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HOMOTOPY ANALYSIS METHOD FOR THE SOLUTION OF

FUZZY FRACTIONAL TELEGRAPH EQUATION BY USING

LAPLACE TRANSFORM

A. EBADIAN, F. FARAHROOZ, AND A. A. KHAJEHNASIRI

Abstract. The purpose of this article is to present a numerical method to find

an approximate solution for fuzzy fractional differential type equation. This

method is applied for linear and non-linear equations and has been examined
on two examples. Their solutions compared with the exact solutions. The

result show that the proposed method is very simple and effective.

1. Introduction

The telegraph equation of hyperbolic equations is proved to be better model the
suspension flows [1, 5, 3]. The time fractional telegraph equations have recently
been considered by many authors. B-spline differential quadrature method [15].
Mittal et al, have applied radial basis functions for solving fractional telegraph
equation [7, 2, 4].
Several work has been done on analyzing numerical methods for solving fuzzy frac-
tional differential equations. [12, 13]. Mikaeilvand in [16] have applied a fuzzy dif-
ferential transform method to solve fuzzy partial differential equations. Recently,
Salahshour have applied fuzzy differential transform method (FDTM) for solving
fuzzy Volterra integral equations [14].

On the other hand, there are many numerical methods for solving fractional
equations, but on fuzzy fractional partial equations, few works have been done
[16, 17].
In this paper, we consider the fuzzy space-fractional telegraph equation as follows

∂2αŨ(x, t)

∂x2α
=

∂2Ũ(x, t)

∂t2
+ a

∂Ũ(x, t)

∂t
+ bŨn(x, t) + f̃(x, t), 0 < α ≤ 1.(1.1)

With given supplementary initial conditions. Where a, b and n are given constants,
f(x, t) is known functions and the function u is unknown. We give a new Homotopy
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analysis transform method. The application of this method in linear and nonlinear
differential and integral equations has been devoted by scientists and engineers.
The fundamental work was done by Liao and He. This method has a significant
advantage in that it provides an analytical approximate solution to a wide range of
nonlinear problems.

2. Preliminaries

We now recall some definitions and symbols needed through the paper

Definition 2.1. A fuzzy number is a fuzzy set u : R → [0, 1] which satisfies the
following properties:
a) u is upper semicontinuous on R,
b) u(x) = 0 outside of some interval [c,d],
c) there are the real numbers a and b with c ≤ a ≤ b ≤ d, such that u is increasing
on [c, a], decreasing on [b, d] and u(x) = 1 for each x ∈ [a, b],
d) u is fuzzy convex set (that is u(λx+(1−λ)y) ≥ min {u(x), u(y)}, ∀x, y ∈ R, λ ∈
[0, 1]).

The set of all fuzzy numbers is denoted by E.

Definition 2.2. For any u ∈ E the α-cut set of u is denoted by [u]
α

and define
by [u]

α
= {x ∈ R | u(x) ≥ α}, where 0 ≤ α ≤ 1. The notation [u]

α
= [uα, uα] , 0 ≤

α ≤ 1 refers to the lower and upper branches on u.

A fuzzy number u in parametric form is a pair (u, ū), of functions u(r), ū(r),
0 ≤ α ≤ 1, which satisfy the following requirements:
1. u(r) is a bounded non-decreasing left continuous function in (0, 1], and right
continuous at 0,
2. ū(r) is a bounded non-increasing left continuous function in (0, 1], and right
continuous at 0,
3. u(r) ≤ ū(r), 0 ≤ r ≤ 1.
For arbitrary u = (u, ū), ν = (v, ν̄) and k ≥ 0, addition (u+ ν) and multiplication
by k as (u+ ν) = u(r)+ν(r), (u+ ν) = ū(r)+ ν̄(r), (ku(r)) = ku(r), ku(r) = kū(r)
are defined.
Since each y ∈ R can be regarded as a fuzzy number y defined by

ỹ(k) =

{
1 t = y
0 t 6= y.

Definition 2.3. The Hausdorff distance between fuzzy numbers given by D :
E × E → R+U{0},

D(u, v) = supr∈[0,1] max{|u(r)− v(r)|, |ū(r)− v̄(r)|}.
It is easy to see that D is a metric in E and has the following properties (see [18]).
(i). D(u⊕ w, ν ⊕ w) = D(u, ν),∀u, ν, w ∈ E,
(ii). D(k � u, k � ν) = |k|D(u, ν),∀ ∈ R, u, ν ∈ E,
(iii). D(u⊕ ν, w ⊕ e) ≤ D(u,w) +D(ν, e),∀u, ν, w, e ∈ E,
(iv). (D,E) is a complete metric space.

