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Abstract 

In this work, two nitro-Schiff bases were synthesized by condensation reaction of 4-nitro-

benzaldehyde with p-phenylenediamine and 3-amino-2-naphthol in 2:1 and 1:1 ratios, 

respectively. Then, the reduction of nitro group to amino group with sodium dithionite and 

forming the new imine bond by adding aldehyde, as salicylaldehyde, 2-hydroxy-1-

naphthaldehyde or terephthaldehyde, asymmetric tetraimine Schiff bases (L-1, L-2, L-3) were 

prepared. Tetraimines have been characterized by elemental analysis, FT-IR, 1H/13C NMR, UV–

Vis, and mass spectroscopy techniques in order to study the structure effect on the phenol-keto 

tautomerism. Solvent, acid and base effects on the tautomeric equilibrium have been also 

investigated by using UV–Vis spectra. 
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1. INTRODUCTION  

Symmetrical bis-Schiff bases of the type R-N=CH-Ar-CH=N-R or R-CH=N-Ar-N=CH-R are usually 

synthesized from the condensation reaction of primary amines with active carbonyl groups of dialdehydes 

in 2:1 molar ratio and the reaction of diamines with aldehydes or ketones in 1:2 molar ratio. However, 

asymmetric bis-Schiff bases of the type R-N=CH-Ar-N=CH-R can be prepared with a new two step method 

[1], which is based on the conversion of the nitro group into the amino group. 

Schiff bases are a kind of attractive reagents due to specific activities of pharmacology and physiology, 

such as antibacterial [2], antifungal [3], anti-inflammatory [4], anticonvulsant [5], antiproliferative [6], 

antitubercular [7], antiviral [8], anthelmintic [9], antitumor [10], antioxidant [11], DNA-binding [12] and 

enzyme inhibition activities [13]. They are also used as pigments and dyes [14], catalysts [15], polymer 

stabilisers [16], model molecules for biological oxygen carrier systems [17] and chemosensors [18]. 

Moreover, they have been of major interest for a long time because of their linear and non-linear optical 

(NLO) [19], photochromic [20], thermochromic and solvatochromic properties [21] resulting from the 

intramolecular hydrogen transfer ability. Due to their physicochemical properties, they can serve as the 

specific type of organic electronic device in optical recording technology, molecular electronics, and 

computing [22].  

Generally for Schiff bases obtained from 2-hydroxy-aldehydes exhibit tautomeric rearrangements because 

of intramolecular proton transfer between the oxygen and nitrogen atoms [23]. The type of the dominant 

form strongly depends on the kind of aldehyde used for the preparation of corresponding Schiff bases. For 

most salicylaldimines and naphthaldimines, the phenol-imine form is usually more stable than the keto-

amine form in the gas phase and in solutions at room temperature [24]. It is also known that the position of 

the proton transfer equilibrium is influenced by the interactions with the solvent molecules [25] as well as 

on temperature and light. This prototopic equilibrium has been studied by FT-IR [26], UV-Vis [27], mass 

[28], X-ray diffraction [29], NMR in the liquid and in solid state [30] and density functional theory (DFT) 

calculation [31]. 

The aim of this work is to synthesis and characterization of new polydentate asymmetric Schiff bases and 

investigation of the structure effect on the intramolecular hydrogen bonding and related tautomeric 
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equilibrium by spectroscopic methods. Moreover, solvent, acid and base effects on the tautomerism are 

reported and discussed by using UV–Vis spectra. 

2. EXPERIMENTAL 

2.1. Materials and Reagents 

3-amino-2-naphthol, p-phenylenediamine, 4-nitro-benzaldehyde, terephthaldehyde, salicylaldehyde, 2-

hydroxy-1-naphthaldehyde and sodium dithionite were purchased from Aldrich Chemical Company. All 

chemicals used were of the analytical reagent grade and of highest purity available. Absolute ethyl alcohol 

(EtOH) (Sigma-Aldrich), diethylether (Riedel-de-Haen), dimethylsulfoxide (DMSO) (Merck), methanol 

(MeOH) (Merck) and toluene (Riedel-de-Haen) were used. Organic solvents were spectroscopic pure.  

