

39

Design of a Resource Management for

GPGPU Supported Grid Computing
D. Emrah, Inonu University

Abstract— In this study; we aimed to propose design of a QoS aware resource
management infrastructure for a GPGPU supported Grid computing system. This
Grid system consists of hybrid (CPU + CPU) and heterogeneous (Nvidia + AMD
Radeon) GPGPU computational nodes. It can manage both small scale unit
(connections, threads, buffer pools etc.) and large scale unit (whole computing
machines). As increasing of the network communication bandwidth and developing
powerful computer hardware (CPU, GPU etc.), distributed computing systems
acquire more and more attention day by day. Grid computing is as a major player in
such kind of distributed system environments like cloud, volunteer, hybrid and etc.
Since it supports large scale resource sharing between geographically distributed
computer clusters and even single computers. Nowadays, there is another important
technology pillar to implement high performance computing rather than CPU, it is
known as GPU computing. The GPU systems are ideal especially to data intensive
applications; such as image processing, data mining, financial computations etc.
Therefore, GPU based grids give an undertaking higher computational performance.
GPU processor consists of lots of controllable cores which can be used for high
performance demanded applications. Ultimately, the major concerns in grid
computing are particularly related to managing QoS requirements, granularity of
resources, and heterogeneous resources (both CPU and GPU).

Index Terms— Grid computing, GPGPU, QoS, resource management, data
intensive application.

1 INTRODUCTION

GRID computing is appearing as a significant technology for data-intensive computations,

resource sharing and cluster unification in a distributed manner. Fast and accurate solutions to

large-scale scientific, financial problems etc. with unused massive resources of distributed

clusters, and higher costs is a significant problem. This problem enabled grid computing to play

a major role in commercial domain. There are two main issues; Quality of Service (QoS) and

performance becoming a major concern [1].

To satisfy QoS requirements, application level discovery is needed to identify which QoS

specifications are suitable to ensure best bandwidth for message packets sent to throughout the

network by applications (especially for data intensive ones). QoS requirements are generally

set by a QoS broker configured manually or semi-automatically according to pre-defined QoS

requirements of application(s). To optimize the QoS requirements for applications, below

criterions have to be considered:

- Delay,

Bilgisayar Bilimleri Dergisi

© Anatolian Science Vol:1, No:1, 2016

http://www.anatolianscience.com/

40

- Jitter,

- Throughput,

- Bandwidth, and

- Packet loss

By optimizing each of the above issues dynamically for each application, the QoS

requirements will be met at a higher level than manually configuration. Dynamic optimization

will provide a QoS aware component in resource management system. Therefore, design of an

adaptive component, meeting QoS requirement continuously, should be considered.

On the other hand, to satisfy performance requirements as maximum as possible; CPU,

memory, disk and other hardware in cluster nodes also have to be optimized in locally and

between nodes. To implement high performance systems, GPGPU (General-Purpose

computation on Graphics Processing Units) resources can be used besides CPU resources. The

main advantages of the GPGPU are core number of GPU processors, memory speed, and cost.

A GPGPU card specialized especially for data intensive tasks. It include thousands of cores

worked simultaneously or separately. Each of the core can use memory (or local memory)

similar to CPU core’s cache memory. There is also a memory (shared memory) on GPGPU card

which shared between GPU cores. In short, these memory units are remarkably fast compare to

main memory (or global memory) in a computer system. By utilizing such powerful hardware

with optimization (such as communication, algorithm etc.), powerful grid clusters can be

created. To manage GPGPU supported clusters, it need to be designed more complex

management systems compare to only CPU supported ones. In addition, GPGPU systems can

be used alongside with CPU, and this kind of computational environment called hybrid

computing. Moreover different type of GPU (e.g. AMD Radeon, Nvidia) can be used in same

cluster, even in same node, this kind of GPGPU cluster is called heterogeneous GPGPU cluster.