Definition 2.4. The function f : T → E is called a fuzzy function and the α-cut
set of f is represented by f(t, α) =

[
f(t, α), f(t, α)

]
, ∀α ∈ [0, 1]. A fuzzy function

may have domain and fuzzy range. so the function f : E → E is also a fuzzy
function.
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Definition 2.5. Let f : R → E be a fuzzy valued function. If for arbitrary fixed
t0 ∈ R and ε > 0, 3 δ > 0 such that

| t− t0 |< δ ⇒ D(f(t), f(t0)) < ε,

f is said to be continuous.
It is well-known that the H-derivative (differentiability in the sense of Hukuhara)
for fuzzy mappings was initially introduced by Puri and Ralescu[19] it is based on
the H-difference of sets, as follows:

Definition 2.6. Let x, y ∈ E. If there exists z ∈ E such that x = y + z, then z is
called the H-difference of x and y, and it is denoted by x	 y.

Definition 2.7. Let f : (a, b)→ E and x0 ∈ (a, b). We say that f is differential at

x0, If there exists an element f́(x0) ∈ E, such that

(1). for all h > 0 sufficiently near to 0, ∃f(x0 + h)	 f(x0), ∃f(x0)	 f(x0 − h)
and the limits (in the metric D)

lim
h→0+

f(x0 + h)	 f(x0)

h
= lim
h→0+

f(x0)	 f(x0 − h)

h
= f́(x0)

or
(2). for all h < 0 sufficiently near to 0, ∃f(x0 + h)	 f(x0), ∃f(x0)	 f(x0− h) and
the limits (in the metric D)

lim
h→0−

f(x0 + h)	 f(x0)

h
= lim
h→0−

f(x0)	 f(x0 − h)

h
= f́(x0)

Definition 2.8. Let y be a real valued function on [0, a]. The Riemann-Liouville
fractional integral Iαy of order α > 0 is defined by

Iαy(t) =
1

Γ

∫ t

0

(t− s)α−1y(s)ds, 0 < t < a,

The Riemann-Liouville fractional derivative Dαy of y of order 0 < α < 1 is defined
by Dαy(t) = d

dtI
1−αy(t), 0 < t < a.

3. Applications

We consider the parametric form of equation (1.1) as follows

∂2αU(x, t)

∂x2α
=
∂2U(x, t)

∂t2
+ a

∂U(x, t)

∂t
+ bU

n
(x, t) + f(x, t), 0 < α ≤ 1,

∂2αU(x, t)

∂x2α
=
∂2U(x, t)

∂t2
+ a

∂U(x, t)

∂t
+ bUn(x, t) + f(x, t), 0 < α ≤ 1,

subject to the initial conditions

Ũ(0, t) = f̃1(t), Ũ(0, t) = f̃2(t), t ≥ 0, 0 < α ≤ 1.

This equation can be written as

∂U(x, t)

∂x
=

∂1−2α

∂x1−2α
∂2U(x, t)

∂t2
+ a

∂1−2α

∂x1−2α
∂U(x, t)

∂t

+b
∂1−2α

∂x1−2α
U
n
(x, t)

+
∂1−2α

∂x1−2α
f(x, t).(3.1)
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We apply the Laplace transform to both sides of Eq. (3.1) and by using linearity
property of Laplace transforms, we have

L[U(x, t)]− U(0, t)

s
− Ux(x, t)

s2
=

1

s2α
L[

∂1−2α

∂x1−2α
∂2U(x, t)

∂t2
]

+
1

s2α
L[a

∂1−2α

∂x1−2α
∂U(x, t)

∂t
] +

1

s2α
L[b

∂1−2αU
n
(x, t)

∂x1−2α
]

+
1

s2α
L[
∂1−2αf(x, t)

∂x1−2α
].(3.2)

We have a nonlinear operator form as

(3.3) N [U(x, t)] = 0,

where N is nonlinear operator and U(x, t) is unknown function. we have a nonlinear
operator

N [Φ(x, t, q)] = L[Φ(x, t, q)]− f1
s
− f2
s2
− 1

s2α
L[

∂1−2α

∂x1−2α
∂2Φ(x, t, q)

∂t2
]

− 1

ss2α
L[a

∂1−2α

∂x1−2α
∂Φ(x, t, q)

∂t
]− 1

s2α
L[b

∂1−2α

∂x1−2α
Φ
n
(x, t, q)]

− 1

s2α
L[

∂1−2α

∂x1−2α
f(x, t)],

where q ∈ [0, 1] be an embeding parameter and Φ(x, t, q) is the real function of x, t
and q. By means of generalizing the traditional homotopy methods construct the
zero order deformation equation

(3.4) (1− q)L[Φ(x, t, q)− u0(x, t)] = qhN [Φ(x, t, q)],

where h is a nonzero auxilary parameter, when q = 0 and q = 1, it hold

Φ(x, t, 0) = U0(x, t), Φ(x, t, 1) = U(x, t).

