ON THE FEKETE-SZEGÖ PROBLEM FOR ANALYTIC FUNCTIONS DEFINED BY USING SYMMETRIC Q-DERIVATIVE OPERATOR

ŞAHSENE ALTINKAYA AND SIBEL YALÇIN

Abstract

The aim of this paper is to establish the Fekete-Szegö inequalities for two new subclasses of analytic functions which are associated with symmetric q-derivative operator.

1. Notations and Definitions in q-Calculus

First formulae in what we now call q-calculus were obtained by Euler in the eighteenth century. In the second half of the twentieth century there was a significant increase of activity in the area of the q-calculus. The fractional calculus operators has gained importance and popularity, mainly due to its vast potential of demonstrated applications in various fields of applied sciences, engineering. The application of q-calculus was initiated by Jackson [9].

For the convenience, we provide some basic definitions and concept details of q-calculus which are used in this paper. We suppose throughout the paper that $0<q<1$. We shall follow the notation and terminology in [8] and [14]. We recall the definitions of fractional q-calculus operators of a complex-valued function $f(z)$.

Definition 1.1. Let $q \in(0,1)$ and define the q-number $[\lambda]_{q}$ by

$$
[\lambda]_{q}=\left\{\begin{array}{cc}
\frac{1-q^{n}}{1-q} & (\lambda \in \mathbb{C}) \\
\sum_{n=0}^{n-1} q^{k}=1+q+q^{2}+\cdots+q^{n-1} & (\lambda=n \in \mathbb{N})
\end{array}\right.
$$

[^0]Definition 1.2. Let $q \in(0,1)$ and define the q-fractional $[n]_{q}$! by

$$
[n]_{q}!=\left\{\begin{array}{cc}
\prod_{k=1}^{n}[k]_{q}, & (n \in \mathbb{N}) \\
1, & (n=0)
\end{array}\right.
$$

for $n \in \mathbb{N}$.
Definition 1.3. For $q \in(0,1), \lambda, \eta \in \mathbb{C}$ and $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, the q-shifted factorial $(\lambda ; q)_{\eta}$ is defined by

$$
(\lambda ; q)_{\eta}=\prod_{j=0}^{\infty}\left(\frac{1-\lambda q^{j}}{1-\lambda q^{\eta+j}}\right)
$$

so that

$$
(\lambda ; q)_{n}=\left\{\begin{array}{cc}
\prod_{j=0}^{n-1}\left(1-\lambda q^{j}\right) & (n \in \mathbb{N}) \\
1, & (n=0)
\end{array}\right.
$$

and

$$
(\lambda ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-\lambda q^{j}\right)
$$

Definition 1.4. (see [9]; see also [8], [14]) The q-derivative of a function f is defined in a given subset of \mathbb{C} is by

$$
\begin{equation*}
\left(D_{q} f\right)(z)=\frac{f(z)-f(q z)}{(1-q) z}, \quad \text { if } \quad z \neq 0 \tag{1.1}
\end{equation*}
$$

and $\left(D_{q} f\right)(0)=f^{\prime}(0)$ provided $f^{\prime}(0)$ exists.
Note that

$$
\lim _{q \rightarrow 1^{-}}\left(D_{q} f\right)(z)=\lim _{q \rightarrow 1^{-}} \frac{f(z)-f(q z)}{(1-q) z}=\frac{d f(z)}{d z}
$$

if f is differentiable.
The aim of this paper is to establish the Fekete-Szegö inequality for two new subclasses of univalent and bi-univalent functions which are associated with symmetric q-derivative operator.

2. Fekete-Szegö problem for a new subclass of univalent functions

Let A represent the class of analytic functions in the unit disc

$$
U=\{z \in \mathbb{C}:|z|<1\}
$$

that have the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{2.1}
\end{equation*}
$$

Further, by S we shall denote the class of all functions in A which are univalent in U.

From (1.1), we deduce that

$$
\left(D_{q} f\right)(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1} .
$$

The Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for normalized univalent functions given by (2.1) is well known for its rich history in Geometric Function Theory. For $f \in S$ and given by (2.1), that

$$
\left|a_{3}-a_{2}^{2}\right| \leq 1
$$

where the equality holds true for the Koebe function:

$$
k(z)=\frac{z}{(1-z)^{2}} .
$$

Earlier in 1933, Fekete and Szegö [7] made use of Lowner's parametric method in order to prove that, if $f \in S$ and is given by (2.1),

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right) \quad(0 \leq \mu \leq 1)
$$

The functional has since received great attention, particularly in many subclasses of the families of univalent and bi-univalent functions. Nowadays, it seems that this topic had become an interest among the researchers (see, for example, [1], [2], [5], [10], [13]).