Conventional resource discovery and management designs/frameworks in grid computing

tend to work in large scale units. It have fixed non-dynamic principles and deal solely with

tangible resource entities e.g. The innate complicacy, heterogeneity and dynamic structures of

grid environments constitute some difficulties in managing their capacity to provide that QoS

requirements are continually satisfied. Implementation of scheduler (task e.g.) performance

evaluation is very rough, even unfeasible in a manageable and repeatable manner. Because,

resources and users are distributed throughout multiple organizations with their own principles.

2 RELATED WORKS

There are a number of available studies to configure and optimize resource management

in grid systems. Samuel et al. [1] have proposed an approach to design autonomic QoS-aware

resource management in Grid computing based on online performance models by making

prediction of grid components performance and allocate resources with SLA (Service Level

Agreements). Gridkit [2] is a resource management framework that can be used to implement

granularity aware resource framework. It is said that, it can manage both fine-grained and

coarse-grained resources separately according to necessities of resources. There is another

toolkit called GridFlow [6] which is specialized to perform global workflow management and

local grid sub-workflow scheduling, and it is based on PACE toolkit which supports a prediction

based resource management structure. Globus [8] is a toolkit to implement and manage grid

environments. As far as we know, it has not a sub-infrastructure which allows resource

management system to manage both smallest and largest units in grid environments.

This study focuses; which design elements should be considered, and how they

implemented? What are the potential impacts of such design issues to GPGPU supported hybrid

and heterogeneous grid computing environments?

41

3 COMPUTING INFRASTRUCTURE

Grid Computing: It composes computational and/or resource sharing focused clusters

known as Virtual Organizations (VO) to form a global network computing structure. It enables

whole registered machines to perform heavy tasks and/or share resources of these machines

between separate VO’s.

GPGPU: It mainly focuses to perform and accelerate general-purpose scientific and

engineering applications and heavy tasks (image processing, data mining) in a short amount of

time. It uses a great number of cores of GPU (Graphic Processing Unit) processors which are

programmable by using specialized libraries (OpenCL, CUDA etc.)

GPGPU supported Grid Computing: The main aim is utilizing both CPU specialized

for serial processes and GPU specialized for parallel processes to perform data intensive tasks

(scientific, engineering, financial etc.). In this way, potential power of grid environment has

been significantly increased. CPU + GPU combination provides efficient and powerful

computation resources by adapting and optimizing applications running on them.

4 DESIGN OF RESOURCE MANAGEMENT

Grid resource management should be considered with regard to aim of grid environment.

It can be designed and specialized for data grid, service grid or computational grid. Data grids

are used to implement resource sharing between clusters and communication speed is most

important parameter in such grids. Service grids are used to provide services to route clients,

ensure data, or specific services such as security, protocols etc. Service grids are mostly used as

PaaS (Platform as a Service), SaaS (Software as a Service) and IaaS (Infrastructure as a Service)

in Cloud computing which is known as commercial pillar of Grid computing. Finally,

computational grids are used to provide powerful hardware resources and manage these

resources to perform scientific heavy tasks. In this section our main motive is offering a flexible

resource management design approach for computational grids.

4.1 Challenges in Resource Management

Grid computing itself has several difficulties; Autonomy, Heterogeneity, and Dynamics.

There are several challenges in design of a resource management for Grid computing.

- Satisfactory end-to-end performance through multiple domains,

- Availability of computational resources,

- Handle of conflicts between common resources demand,

- Fault-tolerance,

- Inter-domain compatibility (P2P)

4.2 Design of Resource Management Infrastructure

A general resource management requires three main phase; 1. Resource discovery; locate

available resources in reachable points, 2. Selection; allocate suitable resources according to

requirements, and 3. Execute jobs; distribute and run tasks, and when tasks are completed

release handed resources. While these three phase are worked, there is another issue which

should be taken into consideration; security. Security is a major concern in distributed systems

especially in geographically distributed ones such as grid computing, volunteer computing, or

hybrid computing. But security doesn’t deeply researched in this paper, since it is a separate

research topic itself. Major concern of this paper is design of an efficient, easy manageable, and

modular resource management infrastructure.

In our proposed design approach in figure 1, QoS controller is responsible to predict

connection requirements of applications and manage these prediction operations dynamically.