2.2. Instrumentation 

Melting points were recorded on Barnstead Electrothermal BI 9200. Elemental analysis was performed on 

LECO CHNS-932 analyzer. IR spectra in the 4000-400 cm-1 range were measured using KBr discs on a 

Mattson 1000 FT-IR spectrophotometer. 1H-NMR and 13C-NMR spectra were determined with a Bruker 

Avance DPX FT-NMR (1H: 400 MHz and 13C: 100 MHz) spectrometer. Chemical shifts are given in δ 

values (ppm) using tetramethylsilane (TMS) as the internal standard, DMSO-d6 as solvent. The mass 

spectra were recorded using the positive ion electrospray ionization modus (ESI) at 70 eVor 100 eV on an 

Agilent 1100 MSD mass spectrometer. 

2.3. Absorption measurements of all Schiff bases 

UV-Vis spectra of compounds were measured in pure solvents (DMSO, methanol and toluene) and acidic 

and basic solutions of these solvents with 0.01 mM concentration. 0.2 mL trifluoroacetic acid and 0.2 mL 

triethylamine were added to the solvents (5 mL) to provide the acidic and basic media, respectively. The 

spectra were obtained using Shimadzu UV-1800 UV-Vis spectrophotometer over the wavelength range 

270–600 nm at room temperature.  

2.4. Synthesis of tetraimine-Schiff bases (L-1, L-2) 

At first, the nitro Schiff base N',N'-bis(4-nitrobenzylidene)benzene-1,4-diamine (Scheme 1A), was 

synthesized by reacting 4-nitro-benzaldehyde with p-phenylenediamine in EtOH, as reported in the 

literatüre [32]. 1 mmol (0.374 g) of (A) was dissolved in ethanol-water mixture (80 mL:80 mL) at 60 oC. 5 

mmol (0.871 g) of solid sodium dithionite was slowly added to the solution as small solid pieces over one 

hour and stirred for one hour at 50 oC for finishing the reducing process. Thus, (B) was obtained in the 

solution. 1 mmol (0.122 mL) of salicylaldehyde or 1 mmol (0.172 g) of 2-hydroxy-1-naphthaldehyde in 15 

mL ethanol was added dropwise during the period of an hour with stirring to the solution (B).  The mixture 

was stirred at 55-60 oC for 4-5 h. The resulting solution was evaporated at room temperature for 

approximately a week, until a precipitate was formed. The crude product (L-1 or L-2) was treated with 

warm water (2x25 mL) and EtOH (2x25 mL) and filtered twice; and recrystallized from EtOH.  
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Scheme 1. The preparation of tetraimine Schiff bases (L-1 and L-2). 

2.5. Synthesis of tetraimine-Schiff base (L-3) 

At first, the nitro Schiff base 3-(4-nitrobenzylideneamino)naphthalen-2-ol (Scheme 2C), was synthesized 

by reacting 4-nitro-benzaldehyde with 3-amino-2-naphthol in EtOH, as reported in the literature.1 2 mmol 

(0.5840g) of (C) was dissolved in ethanol-water mixture (30 mL:30 mL) at 60 oC. 5 mmol (0.871 g) of 

solid sodium dithionite was slowly added to the solution as small solid pieces over one hour and stirred for 

one hour at 50 oC for finishing the reducing process. Thus, (D) was obtained in the solution. 1 mmol (0.134 

g) of terephthaldehyde in 15 mL ethanol was added dropwise during the period of an hour with stirring to 

the solution (D). The mixture was stirred at 60 oC for 5 h. The resulting solution was evaporated at room 

temperature for approximately 4 days, until a precipitate was formed. The crude product (L-3) was treated 

with warm water (2x25 mL) and EtOH (2x25 mL) and filtered twice; and recrystallized from ethanol.  
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Scheme 2. The preparation of tetraimine Schiff base (L-3). 