Expanding Φi(x, t, q) in Taylor’s series with respect to q, we have

(3.5) Φ(x, t, q) = U0(x, t) +

∞∑
m=1

Um(x, t)qm,

where

(3.6) Um(x, t) =
1

m!

∂mΦ(x, t, q)

∂qm
|q=0 .

If the auxiliary linear operator, the initial guess, the auxiliary parameter h are
properly chosen, the series (3.5) converges at q = 1, we have

(3.7) Ũ(x, t) = Ũ0(x, t) +

∞∑
m=1

Ũm(x, t),

which must be one of the solutions of the original nonlinear equations. differenti-
ating equation (3.4) m times with respect to parameter q and then setting q = 0
and finally dividing them by m!, we obtain the mth order deformation equation

L[Ũm(x, t)− χmŨm−1(x, t)] = hqRmŨm−1(x, t)

where

Rm(Ũm−1) =
1

(m− 1)!

∂m−1N [Φ̃(x, t, q)]

∂qm−1
|q=0,
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χm =

{
1, m > 1,
0, m ≤ 1,

In this way, it is easily to obtain Ũm(x, t) for m ≥ 1, at mth order, we get an
accurate approximation of the original equation (1.1).

4. Numerical examples

In order to assess the accuracy of the homotopy analysis transform method
presented in this paper for fuzzy fractional differential equations, we solve some
examples with proposed techniques in this section.
Example 1. We consider the following fuzzy fractional equation with the initial
condition.

∂2αŨ

∂x2α
=
∂2Ũ

∂t2
+
∂Ũ

∂t
+ Ũ , t ≥ 0, 0 < α ≤ 1,

Ũ(0, t) = K̃e−t, Ũx(0, t) = K̃e−t, t ≥ 0.

The general terms of the equation

∂2αU

∂x2α
=

∂2U

∂t2
+
∂U

∂t
+ U, t ≥ 0, 0 < x < 1,

∂2αU

∂x2α
=

∂2U

∂t2
+
∂U

∂t
+ U, t ≥ 0, 0 < x < 1,

U0(x, t, β) = k(β)e−t, U
′

0(x, t, β) = k(β)e−t.

By using our proposed method, we get the solution of the fuzzy differential equations
as follows:

U1(x, t, β) = k(β)xe−t +
k(β)x2αe−t

Γ(2α+ 1)
,

U2(x, t, β) =
k(β)x2α+1e−t

Γ(2α+ 2)
+
k(β)x4αe−t

Γ(4α+ 1)
,

U3(x, t, β) =
k(β)x4α+1e−t

Γ(4α+ 2)
+
k(β)x6αe−t

Γ(6α+ 1)
,

U4(x, t, β) =
k(β)x6α+1e−t

Γ(6α+ 2)
+
k(β)x8αe−t

Γ(8α+ 1)
,

...

Procceding in this manner, the rest of the components Un(x, t, β) for n ≥ 5 can be
completely obtained. Therefore, the exact solution is given by

U(x, t, β) =

∞∑
r=0

x2rα

Γ(2rα+ 1)
k(β)e−t +

∞∑
r=0

x2rα+1

Γ(2rα+ 2)
k(β)e−t,(4.1)

U(x, t, β) =

∞∑
r=0

x2rα

Γ(2rα+ 1)
k(β)e−t +

∞∑
r=0

x2rα+1

Γ(2rα+ 2)
k(β)e−t.(4.2)

Let K(β) = 0.25β and K(β) = −0.25β for 0 ≤ β ≤ 1.
Example 2. Consider the following fuzzy fractional equation with the initial con-
dition.