42

This is done by using application annotations used for QoS requirements. Firstly, QoS controller

receives application demands (client demands) and resources are allocated according to

requirement predictions of QoS controller by resource manager. Prediction process of demands

is done by examining previous demands statistically. Then negotiation with Service Level

Agreement (SLA) is implemented. Equation 1 simply models prediction process. 𝐷𝑛𝐴𝑝𝑋 is nth

demand value of ‘X’ application. 𝑚 express starting time point of related demand. Similarly, 𝑓

express passed time while demanded request is active. 𝐷(𝑛 + 1)𝐴𝑝𝑋 is (n+1)th demand value

predicted for ‘X’ application. To perform a fair workload distribution between Grid servers,

QoS controller identifies the available non-occupied or non-busy part of the server resources.

Then workloads are distributed (e.g. Load Balancing) among these servers dynamically.

Dynamically means that, after initial QoS requirements of an application are met, if some

modifications of requirements are needed in runtime of application, QoS controller is informed

by QoS agents which track applications in grid servers. QoS agents examine the applications

periodically in runtime to create information packets about application’s status. Controller

provides new requirement parameters to the related applications or clients through agents.

𝐷(𝑛 + 1)𝐴𝑝𝑋 = 𝐷𝑛𝐴𝑝𝑋

+ (𝐷𝑛𝐴𝑝𝑋 −
∑ 𝐷𝑛𝐴𝑝𝑋
𝑡=𝑚+𝑓
𝑡=𝑚

𝑓
)

(1)

Unit size controller component (USCC) manage both the small unit resources such as

threads, cache buffers, communication parameters, communication protocols etc. and large unit

resources which represent the whole environment (machines, clusters). USCC generates

management configurations for both small and large scale units to provide an efficient and easy

manageable grid computing environment. USCC enables that resource manager behaves like

globally if whole machines are included. It behaves like locally if a specific threads or

connections are included. The same mechanism is valid for GPGPU supported hybrid grid

servers. If GPGPU cards are taken into consideration resource management behaves as globally.

On the other hand, if threads, cache, DMA, shared memory SM’s of GPU cards are taken into

consideration it behaves as locally.

Global resource management is responsible to perform distribution of available tasks

between different nodes. Local resource management is responsible to perform distribution of

tasks between GPGPU and CPU cores by using specialized libraries (e.g. OpenCL, CUDA, and

OpenMP). Therefore, we can use global resource management infrastructure to manage large

scale unit resources. Besides, we can use local resource management infrastructure to manage

small scale unit resources; such as, distribution of workloads to local CPUs and GPUs,

management of memories etc. These two layered (local & global) resource management

infrastructure ensures flexible and efficient computational grid environments.

Figure 1 Resource management infrastructure of proposed design

43

GPGPU supported grid servers can have heterogeneous structure. Different type of GPU

cards (AMD Radeon, Nvidia etc.) can be used in same node of a computation cluster. Therefore,

heterogeneous GPU supported libraries should be used. OpenCL (Open Computing Library) is

an open source GPU programming toolkit that can be used to program GPUs without depending

on type of GPUs, whether it is AMD Radeon, Nvidia, or different supported GPU in library.

There are of course remarkable usage differences in different type GPUs. There is another

powerful toolkit and library called CUDA (Compute Unified Device Architecture) which is

developed and specialized for Nvidia GPU cards. It is used to develop parallel applications (or

to accelerate data intensive applications). CUDA already supports the OpenCL GPU

programming library. It has some additional high level features as advantages by comparing

other GPU programming libraries. For instance; GPU-Direct is one of these features which

allows us to communicate from one GPU card to another GPU card that are found at the same

node (intra-node) or different node (outer/district-node) without CPU intervention. To perform

this process it uses DMA (Direct Memory Access) engines located on the GPU cards. CUDA is

a good choice for Nvidia GPU cards but we cannot program AMD Radeon GPU cards with

CUDA libraries. If we want to communicate two different type GPUs located in same or distinct

node then we have to use OpenCL GPU programming library. Since it supports both GPU card

type. On the other hand, if communication between different types of GPU is not necessary then

using CUDA for Nvidia cards and using OpenCL for AMD Radeon cards separately can be a

good choice. Since CUDA supported Nvidia GPU cards can demonstrate more performance

than OpenCL support.