3. RESULTS AND DISCUSSIONS 

As can be seen in Scheme 3a, the prepared tetraimine Schiff bases have different azomethine moieties of 

the bridging bond -CH=N-Ar-CH=N- or -N=CH-Ar-N=CH- spacers in the solid. These asymmetrical 

Schiff bases can be divided into three series. The first (L-1), and second model (L-2) compounds contain 

2-(iminomethyl)phenol and 1-(iminomethyl)naphthalen-2-ol  

fragments respectively, they are named N-salicylidine-aniline and 1-naphthylidine-aniline Schiff bases, 

respectively. The third model compound (L-3) contains 3-(methyleneamino)naphtalen-2-ol fragments and 

it may be a part of a series of 3-naphthylazomethine Schiff bases. Consequently, this difference opens the 

possibility to explore the effect of structure on formation of intramolecular hydrogen bonding.  

Two types of intramolecular hydrogen bond (either O-H. . .N or O. . .H-N) between the hydroxyl proton and 

the nitrogen atom of the azomethine group can occur in these Schiff bases. In the presence of L-1 and L-2, 

the hydrogen bond mentioned above forms a six-membered chelate ring in 2-(iminomethyl)phenol and 1-

(iminomethyl)naphthalen-2-ol fragments (Scheme 3b). This ring is planar and it is called a pseudoaromatic 

chelate ring [33]. In L-1, the proton transfer from oxygen to the nitrogen atom is accompanied by loss of 

the benzene-ring aromaticity. So, this transfer is disfavored and the phenol-imine form is the most stable 

form for L-1. In L-2, the proton transfer does not affect D2h symmetry of the naphthalene ring, and it may 

lead to the phenol-imine and keto-amine tautomeric forms. Although L-3 has two naphthyl groups, 

intramolecular hydrogen bond forms five-membered chelate ring (Scheme 3c). Because of this, it may exist 

in phenol-imine or zwitterionic forms.  
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Scheme 3. The chemical structures of asymmetrical tetraimine Schiff bases (a); the intramolecular 

hydrogen bonding in L-1 and L-2 (b), and L-3 (c). 
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The influence of stucture on the tautomeric equilibria has been studied by experimental methods. The 

experimental investigations have been performed in the solid state by using IR spectra, in DMSO solution 

by using NMR spectra and in different solvents, acidic and basic solutions by using UV–Vis spectra.  

3.1. IR Spectra 

From the IR spectra, it is possible to assign the imine (C=N) vibration which is accountable partially for 

the existence phenol-imine form and the carbonyl (C=O) vibration of the keto-amine form. The band at the 

region (1614-1623 cm-1) may be due to the vibration of C=N [34]. It is also possible to assign other 

absorptions which are either specific to the enol or the keto forms. A characteristic band of intermediate 

intensity at 1100-1300 cm-1 may be related to a stabilization of phenolic C–O bond and suggests a high 

percentage of phenol-imino tautomer [35]. 

The analytical data and the characteristic infrared spectral data are listed in Table 1. The exemplary spectra 

are given in Fig. 1. IR spectra of tetramines (L-1 and L-2), distinct bands due to imine groups within the 

range of 1612–1626 cm-1 are routinely noticed [36]. Broad bands, centered at about 2793-2762 cm-1, are 

attributed to the intramolecular hidrogen bonded OH stretching vibrations for L-1 and L-2 respectively. A 

weak band at 3404 cm-1 is also observed for L-2. As well, the absorption bands at 3051-3057 and 1542-

1580 and 2858–2999 cm-1 are assigned to ν(Ar-H), ν(C=C) and ν(C-H) of imine group, respectively. The 

band found at 1138-1189 cm-1 may be due to the phenolic C–O bond.  

In IR spectra of the tetraimine (L-3), ν(C=N) vibration corresponding to the different azomethine moieties 

appear at 1600-1632 cm-1 [37]. Free ν(OH) groups are generally observed at 3450 cm-1 as a broad band. 