∂2αŨ

∂x2α
=
∂2Ũ

∂t2
+
∂Ũ

∂t
+ Ũ − x2 − k̃t+ 1 t ≥ 0 0 ≤ x ≤ 1
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Ũ(0, t) = k̃t, ũx(0, t) = 0, 0 ≤ x ≤ 1

The general terms of the equation

∂2αU

∂x2α
=

∂2U

∂t2
+
∂U

∂t
+ U − x2 − kt+ 1,

∂2αU

∂x2α
=

∂2U

∂t2
+
∂U

∂t
+ U − x2 − kt+ 1,

and

U0(x, t, β) = K(β)t, U
′
0(x, t, β) = 0.

By using homotopy transform method, we have

u1(x, t, β) = −(
2x2α+2

Γ(2α+ 3)
)− x2α

Γ(2α+ 1)
− k(β)x2α

Γ(2α+ 1)
,

u2(x, t, β) =
−2x4α+2

Γ(4α+ 3)
+

x4α

Γ(4α+ 1)
+

k(β)x4α

Γ(4α+ 1)
,

u3(x, t, β) =
−2x6α+2

Γ(6α+ 3)
+

x6α

Γ(6α+ 1)
+

k(β)x6α

Γ(6α+ 1)
,

u4(x, t, β) =
−2x8α+2

Γ(8α+ 3)
+

x8α

Γ(8α+ 1)
+

k(β)x8α

Γ(8α+ 1)
,

u5(x, t, β) =
−2x10α+2

Γ(10α+ 3)
+

x10α

Γ(10α+ 1)
+

k(β)x10α

Γ(10α+ 1)
,

...

Procceding in this manner, the rest of the components Un(x, t, β) for n ≥ 6 can be
completely obtained. Therefore, the exact solution is given by

u(x, t) = k(β)t+ (1 + k(β))(

∞∑
r=1

x2rα

Γ(2rα+ 1)
)− 2

∞∑
r=1

x2rα+2

Γ(2rα+ 3)
,

u(x, t) = k(β)t+ (1 + k(β))(

∞∑
r=1

x2rα

Γ(2rα+ 1)
)− 2

∞∑
r=1

x2rα+2

Γ(2rα+ 3)
.

Let K(β) = 0.25β and K(β) = −0.25β for 0 ≤ β ≤ 1.

In the following tables comparison between the exact solution and the different
terms of approximation solution for U,U is given by the homotopy analysis trans-
form method at α = 1

8 .
If we increase the computational process, the approximation solution will be closer
to the exact solution.

Table. 1.Numerical results for example 1

(x, t, β) Uapprox[5] Uapprox[15] Uexact
(0.2,0.2,0.2) 0.1366826352 0.1430736220 0.1430787868
(0.4,0.4,0.4) 0.3314834136 0.3709771230 0.3711424567
(0.6,0.6,0.6) 0.5455609982 0.6577745142 0.6589806176
(0.8,0.8,0.8) 0.7571237640 0.9875152418 0.9923035310
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Table. 2.Numerical results for example 1

(x, t, β) Uapprox[5] Uapprox[15] Uexact
(0.2,0.2,-0.2) -0.1366826352 -0.1430736220 -0.1430787868
(0.4,0.4,-0.4) -0.3314834136 -0.3709771230 -0.3711424567
(0.6,0.6,-0.6) -0.5455609982 -0.6577745142 -0.6589806176
(0.8,0.8,-0.8) -0.7571237640 -0.9875152418 -0.9923035310

Table. 3.Numerical results for example 2

(x, t, β) Uapprox[5] Uapprox[15] Uexact
(0.2,0.2,0.2) 1.946996365 2.098551258 2.098678495
(0.4,0.4,0.4) 2.887174141 3.438033996 3.440530642
(0.6,0.6,0.6) 3.548765283 4.764609749 4.779423339
(0.8,0.8,0.8) 3.866933055 6.024998314 6.078554584

Table. 4.Numerical results for example 2

(x, t, β) Uapprox[5] Uapprox[15] Uexact
(0.2,0.2,-0.2) 1.742520521 1.879641614 1.879756733
(0.4,0.4,-0.4) 2.289506115 2.740209634 2.742252344
(0.6,0.6,-0.6) 2.466478687 3.365146337 3.376095511
(0.8,0.8,-0.8) 2.311288703 3.749998876 3.785703056

5. Conclusion

In this paper, the homotopy analysis transform method is clearly a very efficient
technique for finding the solutions of fuzzy fractional differential equations. We give
the expression of exact solution for the fuzzy time-fractional telegraph equation
with initial conditions. Finally, illustrative examples are acquired to demonstrate
the validity and applicability of the proposed method.
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