If the functions f and g are analytic in U, then f is said to be subordinate to g, written as

$$
f(z) \prec g(z), \quad(z \in U)
$$

if there exists a Schwarz function $w(z)$, analytic in U, with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in U)
$$

such that

$$
f(z)=g(w(z)) \quad(z \in U)
$$

Let P denote the class of functions consisting of p, such that

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

which are regular in the open unit disc U and satisfy $\Re(p(z))>0$ for any $z \in U$. Here, $p(z)$ is called Caratheodory function [6].

Let ϕ be an analytic and univalent function with positive real part in U with $\phi(0)=1, \phi^{\prime}(0)>0$ and ϕ maps the unit disc U onto a region starlike with respect to 1 , and symmetric with respect to the real axis. The Taylor's series expansion of such function is of the form

$$
\begin{equation*}
\phi(z)=1+C_{1} z+C_{2} z^{2}+C_{3} z^{3}+\cdots \tag{2.2}
\end{equation*}
$$

where all coefficients are real and $C_{1}>0$.
Definition 2.1. (see [3]) The symmetric q-derivative $\widetilde{D}_{q} f$ of a function f given by (2.1) is defined as follows:

$$
\begin{equation*}
\left(\widetilde{D}_{q} f\right)(z)=\frac{f(q z)-f\left(q^{-1} z\right)}{\left(q-q^{-1}\right) z}, \quad \text { if } \quad z \neq 0 \tag{2.3}
\end{equation*}
$$

and $\left(\widetilde{D}_{q} f\right)(0)=f^{\prime}(0)$ provided $f^{\prime}(0)$ exists.
From (2.3), we deduce that

$$
\begin{equation*}
\left(\widetilde{D}_{q} f\right)(z)=1+\sum_{n=2}^{\infty} \widetilde{[n]}{ }_{q} a_{n} z^{n-1} \tag{2.4}
\end{equation*}
$$

where the symbol $\widetilde{[n]}_{q}$ denotes the number

$$
\widetilde{[n]_{q}}=\frac{q^{n}-q^{-n}}{q-q^{-1}}
$$

frequently occurring in the study of q-deformed quantum mechanical simple harmonic oscillator (see [4]).

The following properties hold

$$
\begin{gathered}
\widetilde{D}_{q}(f(z)+g(z))=\left(\widetilde{D}_{q} f\right)(z)+\left(\widetilde{D}_{q} g\right)(z) \\
\widetilde{D}_{q}(f(z) g(z))=g\left(q^{-1} z\right)\left(\widetilde{D}_{q} f\right)(z)+f(q z)\left(\widetilde{D}_{q} g\right)(z) \\
=g(q z)\left(\widetilde{D}_{q} f\right)(z)+f\left(q^{-1} z\right)\left(\widetilde{D}_{q} g\right)(z) \\
\widetilde{D}_{q} z^{n}=\widetilde{[n]_{q} z^{n-1} .}
\end{gathered}
$$

Finally, we have the following relation

$$
\left(\widetilde{D}_{q} f\right)(z)=\left(D_{q^{2}} f\right)\left(q^{-1} z\right)
$$

Definition 2.2. A function $f \in A$ is said to be in the class $N(q, \phi)$ if it satisfies the following subordination condition:

$$
\frac{z\left(\widetilde{D}_{q} f\right)(z)}{f(z)} \prec \phi(z) \quad(z \in U)
$$

where the operator $\widetilde{D}_{q} f$ is given by (2.3).
We note that

$$
\lim _{q \rightarrow 1^{-}} N(q ; \phi)=\left\{f \in A: \lim _{q \rightarrow 1^{-}} \frac{z\left(\widetilde{D}_{q} f\right)(z)}{f(z)} \prec \phi(z), \quad z \in U\right\}=S^{*}(\phi)
$$

where $S^{*}(\phi)$ is the class of Ma-Minda starlike functions defined by Ma and Minda [11].