The bands due to ν(Ar–H), ν(C=C) and ν(C–H) vibration of imine bond appear at 3057, 1560, and 2922-

2967 cm-1, respectively. A strong band at 1205 cm-1 is assigned as phenolic (C–O) vibration. 
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Table 1. Analytical, physical and significant infrared spectral data of tetraimine Schiff bases. 

Comp. Empirical formula 

(Molecular 

weight) 

Color 

Yield 

(%) 

M.p. 

(oC) 

Found (Calcd.) %  

 

IR spectra 

 

C                   H                 N                        

 OH C-H arom. 

C-H alip. 

CH=N C=C C-O 

L-1 C34H26N4O2  

(522 g/mol) 

Orange 

46 

212-213 77.75(78.16)   5.06(4.98)  10.04(10.73)   2793  

(center) 

 

3057(w) 

2999(w)/2865(w) 

 

1612(s) 

 

1574(s) 

1554(w) 

 

1189(m) 

 

 

L-2 C42H30N4O2  

(622 g/mol) 

Red 

50 

305-

307a 

80.54(81.03)   5.13(4.82)    8.84(9.00) 

 

 

  3404(w) 

2762 

(center) 

 

3051(w) 

2960(w)/2858(w) 

 

1626(s) 

 

1580(m)

1542(m) 

 

1138(m) 

 

 

L-3 C42H30N4O2  

(622 g/mol)                 

Brown 

48 

 

226-229 81.29(81.03)   5.76(4.82)    8.69(9.00)   3450(s) 3057(w) 

2967(w)/2922(w) 

1632(m) 

1600(m) 

1560(m) 1205(s) 
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Figure 1. IR spectra of L-1 (a), L-2 (b), and L-3 (c). 

3.2. 1H NMR Spectra 

The 1H NMR data can support the existence of intramolecular proton transfer process which is responsible 

for the phenol-keto tautomerism in Schiff bases. The broad signal observed in the range 13.1–13.5 ppm 

indicates the chemical shift of the phenolic OH proton involved a medium strong OH···N intramolecular 

hydrogen bond [38]. The signal of NH proton at higher ppm is assigned to the proton from the O…H-N 

intramolecular hydrogen bond. The coupling constant 3J(NH,H) on imine proton confirms the splitting of the 

imine proton signal and the existence of the keto-amine form in equilibrium [39].  

1H NMR spectra of tetraimines were carried out in DMSO-d6 solvent at room temperature, using 

tetramethylsilane (TMS) as internal standard. The chemical shifts of the different types of protons are 

summarized in Table 2. 1H NMR results for L-1 exhibit that the phenol-imine form is obtained exclusively 

in DMSO without presence of keto tautomer. The phenolic OH protons involved in the O-H…N type 

intramolecular hydrogen bond are observed at 13.07 ppm (Fig. 2a). The imine (-CH=N) protons are found 

at 9.04 ppm, as singlet [40]. The aromatic protons appear from 6.97 to 7.69 ppm.  

In contrast, 1H NMR data for L-2 prove that tautomeric equilibria is present in DMSO. Keto-amine tautomer 

is favored in the 1-(iminomethyl)naphthalen-2-ol fragment of the molecule. The NH signal of the O…H–N 

proton of keto-amine tautomer appear at 15.86 ppm [41]. The OH signal of the O-H…N proton of phenol-

imine tautomer is detected as a broad singlet in the offset region at 10.82 ppm (Fig. 2b). The peaks appearing 

as two different singlets at 9.54 ppm and 9.74 ppm are attributed to the imine protons. The signal at 8.54-

8.56 ppm, as doublet (J = 8.48), corresponds to the enamine (=CH-N) proton of keto-amine tautomer. The 

aromatic region is a set of multiplets in the range 6.99-7.96 ppm.  

1H NMR spectrum of L-3 shows that phenol-imine tautomer is dominant for all of the molecule in DMSO. 