In addition, an automatic GPU task distribution and execution feature can be designed in

grid servers. Namely as a default library, tasks can be performed with OpenCL for all type of

GPUs, if there is Nvidia cards then CUDA supported libraries can be used to maximize Nvidia

GPUs performance. Responsible component of job distribution and execution can be

automatically provides this switching process between libraries with respect to the type of

GPUs. There can be servers which includes GPUs in a homogeneous manner; all GPUs Nvidia

or AMD Radeon. For these servers only one library is enough, there is no need for an automatic

GPU library switching feature. To be able to detect GPU types in grid servers hardware

detection agents are modeled to find out what GPU type the server has; all-N (Nvidia), all-A

(AMD Radeon), or all-H (Heterogeneous). After detection processes on available grid servers,

optimal resource management configurations for GPUs are determined and assigned to the

related servers. For this reasons; OpenCL libraries are used to perform task distribution to GPU

cards in resource management as default GPU programming library.

There is a library which allows to perform parallel applications on CPU: OpenMP (Open

Multi Processing) is a ‘C’ based API assisting multi-platform and shared memory multi-

processing programming language. It comprise of a set of compiler directives, library routines,

and environment variables that affect run-time attitude. OpenMP grants programmers a simple

and flexible interface by utilizing a scalable, portable model which for developing parallel

applications for platforms varying from the standard desktop machine to the super-machine.

OpenMP libraries are used to provide parallel programming on CPUs as appropriate to hybrid

(CPU + GPU) computing in resource management infrastructure. In addition to parallelization

speed of GPU, CPUs are specialized in serialization speed. In other words, GPUs are optimized

for parallel applications, on the other hand, CPUs are optimized for serial applications. If we

have non-parallelizable applications, algorithm etc. then CPU with OpenMP support can be a

good choice to perform these serial applications. Of course OpenMP provides parallelization

but this parallelization is not great as in a GPU parallelization. In this instance, it can be said

44

that CPU provides the acceleration of serial weighted parallel applications (means that there is

weak parallelization but powerful serialization) while GPU is providing acceleration of parallel

weighted serial applications (means that there is weak serialization but powerful

parallelization). By taking into consideration these situations, a manual selecting feature which

allows applications to run on CPU or GPU even partially CPU or GPU. For example; there is

an image processing algorithm that can be easily run on GPUs to perform process acceleration,

but it is just sent another place through a serial process, then it can be said that GPU an CPU

are both partially used. This feature is integrated in resource management to determine initial

execution specifications related to processor types. These initial specifications include three

different parameters; exe-GPU (to select only GPU), exe-CPU (to select only CPU), exe-Hybrid

(to select partially between GPU and CPU, w.r.t. requirements). According to the user choices

one of these related parameter is taken to implement initial configuration of additional processor

selecting feature.

In addition, some processor architectures may have a special feature like Hyper Threading

(HT) technology (a processor core virtualization technology to make efficient processes without

extra cost) in new generation processors. By using HT technology cost of parallel applications

can be reduced and aggregate system performance can be increased. To demonstrate the

difference in performance while the HT is used and not used in table 1, an alternative processing

feature allowing us to switch between HT and non-HT is added to design. It should be

emphasized that HT is generally available for processors being compatible with virtualization

architecture.

Table 1 General performance and total communication traffic in grid with HT and without HT

Criteria HT Non-HT

Performance 248.965

GFlops

205.673

GFlops

Communication 864Mbit (p.s) 927Mbit (p.s)

Client attaching component adds client to the grid environment to perform that another

component takes tasks from these clients, on computational nodes. This attaching component

gives unique ID to each of the clients enrolling to the computing environment. So information

about related processed tasks are sent to the related clients by using these unique IDs. Before

the client addition process, the QoS requirements are requested from QoS controller by client.