In order to derive our main result, we require the following lemmas.
Lemma 2.1. (see [12]) If $p \in P$, then

$$
\left|p_{n}\right| \leq 2, \quad n \in \mathbb{N}
$$

and

$$
\left|p_{2}-\frac{p_{1}^{2}}{2}\right| \leq 2-\frac{\left|p_{1}\right|^{2}}{2}
$$

Lemma 2.2. (see [11]) If $p \in P$, then

$$
\left|p_{2}-t p_{1}^{2}\right| \leq \begin{cases}-4 t+2 ; & \text { if } t \leq 0 \\ 2 ; & \text { if } \quad 0 \leq t \leq 1 \\ 4 t-2 ; & \text { if } \quad t \geq 1\end{cases}
$$

When $t<0$ or $t>1$, the equality holds if and only if

$$
p(z)=\frac{1+z}{1-z}
$$

or one of its rotations. When $0<t<1$, then the equality holds if and only if

$$
p(z)=\frac{1+z^{2}}{1-z^{2}}
$$

or one of its rotations. If $t=0$, the equality holds if and only if

$$
p(z)=\left(\frac{1+\lambda}{2}\right) \frac{1+z}{1-z}+\left(\frac{1-\lambda}{2}\right) \frac{1-z}{1+z} \quad(0 \leq \lambda \leq 1)
$$

or one of its rotations. If $t=1$, the equality holds if and only if p is the reciprocal of one of the functions such that equality holds in the case of $t=0$. Also the above upper bound is sharp, and it can be improved as follows when $0<t<1$:

$$
\begin{gathered}
\left|p_{2}-t p_{1}^{2}\right|+t\left|p_{1}\right|^{2} \leq 2 \quad\left(0<t \leq \frac{1}{2}\right) \\
\left|p_{2}-t p_{1}^{2}\right|+(1-t)\left|p_{1}\right|^{2} \leq 2 \quad\left(\frac{1}{2}<t \leq 1\right)
\end{gathered}
$$

By using Lemma 2.2, we have the following theorem:
Theorem 2.1. Let f given by (2.4) be in the class $N(q, \phi)$. Then

The result is sharp.
Proof. Let $f \in N(q, \phi)$. Then there exist a function u, analytic in U with $u(0)=$ $0,|u(z)|<1, z \in U$ such that

$$
\begin{equation*}
\frac{z\left(\widetilde{D}_{q} f\right)(z)}{f(z)}=\phi(u(z)), \quad z \in U \tag{2.6}
\end{equation*}
$$

Next, define the function p by

$$
\begin{equation*}
p(z)=\frac{1+u(z)}{1-u(z)}=1+p_{1} z+p_{2} z^{2}+\cdots \tag{2.7}
\end{equation*}
$$

Clearly, $\Re(p(z))>0$. From (2.7), one can derive

$$
\begin{equation*}
u(z)=\frac{p(z)-1}{p(z)+1}=\frac{1}{2} p_{1} z+\frac{1}{2}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right) z^{2}+\cdots \tag{2.8}
\end{equation*}
$$

Combining (2.2), (2.6) and (2.8),

$$
\begin{equation*}
\frac{z\left(\widetilde{D}_{q} f\right)(z)}{f(z)}=1+\frac{1}{2} C_{1} p_{1} z+\left(\frac{1}{4} C_{2} p_{1}^{2}+\frac{1}{2} C_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)\right) z^{2}+\cdots \tag{2.9}
\end{equation*}
$$

From (2.9), we deduce

$$
\begin{gather*}
\left(\widetilde{[2]_{q}}-1\right) a_{2}=\frac{1}{2} C_{1} p_{1}, \tag{2.10}\\
\left.\left.(\widetilde{[3]}]_{q}-1\right) a_{3}-(\widetilde{[2]}]_{q}-1\right) a_{2}^{2}=\frac{1}{4} C_{2} p_{1}^{2}+\frac{1}{2} C_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right) . \tag{2.11}
\end{gather*}
$$

From (2.10) and (2.11) it follows that

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{C_{1}}{2\left(\widetilde{\left.(3]_{q}-1\right)}\right.}\left\{p_{2}-\frac{p_{1}^{2}}{2}\left[1-\frac{C_{2}}{C_{1}}+\frac{\mu C_{1}}{\left.(\widetilde{[2]}]_{q}-1\right)^{2}}\left(\widetilde{[3]_{q}}-1\right)-\frac{C_{1}}{\widetilde{[2]}_{q}-1}\right]\right\} \\
& =\frac{C_{1}}{2\left(\widetilde{[3]}_{q}-1\right)}\left(p_{2}-t p_{1}^{2}\right)
\end{aligned}
$$

where

$$
t=\frac{1}{2}\left[1-\frac{C_{2}}{C_{1}}+\frac{\left.\mu(\widetilde{[3]}]_{q}-1\right)-\left(\widetilde{[2]}{ }_{q}-1\right)}{\left(\widetilde{[2]}{ }_{q}-1\right)^{2}} C_{1}\right] .
$$

Then, applying Lemma 2.2, the proof is completed.

