Cards of Sample Buildings With Building-High DSF and Storey-High DSF

SAMPLES OF BUILDING-HIGH DSF	SAMPLES OF STOREY-HIGH DSF
Sample 1. GSW Headquarters Building	Sample 1. Deutsche Messe AG Building
Architect: Sauerbruch Hutton Location / Year: 1999 / Germany Function: Office building Building height / Number of floors: 65 m / 19 storey	Architect: Thomas Herzog Location / Year: 2000 / Germany Function: Office building Building height / Number of floors: ~ 70 m / 20 storey
Sample 2. Victoria Life Insurance Building	Sample 2. High Tech Centre Helsinki Building
Architect: T. Valentyn ve A. Tillman Location / Year: 1996 / Germany Function: Office building Building height / Number of floors: 22 m / 6 storey	Architect: Kai Wartiainen, Evata Finland Location / Year: 2001 / Finland Function: Office building Building height / Number of floors: ~ 35 m / 8 storey
Sample 3. Occidental Chemical Centre Building	Sample 3. Galeries Lafayette Building
Architect: Mark R. Mendell Location / Year: 1980 / New York Function: Office building Building height / Number of floors: 42 m / 9 storey	Architect: Jean Nouvel Location / Year: 1995/ Germany Function: Shopping center Building height / Number of floors: ~ 30 m / 7 storey
Sample 4. Martela Business Centre Building	Sample 4. Düsseldorf City Gate Building
Architect: Tommila Oy Location / Year: 2001 / Finland Function: Showroom Building height / Number of floors: ~ 14 m / 4 storey	Architect: Petzinka Pink Location / Year: 1997 / Germany Function: Office building Building height / Number of floors: 70 m / 16 storey

Table 2. ID Cards of Sample Buildings With Box window DSF and Shaft box DSF

SAMPLES OF BOX WINDOW DSF	SAMPLES OF SHAFT BOX DSF
Sample 1. Kista Science Tower Building	Sample 1. ARAG 2000 Building
Architect: White Architecture Location / Year: 2003 / Switzerland Function: Office building Building height / Number of floors: 128 m / 32 storey	Architect: Norman Foster Location / Year: 2000 / Germany Function: Office building Building height / Number of floors: 125 m / 32 storey
Sample 2. Eurotheum Building	Sample 2. Photonics Centre Building
Architect: Novotny Mähner	Architect: Sauerbruch Hutton
Location / Year: 1999 / Germany	Location / Year: 1998 / Germany
Function: Office and housing Building height / Number of floors: 110 m / 31 storey	Function: Research center Building height / Number of floors: ~ 10 m / 3 storey
Sample 3. RWE AG Administration Building	Sample 3. Building Research Building
Architect: Ingenhoven Overdiek	Architect: Fielden Clegg Bradley
Location / Year: 1997 / Germany	Location / Year: 1997 / UK
Location / Year: 1997 / Germany Function: Office building	Location / Year: 1997 / UK Function: Research center
Location / Year: 1997 / Germany	Location / Year: 1997 / UK
Location / Year: 1997 / Germany Function: Office building	Location / Year: 1997 / UK Function: Research center
Location / Year: 1997 / Germany Function: Office building Building height / Number of floors: 120m /31 storey	Location / Year: 1997 / UK Function: Research center Building height / Number of floors: ~ 10 m / 3 storey