Upon examination, the phenolic OH protons are observed at 10.22 ppm [40]. The resonance due to imine 

protons appear at 9.93 ppm, as singlet (Fig. 2c). The chemical shifts of the aromatic protons are obtained 

within the 6.87-7.73 ppm region of spectrum.  
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Figure 2. 1H-NMR spectra of L-1 (a), L-2 (b), and L-3 (c) in DMSO-d6. 
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3.3. 13C NMR Spectra 

13C NMR studies of Schiff bases in solution show that the phenolic (C-OH) carbon atom is the most 

sensitive atom for proton transfer equilibrium. This signal is close to 150 ppm for the phenol-imine form. 

When the proton transfer process occurs from oxygen atom to nitrogen atom, it is downfield shifted to about 

170 ppm [42]. 

The proton de-coupled 13C NMR spectra of tetraimines were carried out in DMSO-d6 solvent at room 

temperature. 13C NMR spectral data are consistent with 1H NMR spectral data. In 13C NMR spectrum of L-

1, the imine (–CH=N) carbons appear at 163.62 ppm [43]. The peak at 160.76 ppm is attributed to phenolic 

(C-OH) carbons (Fig. 3a). The resonance at 117.09-147.14 ppm is assigned to phenyl carbons.  

13C NMR spectrum of L-2 exhibits the carbonyl carbon signal at 170.89 ppm [44]. It implies the presence 

of the keto–amine tautomer in the 1-(iminomethyl)naphthalen-2-ol fragment of the molecule. The imine 

carbon peaks are observed at 158.20 ppm. The signals belong to phenolic (C-OH) carbons appear at 155.65 

ppm (Fig. 3b). A new signal at 143.0 ppm indicates the presence of the enamine (=CH-N) carbon of keto-

amine tautomer. The aromatic carbon atoms are recorded in the region 102.0-137.0 ppm. 

13C NMR spectrum of L-3 shows iminic carbons resonance as functional groups signals at 168.0 ppm. The 

upfield peak at 161.0 ppm is assigned to phenolic (C-OH) carbons (Fig. 3c). The chemical shifts for the 

aromatic carbon atoms are recorded in the region 104.22–146.51 ppm 

Table 2. 1H and 13C NMR spectral data of tetraimine Schiff bases 

Comp.   

1H NMR signals (ppm) 

 

-NH 

 

Ar-OH 

  

-CH=N 

 

=CH-N 

 

Aromatic protons 

 

L-1 - 13.07 (s)  9.04 (s) - 6.97-7.02 (m, J = 7.45 Hz) 

7.41-7.43 (t, J = 8.33 Hz) 

7.55 (s) 

7.67-7.69 (d-d, J = 7.64) 

 

L-2 15.86 (s) 10.82 (s)  9.54 (s) 

9.74 (s) 

8.54-8.56  

(d, J = 8.48) 

6.99-7.11 (m, J = 11.60 Hz) 

7.23-7.26 (d, J = 9.02 Hz) 

7.36-7.42 (m, J = 8.82) 

7.51-7.60 (m, J = 8.76) 

7.67-7.70 (d, J = 8.49) 

7.80-7.82 (d, J = 7.48) 

7.93-7.96 (t, J = 7.27) 

 

L-3 - 10.22 (s)  9.93 (s) - 6.87 (s) 

7.0-7.12 (m, J = 7.58 Hz) 

7.20-7.25 (t, J = 9.92) 

7.42-7.47 (m, J = 6.90) 

7.69-7.73 (m, J = 6.89) 
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13C NMR signals (ppm) 

 

-C=O 

 

-C-OH 

 

-CH=N 

 

=CH-N 

 

Aromatic carbons 

 

 

L-1 

- 160.75 163.61 - 117.09, 119.69, 119.83, 123.03, 133.04, 133.84, 

147.14 

 

 