3. Fekete-Szegö problem for a new subclass of bi-univalent
 FUNCTIONS

The Koebe one-quarter theorem [6] states that the image of U under every function f from S contains a disk of radius $\frac{1}{4}$. Thus every such univalent function has an inverse f^{-1} which satisfies

$$
f^{-1}(f(z))=z \quad(z \in U)
$$

and

$$
f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{3.1}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ denote the class of bi-univalent functions defined in the unit disk U. For a brief history and interesting examples in the class Σ, see [15].

From (2.3) and (3.1), we also deduce that

$$
\begin{align*}
\left(\widetilde{D}_{q} g\right)(w)= & \frac{g(q w)-g\left(q^{-1} w\right)}{\left(q-q^{-1}\right) w} \\
= & 1-\widetilde{[2]_{q}} a_{2} w+\widetilde{[3]_{q}}\left(2 a_{2}^{2}-a_{3}\right) w^{2} \tag{3.2}\\
& -\widetilde{[4]_{q}}\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{3}+\cdots
\end{align*}
$$

Definition 3.1. A function $f \in \Sigma$ is said to be in the class $N_{\Sigma}(q ; \phi)$, if the following subordinations hold

$$
\frac{z\left(\widetilde{D}_{q} f\right)(z)}{f(z)} \prec \phi(z), \quad(z \in U)
$$

and

$$
\frac{w\left(\widetilde{D}_{q} g\right)(w)}{g(w)} \prec \phi(w), \quad(w \in U) .
$$

where $g=f^{-1}$.
We note that

$$
\lim _{q \rightarrow 1^{-}} N_{\Sigma}(q ; \phi)=\left\{\begin{array}{lll}
& \lim _{q \rightarrow 1^{-}} \frac{z\left(\widetilde{D}_{q} f\right)(z)}{f(z)} \prec \phi(z), & z \in U \\
f \in \Sigma: & \\
& \lim _{q \rightarrow 1^{-}} \frac{w\left(\widetilde{D}_{q} g\right)(w)}{g(w)} \prec \phi(w), & w \in U
\end{array}\right\}=S_{\Sigma}^{*}(\phi)
$$

where $S_{\Sigma}^{*}(\phi)$ is the class of Ma-Minda bi-starlike functions defined by Ma and Minda [11].

Theorem 3.1. Let f given by (2.1) be in the class $N_{\Sigma}(q ; \phi)$ and $\mu \in \mathbb{R}$. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{C_{1}}{\widetilde{[3]}-1} ; \tag{3.3}\\
\text { for }|\mu-1| \leq \frac{1}{\widetilde{[3]}-1}\left|\widetilde{[3]_{q}}-\widetilde{[2]_{q}}+\left(\widetilde{[2]_{q}}-1\right)^{2} \frac{\left(C_{1}-C_{2}\right)}{C_{1}^{2}}\right| \\
\frac{C_{1}^{3}|\mu-1|}{\left|\left(\widetilde{[3]_{q}}-\widetilde{[2]_{q}}\right) C_{1}^{2}+\left(\widetilde{[2]_{q}}-1\right)^{2}\left(C_{1}-C_{2}\right)\right|} \\
\\
\text { for }|\mu-1| \geq \frac{1}{\widetilde{[3]}-1}\left|\widetilde{[3]_{q}}-\widetilde{[2]_{q}}+\left(\widetilde{[2]_{q}}-1\right)^{2} \frac{\left(C_{1}-C_{2}\right)}{C_{1}^{2}}\right|
\end{array}\right.
$$

Proof. Let $f \in N_{\Sigma}(q ; \phi)$ and g be the analytic extension of f^{-1} to U. Then there exist two functions u and v, analytic in U with $u(0)=v(0)=0,|u(z)|<1,|v(w)|<$ $1, z, w \in U$ such that

$$
\begin{equation*}
\frac{z\left(\widetilde{D}_{q} f\right)(z)}{f(z)}=\phi(u(z)), \quad(z \in U) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left(\widetilde{D}_{q} g\right)(w)}{g(w)}=\phi(v(w)), \quad(w \in U) \tag{3.5}
\end{equation*}
$$