If requests would be analyzed as appropriate then client negotiation session is reciprocally

started by client and QoS controller. After finishing negotiation process client is attached to the

computing environment. If negotiation process fails then all negotiation parameters are resettled

according to new QoS requirement requested by client. If three attempts to negotiation process

fails consecutively, all negotiation parameters are reset then negotiation session is restarted after

a defined certain time from the first phase. To prevent anonymous redundant negotiation

processes and regulate session negotiation attempts, this feature is integrated as a module which

can be extracted from system if it is desired.

Service controller component schedules the service requests after a client session is started.

Job distribution management is undertaken by service controller. It arranges the service requests

that made by clients to the service requests queue. When a request completed another one is

taken from queue to concurrently request available services from grid servers. This requests

have been limited with regard to a maximum allowed number of requests defined as a threshold

value in service controller component. There is also a dynamic service threshold number

45

assignment which is maximum service number taken by grid servers in service controller

component. It is also limited with respect to maximum saturation value of network QoS

parameters like bandwidth. This dynamism is determined by controlling server’s real time QoS

and performance requirements.

There is a maximum usage limit for resource consumption by services, for example;

bandwidth for a specific service can be set a certain value, and same process goes to the other

services. At the same time, grid server can satisfy a certain bandwidth value as maximum

allowed bandwidth in total communication capacity of server. There isn’t a certain threshold

number for services, but there is a certain threshold value for services. Namely, grid server can

allow any number of services, providing that bandwidth requirements of these services in total

value cannot exceed the defined threshold value. Service provider component provide service

to the client if this requested service is procurable by grid servers in available thresholds

dynamism. If requested server is not available then other available servers are searched in same

cluster. If whole cluster including requested server is not available then other available compute

clusters are searched to fulfill client’s requests.

Services provided by grid servers are registered to resource management through service

registry component. This means that grid servers are registered to the management

infrastructure and available for requested service in the grid environment. Additional services

which are ensured later, can be integrated to the resource management in any time. This feature

ensures service attachment flexibility; main aim of such pluggable services is efficiency and

prevent redundant complexity in grid environment. When a service have done providing

requested jobs it hibernates until a new request arrives. When a service complete its task totally,

it plugged system to decrease environment complexity. A plugged service never integrated to

the system automatically. If it is required than manual attaching and configuration have to be

implemented. Therefore, only the hibernated services can return to the grid environment

automatically. In order to perform real time tracing (to eliminate or attach such services) Service

Tracing Agents (STAs) are used. STAs are used to obtain information about services in a certain

time. Agents inform the management system periodically. These information about services are

structured in a simple XML format that can be sent easily to the related component. XML file

includes total request number, situation of service connectivity parameters (QoS), average

response time, average communication speed between itself and clients, date and time

information, service and server known as provider IDs, and some data to make statistical

analyses later.

5 EVALUATION OF RESOURCE MANAGEMENT

The performance measurement of resource management has a number of challenges due

to the distributed, hybrid and heterogeneous nature of grid environment. Performance

measurement can be done partially through running a data intensive application like stencil2D,

Halo exchange, matrix-matrix multiplication, image processing techniques; such as filtering,

segmentation, classification, and etc. This partial evaluation suitable for GPGPU performance

between same nodes or distinct nodes (in same or distinct clusters). It can be done through

Dhrystone; a synthetic benchmark program in terms of CPU performance evaluation. In short,

there is not an absolute way to evaluate resource management total performance properly while

grid system is under workloads. Since each of the components have typical characteristics that

cannot be fitted any other component. If all components is even accurately evaluated, there will

be waited problematic issues such as communications, security, and hardware restrictions. For

46

instance; there may be SSD disks allowing very fast read-write operations in some servers, but

there also may be mechanical HDD disks being slower evidently compare to SSD. Such a

hardware difference can be easily affect the performance of resource management. On the other

hand, measurement of disk performance cannot be made for each node or cluster if disks have

not shared.

For these reasons, in addition to above defined tests, a manual evaluation is approved in

first stage. To do this several Grid computing middleware and toolkit are examined and strong

and weak aspects are demonstrated by comparing the proposed resource management system.

Globus known commonly a grid computing toolkit used to create powerful Grid environment.