L-2 

170.89 155.65 158.20 143.0 102.0, 109.0, 113.50, 115.0, 119.0, 120.98, 122.24, 

122.58, 124.03, 127.18, 128.59, 129.50, 131.0, 

134.0, 137.0 

 

 

L-3 

- 161.0 168.0 - 104.22, 107.18, 108.48, 115.88, 121.66, 123.16, 

125.00, 125.87, 127.85, 128.48, 129.83, 130.01, 

137.71, 137.87, 138.94, 143.10, 146.11, 146.51 
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Figure 3. 13C-NMR spectra of L-1 (a), L-2 (b), and L-3 (c) in DMSO-d6. 
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3.4. Mass spectra 

Mass spectrums of tetraimines were obtained using the chemical ionization technique (API-ES/positive) 

(70 eV or 100 eV) (Fig. 4). The fragmentation patterns are taken as a general scheme showing the main 

fragmentation paths involved (Scheme 4).  

The mass spectrum of L-1 shows the fragment ions at m/z = 525.3 (1.4%), 521.3 (1.4%), 505.3 (19.0%), 

489.2 (3.3), 475.3 (23.1%), 447.3 (22.7%), 336.2 (0.6), 325.2 (100%), 314.3 (18.2%), 286.3 (13.6%), 273.1 

(18.5%), 233.1 (19.3%), 215.1 (3.9%). The peak at m/z 521 corresponds to the loss of a hydrogen radical 

of molecule. The loss of (OH) group gives the characteristic peak at m/z 505. It is followed by loss of the 

other (OH) group, two benzal rings (C6H4), (CH) group and (C6H6N) group; giving the peaks at m/z 489, 

336, 325 and 233, respectively (Scheme 4a).  

The mass spectrum of L-2 shows the fragment ions at m/z = 625 (4.3%), 616.2 (16.1%), 602.2 (32.7%), 

525.2 (4.7%), 462.1 (2.7%), 385.1 (6.1%), 314.4 (54.3%), 286.3 (28.9%), 177.1 (21.0%), 109.2 (60.5%), 

79.2 (100%). The loss of naphthol ring (C10H7O), (OH) group, naphthalene ring (C10H6), (C7H5N) group 

and two neutral molecules of (HCN) give the peaks at m/z 479 (0.3%), 462 (2.7%), 336 (1.2%), 233 (1.9%) 

and 179 (12.3), respectively (Scheme 4b). 

As can be seen in Scheme 4c, the mass spectrum of L-3 exhibits the fragment ions at m/z = 622.3 (0.8%), 

621.3 (2.5%), 602.2 (8.2%), 505.2 (4.8%), 447.3 (4.7%), 389.2 (6.6%), 325.3 (100%), 271.2 (7.1%), 160.1 

(11.6%), 101.2 (44.0%). The ion at m/z 621 and important fragments at 447, 325, 233(2.6%) and 103(2.2%) 

are obtained by loss a hydrogen radical, (C10H7NO + OH) group, naphthalene ring (C10H6), (C7H5) group 

and (C8H6N2) group, respectively. 
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Figure 4. Mass spectra of L-1 (a), L-2 (b), and L-3 (c). 
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Scheme 4. Fragmentation patterns of L-1 (a), L-2 (b), and L-3 (c).  
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3.5. UV–Vis spectra  

UV–Vis spectroscopy is known to be a very sensitive method for studying tautomeric equilibrium in Schiff 

bases. The Schiff bases show absorption in the range greater than 400 nm in polar and nonpolar solvents. 

It is point out that the new band belongs to the keto-amine form of the Schiff bases [1, 45]. 

The absorption spectra of tetraimines were studied in polar (DMSO and MeOH) and nonpolar (toluene) 

solvents and both acidic and basic solutions. The spectral data are given in Table 3.  
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Table 3. UV-Vis data of tetraimine Schiff bases in various solvents, acidic and basic solutions. 