Next, define the functions p and t by

$$
\begin{equation*}
p(z)=\frac{1+u(z)}{1-u(z)}=1+p_{1} z+p_{2} z^{2}+\cdots \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
t(w)=\frac{1+v(w)}{1-v(w)}=1+t_{1} w+t_{2} w^{2}+\cdots \tag{3.7}
\end{equation*}
$$

Clearly, $\Re(p(z))>0$ and $\Re(t(w))>0$. From (3.6), (3.7) one can derive

$$
\begin{equation*}
u(z)=\frac{p(z)-1}{p(z)+1}=\frac{1}{2} p_{1} z+\frac{1}{2}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right) z^{2}+\cdots \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=\frac{t(w)-1}{t(w)+1}=\frac{1}{2} t_{1} w+\frac{1}{2}\left(t_{2}-\frac{1}{2} t_{1}^{2}\right) w^{2}+\cdots \tag{3.9}
\end{equation*}
$$

Combining (2.2), (3.6), (3.7), (3.8) and (3.9),

$$
\begin{equation*}
\frac{z\left(\widetilde{D}_{q} f\right)(z)}{f(z)}=1+\frac{1}{2} C_{1} p_{1} z+\left(\frac{1}{4} C_{2} p_{1}^{2}+\frac{1}{2} C_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)\right) z^{2}+\cdots \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left(\widetilde{D}_{q} g\right)(w)}{g(w)}=1+\frac{1}{2} C_{1} t_{1} w+\left(\frac{1}{4} C_{2} t_{1}^{2}+\frac{1}{2} C_{1}\left(t_{2}-\frac{1}{2} t_{1}^{2}\right)\right) w^{2}+\cdots \tag{3.11}
\end{equation*}
$$

From (3.10) and (3.11), we deduce

$$
\begin{gather*}
\left(\widetilde{[2]_{q}}-1\right) a_{2}=\frac{1}{2} C_{1} p_{1} \tag{3.12}\\
\left(\widetilde{[3]_{q}}-1\right) a_{3}-\left(\widetilde{[2]_{q}}-1\right) a_{2}^{2}=\frac{1}{4} C_{2} p_{1}^{2}+\frac{1}{2} C_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right) . \tag{3.13}
\end{gather*}
$$

and

$$
\begin{gather*}
-\left(\widetilde{[2]_{q}}-1\right) a_{2}=\frac{1}{2} C_{1} t_{1} \tag{3.14}\\
\left(\widetilde{[3]_{q}}-1\right)\left(2 a_{2}^{2}-a_{3}\right)-\left(\widetilde{[2]_{q}}-1\right) a_{2}^{2}=\frac{1}{4} C_{2} t_{1}^{2}+\frac{1}{2} C_{1}\left(t_{2}-\frac{1}{2} t_{1}^{2}\right) \tag{3.15}
\end{gather*}
$$

From (3.12) and (3.14) we obtain

$$
\begin{equation*}
p_{1}=-t_{1} \tag{3.16}
\end{equation*}
$$

Subtracting (3.13) from (3.15) and applying (3.16) we have

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{1}{4\left(\widetilde{[3]_{q}}-1\right)} C_{1}\left(p_{2}-t_{2}\right) \tag{3.17}
\end{equation*}
$$

By adding (3.13) to (3.15), we get

$$
\begin{equation*}
a_{2}^{2}=\frac{C_{1}^{3}\left(p_{2}+t_{2}\right)}{4\left[\left(\widetilde{[3]_{q}}-\widetilde{[2]_{q}}\right) C_{1}^{2}+\left(\widetilde{[2]_{q}}-1\right)^{2}\left(C_{1}-C_{2}\right)\right]} \tag{3.18}
\end{equation*}
$$

From (3.17) and (3.18) it follows that

$$
a_{3}-\mu a_{2}^{2}=C_{1}\left[\left(h(\mu)+\frac{1}{4\left(\widetilde{[3]_{q}}-1\right)}\right) p_{2}+\left(h(\mu)-\frac{1}{4\left(\widetilde{[3]_{q}}-1\right)}\right) t_{2}\right]
$$

where

$$
h(\mu)=\frac{C_{1}^{2}(1-\mu)}{4\left[\left(\widetilde{[3]_{q}}-\widetilde{[2]_{q}}\right) C_{1}^{2}+\left(\widetilde{[2]_{q}}-1\right)^{2}\left(C_{1}-C_{2}\right)\right]}
$$