Globus can change application interceder, but the system has to be restarted, proposed system

can manage these process without any performance loss that similar to the study done in [2].

Proposed resource management system integrates both large and small scale units literally.

There are other middleware and toolkits but they allows such process with additional

restrictions.

In our design, GPGPU and CPU are both supported to maximize performance. In addition,

heterogeneous GPGPU structure on the same node is supported with flexible switching between

GPUs. On the other hand, a manual processor selecting feature is added to perform executing

of application according to user choices. By using this feature, user can partially make selection

between GPU and CPU. Proposed design supports both CUDA and OpenCL GPU programming

languages. Besides, OpenMP is supported for parallel executions on CPU. Tests for resource

management have been done with HT and without HT to see differences in performance. In

proposed design, QoS requirements are satisfied in real-time dynamically while computational

works are sustained. Service attaching process can be done without any system shut-down.

Pluggable services have been gained the flexibility and maintainability to the responsible

service registry component in resource management. Pluggable components are designed in a

study being done by Geoff et al. They are designed their system with pluggable components in

resource management, but there is no a service plugging feature. These all structures have been

gained a new acceleration to this area of study. Since these all features are considered to perform

together in a grid resource management infrastructure, firstly. And there are new approaches

which are not totally or sufficiently taken into consideration in other studies. Ultimately, we

have made a test for three criteria demonstrated in table 2. These test criteria are: I. Error rate

of job distribution that is performed by whether global or local resource management. II. Error

rate of task complete process. III Energy efficiency per node. Proposed grid management

system provides better performance/efficiency rate compare to other known management

infrastructures as seen in this table.

Table 2 Comparison of different Grid Environments

Grid

Computing

Environment

Err. Rate

of Job

Dis. (s)

Err.

Rate of

Task C.

(s)

P.N

Energy

Efficiency

Offered Res.

Man.

6,18% 2,13% 724W

Globus Res.

Man.

11,45% 4,81% 740W

Gridflow 13,86% 4,20% 702W

Gridkit 15,21% 5,63% 734W

47

6 CONCLUSION AND FUTURE WORKS

Grid computing is an important player in terms of offering solutions to large scale scientific

and industrial problems. It can be said that there are several issues which have not been

developed fully in grid management, yet. For instance; the development of network

communication technologies effect this environments in a large scale. Therefore such problems

will be reduced to an admissible level with advancing in critical areas.

In this study, a flexible, easy manageable QoS aware, hybrid (CPU+GPU) supported

resource management for GPGPU supported Grid computing is proposed. On the other hand, it

can manage both large and small scale resources. This resource management infrastructure

supports heterogeneous GPUs on same node (Nvidia and AMD Radeon). Both can be

programmable through OpenCL library. In addition, CUDA optimization is integrated to take

best performance from Nvidia cards. Design challenges in both Grid and resource management

infrastructures are introduced. Design of resource management is modified to obtain

performance and efficiency as maximum as possible. Grid computing will gain more and more

importance with the development of the network communication technologies. For this reason,

instead of hardware novation, the maximum utilization from the available hardware should be

essence for computational environments.

As a future work reliability measurement of resources will be able to be integrated to

measure trustworthy of different type of resources by taking periodical information from these

resources through specialized tracking agents. As mentioned above an automatic processor

selecting in run-time integration of module being responsible for management of neglected

processes by GPU or CPU and then load these processes to the available GPU or CPU to the

resource management is considered. This alternative automatic selection algorithm between

GPU and CPU, has been considered. Rather than performing this selection according to

application requirements, it looks availability of processors. In this algorithm, when a GPU is

unavailable (cannot proceed computations), CPU will undertakes the neglected processes by

GPU or vice versa. When a CPU is unavailable (cannot proceed computations), GPU will

undertakes the neglected processes by GPU. But there is several issues; how can be such an

operation done; how can a parallel application using a number of GPU processor cores which

exceeds the number of CPU cores on a server, be ported to a CPU, and how can an algorithm

be modified to perform this adaption process? Can all applications, working on GPU, work on

CPU or vice versa? This is a future concept feature considered to add to the resource

management systems when above issues solved.