 

 

 

 

Solvent 

 

 

 

 

Tautomer 

λ max (logε)  

L-1 L-2 L-3 

Pure Acidic Basic Pure Acidic Basic Pure Acidic Basic 

DMSO Phenol-

imine 

328(4.98) 328(5.38) 368(5.47) 325(5.14)  

337(5.13) 

320(5.06) 320(5.11) 281(5.10)  

291(5.12)  

341(5.17) 

277(5.08) 

288(4.95) 

318 (4.80) 

331(4.92) 

281(5.10) 

291(5.12)  

341(5.16) 

Keto-amine - 406(5.31) - 409(5.25) 462(5.13) 

494(5.11) 

463(5.17)  

491(5.15) 

 

- - - 

MeOH Phenol-

imine 

367(5.30) 323(4.56) 369(5.23) 318(4.89) 318(4.91) 

355(4.80) 

320(4.90) 276(5.00) 

286(5.00) 

332(4.98) 

274(4.98) 

285 (4.85) 

303(4.67) 

329(4.79) 

277(4.99) 

287 (4.99) 

332(5.00) 

Keto-amine - - - 465(5.16) 453(5.10) 

 

465(5.12) - - - 

Toluene Phenol-

imine 

369(5.58)  

379(5.49) 

347(5.48) 372(5.34) 324(4.71) 300(2.94)  

371(2.83) 

324(4.62) 286(5.09) 

299(5.06) 

338(5.16) 

288(4.68)  

314(4.78)  

328(4.85) 

290(5.02)  

302(4.99) 

340(5.26) 

Keto-amine - 426(5.46) - 415(3.20) 496(3.67) 415(4.11) - - - 
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3.6. Solvent effects on the tautomeric equilibria 

L-1 shows one absorption maximum at 328 nm in DMSO, 367 nm in MeOH, and two maxima at 369 and 

379 nm in toluene (Fig. 5a). It proves that phenol-imine form fully prevails in the solvents used, no 

equilibrium is present, which is in agreement with NMR results. The bands are assigned to the π-π* or n-

π* transition of imine chromophores. It also indicates that λmax values of L-1 are shifted bathochromically 

relative to the solvent polarity. 

On the other hand, the electronic absorption spectra of L-2 in all solutions differs significantly from those 

in the other compounds. L-2 exhibits absorption maxima at 325, 337 and 409 nm in DMSO, 318 and 465 

nm in MeOH, 324 and 415 nm in toluene (Fig. 6a). These results suggest that L-2 may exist as a mixture 

of phenol-imine and keto-amine forms in solution. The absorbance bands in region 318-337 nm indicate 

phenol-imine form and they correspond to the π-π* transition of imine chromophores. The bands in region 

409-465 nm indicate keto-amine form and they are due to the n-π* transition of carbonyl chromophore. 

Furthermore, the absorption maxima of L-2 do not significantly change with the polarity of solvents. 

The spectrum of L-3 shows three absorption maxima in all solutions (Fig. 7a). The bands in region 276-

299 nm and 332-341 nm are attributed to the π-π* transition of aromatic ring and the π-π* transition of 

imine chromophores of the phenol-imine form, respectively [46]. These results show that L-3 is in favour 

of the predominantly single tautomeric form in the solvents used.  

 

 

Figure 5. UV-Vis spectra of L-1; in various solvents (a), in acidic solutions (b), and in basic solutions 

(c). 
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Figure 6. UV-Vis spectra of L-2; in various solvents (a), in acidic solutions (b), and in basic solutions 

(c). 
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Figure 7. UV-Vis spectra of L-3; in various solvents (a), in acidic solutions (b), and in basic solutions 

(c). 

3.7. Acid effects on the tautomeric equilibria in various solvents 

When acid (trifluoroacetic acid) is added to solution of L-1 in DMSO, a second maximum is observed at 

406 nm. In MeOH solution, λmax value shows a high hypsochromic shift (Δλmax = 44 nm). In contrast, 

λmax value shows small hypsochromic shift (Δλmax = 22 nm), and also a second maximum at longest 

wavelength (426 nm) appears when a small amount of acid is added to its toluene solution (Figure 5(b)).  