Then, applying Lemma 2.1, we conclude that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{cc}
\frac{C_{1}}{\widetilde{[3]}-1} & \text { for } 0 \leq|h(\mu)| \leq \frac{1}{4(\widetilde{[3]}-1)} \\
4 C_{1}|h(\mu)| & \text { for }
\end{array}|h(\mu)| \geq \frac{1}{\left.4(\widetilde{[3]}]_{q}-1\right)} .\right.
$$

Taking $\mu=1$ or $\mu=0$ we get
Corollary 3.1. If $f \in \mathrm{~N}_{\Sigma}(q, \phi)$ then

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{C_{1}}{[3]_{q}-1} \tag{3.19}
\end{equation*}
$$

Corollary 3.2. If $f \in \mathrm{~N}_{\Sigma}(q, \phi)$ then

Corollary 3.3. If we let

$$
\phi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\ldots \quad(0<\alpha \leq 1)
$$

then inequalities (3.19) and (3.20) become

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2 \alpha}{[3]_{q}-1},
$$

and

Corollary 3.4. If we let

$$
\phi(z)=\frac{1+(1-2 \alpha) z}{1-z}=1+2(1-\alpha) z+2(1-\alpha) z^{2}+\cdots \quad(0 \leq \alpha<1)
$$

then inequalities (3.19) and (3.20) become

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2(1-\alpha)}{\widetilde{[3]}_{q}-1}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\alpha)}{\widetilde{[3]_{q}}-\widetilde{[2]_{q}}}
$$

References

[1] Ş. Altınkaya and S. Yalçın, Fekete-Szegö inequalities for classes of bi-univalent functions defined by subordination, Advances in Mathematics: Scientific Journal, Vol:3, No. 2 (2014), 63-71.
[2] M. K. Aouf, R. M. El-Ashwah, A. M. Hassan and A. H. Hassan, Fekete-Szegö problem for a new class of analytic functions defined by using a generalized differential operator, Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium Mathematica, Vol:52, No. 1 (2013), 21-34.
[3] K. L. Brahim and Y. Sidomou, On some symmetric q-special functions, Le Matematiche, Vol:LXVIII (2013), 107-122.
[4] L.C. Biedenharn, The Quantum Group $S U_{(2)}(q)$ and a q-Analogue of the Boson Operators, J. Phys. A Vol: 22 (1984), L873-L878.
[5] R. Bucur, L. Andrei and D. Breaz, Coefficient bounds and Fekete-Szegö problem for a class of analytic functions defined by using a new differential operator, Applied Mathematical Sciences, Vol:9, No. 28 (2015), 1355-1368.
[6] Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 259, 1983.
[7] M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc. Vol:8, (1933), 85-89.
[8] Gasper, G. and Rahman, M., Basic Hypergeometric Series (with a Foreword by Richard Askey), Encyclopedia of Mathematics and Its Applications, Vol:35, Cambridge University Press, Cambridge, New York, Port Chester, Melbourne and Sydney, 1990; Second edition, Encyclopedia of Mathematics and Its Applications, Vol:96, Cambridge University Press, Cambridge, London and New York, 2004.
[9] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, Vol:46 (1908), 253-281.
[10] B. Kowalczyk and A. Lecko, Fekete-Szegö problem for a certain subclass of close-to-convex functions, Bull. Malays. Math. Sci. Soc. Vol:38 (2015), 1393-1410.
[11] Ma, W. and Minda, D., A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhan (Eds.), Int. Press (1994), 157-169.
[12] Pommerenke, C., Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[13] T. M. Seoudy, Fekete-Szegö problems for certain class of nonBazilevič functions involving the Dziok- Srivastava operator, Romai J. Vol:10, No. 1 (2014), 175-186.
[14] Srivastava, H.M., Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions; Fractional Calculus; and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
[15] H M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. Vol:23 (2010), 1188-1192.

Uludag University, Faculty of Arts and Science, Department of Mathematics, BursaTURKEY

E-mail address: sahsene@uludag.edu.tr
Uludag University, Faculty of Arts and Science, Department of Mathematics, BursaTURKEY

E-mail address: syalcin@uludag.edu.tr

[^0]: Date: June 1, 2016 and, in revised form, January 25, 2017.
 2000 Mathematics Subject Classification. 30C45, 05A30, 33D15.
 Key words and phrases. Analytic functions, bi-univalent functions, Fekete-Szegö functional, q-derivative operator.