ACKNOWLEDGMENT

We are grateful to volunteer organizations and volunteers who allow middleware software

to perform tests in their computers, firstly. We thank especially grid service providers allowing

integration of resource management infrastructure to their platforms.

REFERENCES

[1] S. Kounev, R. Nou, and J. Torres, Autonomic QoS-Aware resource management in grid

computing using online performance models. the 2nd international conference on

Performance evaluation methodologies and tools (ValueTools '07). ICST [Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering], ICST,

Brussels, Belgium, Belgium, Article 48, 2007, 10 p.

[2] W. Cai, G. Coulson, P. Grace, G. Blair, L. Mathy, and W. K. Yeung, The Gridkit Distributed

Resource Management Framework. European Grid Conference, EGC., Springer Verlag,

2005, pp. 786-796

48

[3] A. Younes, M. Essaaidi, A. El moussaoui, and A. Bendahmane, Grid computing middleware

information systems: Review and synthesis study, Multimedia Computing and Systems,

2009. ICMCS '09. International Conference on, vol., no., pp.530-534, 2-4 April 2009B.

Smith, “An approach to graphs of linear forms (Unpublished work style),” unpublished.

[4] T.-Y. Liang and Y.-W. Chang, GridCuda: A Grid-Enabled CUDA Programming Toolkit,

Advanced Information Networking and Applications (WAINA), 2011 IEEE Workshops of

International Conference on , vol., no., pp.141,146, 22-25 March 2011

[5] R. Buyya, D. Abramson, J. Giddy, Nimrod/G: an architecture for a resource management

and scheduling system in a global computational grid, High Performance Computing in the

Asia-Pacific Region, 2000. Proceedings. The Fourth International Conference/Exhibition

on , vol.1, no., pp.283,289 vol.1, 14-17 May 2000

[6] J. Cao, S.A. Jarvis, S. Saini, G. R. Nudd, GridFlow: workflow management for grid

computing, Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd

IEEE/ACM International Symposium on , vol., no., pp.198,205, 12-15 May 2003

[7] M. Murshed, and R. Buyya, Using GridSim Toolkit for Enabling Grid Computing

Education, 2001

[8] V. Sahota, L. Maozhen, and G. Wenming, Resource Monitoring with Globus Toolkit 4,

Semantics, Knowledge and Grid, 2006. SKG '06. Second International Conference on , vol.,

no., pp.79,79, 1-3 Nov. 2006

[9] H. Lee; D. Park; M. Hong; S. Yeo; S. Kim; Sk. Kim, "A Resource Management System for Fault

Tolerance in Grid Computing," in Computational Science and Engineering, 2009. CSE '09.

International Conference on , vol.2, no., pp.609-614, 29-31 Aug. 2009

[10] Z. Wei; L. Minghao; L. Jinxia; T. Yuanming; T. Ma, "Design and Implementation of National

Meteorological Computing Resource Management System Based on Grid," in Information Science

and Engineering (ICISE), 2009 1st International Conference on , vol., no., pp.182-185, 26-28 Dec.

2009

[11] M. Fukuda; Ngo Cuong; E. Mak; J. Morisaki,, "Resource Management and Monitoring in

AgentTeamwork Grid Computing Middleware," in Communications, Computers and Signal

Processing, 2007. PacRim 2007. IEEE Pacific Rim Conference on , vol., no., pp.145-148, 22-24

Aug. 2007

[12] F. Li; D. Qi; L. Zhang; X. Zhang; Z. Zhang, "Research on Novel Dynamic Resource Management

and Job Scheduling in Grid Computing*," in Computer and Computational Sciences, 2006.

IMSCCS '06. First International Multi-Symposiums on , vol.1, no., pp.709-713, 20-24 June 2006

Emrah Dönmez is a Ph.D. student in the Computer Engineering Department at

the Inonu University. His research interests are: image analysis, robotic, machine

learning, pattern recognition, cloud computing, data mining with HPC systems,

GPGPU computing and acceleration, global, grid, volunteer and hybrid

computing. He is a student member of IEEE.