L-2 is very sensitive to acid. L-2 shows absorption maxima at 320, 462 and 494 nm in DMSO, 318, 355 

and 453 nm in MeOH, 300, 371 and 496 nm in toluene with the addition of acid to its solutions (Figure 

6(b)). So λmax values of   ̴300 nm shift hypsochromically (5 nm in DMSO, 4 nm in toluene) and λmax 

values of  ̴ 400 nm shift bathochromically (53 nm in DMSO, 81 nm in toluene) due to the solvent polarity. 

Also a new maximum at 494, 355 and 371 nm is observed in DMSO, MeOH and toluene, respectively.  

In addition, there is a hypsochromic shift in acidic solutions of L-3 (e.g. Δλmax values are 10 nm in DMSO, 

3 nm in MeOH and 10 nm in toluene). Also a new maximum at 318, 303 and 314 nm is observed in DMSO, 

MeOH and toluene, respectively (Figure 7(b)). 
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These indicate that L-1 and L-3 exist in phenol-imine form in all acidic solutions, except DMSO and 

toluene for L-1. In contrast, the equilibrium between the tautomeric forms (phenol-imine and keto-amine) 

is observed in all solutions for L-2. 

3.8. Base effects on the tautomeric equilibria in various solvents 

λmax values of L-1 show small bathochromic shifts with the addition of triethylamine to its solutions 

(Δλmax values are 40 nm in DMSO, 2 nm in MeOH and 3 nm in toluene) (Fig. 5c). In the case of L-2,  

there is no significant change in MeOH and toluene (Figure 6(c)).  In DMSO, λmax value of  ̴ 400 nm shift 

bathochromically (53 nm) and a new maximum appeared at 491 nm. On the other hand, λmax values do 

not significantly change for L-3 in all solutions (Figure 7(c)). 

It suggests that although L-1 and L-3 exist in phenol-imine form, the tautomeric equilibrium is detected in 

the case of L-2, in basic media. 

4. CONCLUSION 

In the present work, a new method has been established for the synthesis of tetraimine Schiff bases bearing 

N-salicylidene-aniline and N-naphthylidene-aniline parts. For this, two nitro-Schiff bases have been 

synthesized firstly. Nitro group in these Schiff bases has been reduced to the amino group by using sodium 

dithionite and these amino derivatives have been reacted with various aldehydes (terephthaldehyde, 

salicylaldehyde or 2-hydroxy-1-naphthaldehyde). Then, it gave the respective tetraimine Schiff bases (L-

1, L-2, L-3). The structure of the newly synthesized compounds has been elucidated on the basis of 

elemental analysis and spectral data (IR, NMR, MS, and UV-Vis spectra). 

It is known that 2-hydroxy-Schiff bases derived from salicylaldehyde or naphthaldehyde show phenol-

imine and keto-amine tautomerism. IR spectra of the structurally closely related the investigated tetraimines 

indicate that they are in the phenol-imine form in the solid state. Because, there is no evidence in IR spectra 

for the presence of the keto-amine form. NMR methods confirm that L-2 exists primarily in the keto-amine 

form, whereas in L-1 and L-3, keto form coexist. The absorption spectra provide clear evidence that they 

exhibit a different behaviour in the solution. The existence of the phenol-imine form is suggested in DMSO, 

MeOH and toluene for L-1 and L-3. The absorption maxima of this form are in the range 328–379 nm. L-

2 presents the characteristics of the Schiff bases of 2-hydroxynaphthaldehyde that absorbs strongly in the 

409–465 nm range in these solvents. The influences of the acidity and basicity on the absorption spectra 

are also investigated. The results show that L-1 exists as the enol-form in all solutions, except acidic DMSO 

and toluene. L-2 is found to be the tautomeric mixture in both acidic and basic media and exhibits 

solvatochromism in acidic media, L-3 is present primarily as the enol-form and are not solvatochromic. 
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