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Abstract 
In this paper, a functional inequality is proven and the result is illustrated with some elementary 
functions. 
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1. Introduction 
 
Let f be a positive real function defined on a subset E of the real line 	.The function : →
,  is defined by  where the function lnx is the natural 

logarithm function. If f and g are two such functions defined on the set E, then it is a natural 
problem to compare the values and for each ∈ . Since the arithmetic and 
geometric means inequality is a very important elementary tool for making estimates or 
approximation it is expected that the inequality play a role for the solution of these types of 
problems.  

 
Let , ,. . . , ∈ : ∈ 0,1 		 		 1,2, . . . , , ∑ 1  be the set of 

weight vectors and ,			 , ⋯ ∈ :		 		 1,2,⋯ , , 0 	 be the set of 
positive vectors. 

 
Definition 1.1. Let ∈ and ∈ . The real number 
 

, ⋯  
 
is called the weighted arithmetic mean of n positive real numbers  , , ⋯ , of weight   and 
the number 
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, . ⋯  
 
is called the weighted geometric mean of n positive real numbers  , , ⋯ ,   of weight . 
 

For the weight vector    , , ⋯ ,  

 

,
1

⋯  

 
is the arithmetic mean of the 	positive real numbers  , , ⋯ ,   and 
 

, . ⋯ . ⋯  
 
is the geometric mean of the 		positive real numbers  , , ⋯ , . 
 
We have the following inequality between arithmetic and geometric means. 
 
Theorem 1.2 (Arithmetic and geometric means inequality [2, 5]). , , for all 
positive real numbers  , , ⋯ , and for all ∈ and the inequality is strict unless 

⋯ . 
 
Arithmetic-geometric means inequalities has numerous applications in mathematics and other 
areas. We note the following example which shows that certain type of extremum value 
problems can be resolved easily by using this inequality. 
 
Example 1.3. We will find the minimum value of the function 
 

 , , 			 over the set , , ∈ : , , ∈ . 

 
Solution. From the arithmetic and geometric means inequality for every , , ∈ 			we have 
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2 ⁄ 3 ⁄ 	
 

Since the equality occurs when      or equivalently when  sin

√3√2and sin √3sin  by the definition of minimum value it  follows that   

, , : , , ∈ 2 ⁄ 3 ⁄ . 
For positive real numbers a and b and for λ ∈ (0,1) the weighted arithmetic-geometric means 
inequality is the inequality 
 



29 

1 . 
 

For 1if we take  , 1    and replace with and 	with 		we get the Young’s 

inequality   . 

 
This inequality is one of the most important inequality in mathematics because the famous 
Cauchy, Hölder and Minkowski inequalities follow from it. 
 

2. The functional inequality and applications 
	
Theorem 2.1. Let , 		be positive real valued functions defined on a subset of the real line 
	  . Then    if 		 and 1	 for each ∈  . The 
inequality is strict if   and  1and  the equality occurs if and only if   

  for	 ∈ . 

 

Proof. Let ∈ be arbitrary, , and  . Then 0, 0and 

∈ 0,1  . Since 1 0 and  1 by the weighted arithmetic and geometric 
means inequality 
 

 

																																								 1  . 

 
It follows that and the inequality is strict when 	and  

1.  
 
Remark 2.2. 1) In the proof of the Theorem 2.1 we cannot directly use the properties of the 
convex function : 0,∞ → ,   since this function has the global 

minimum value at the point .  But since the function   is monotone increasing 

on , ∞ the inequality is trivial when . 

 
2) Theorem 2.1 holds true for positive real valued function defined on arbitrary sets not just on 
the subsets of the real line. 
 
By mathematical induction we get the following result. 
 
Corollary 2.3. For 1,2,⋯ , 		let  , be positive real valued functions defined on a subset 

 of the real line  . Then   ∏ ∏  and  
1  for each ∈  and  1,2,⋯ ,   The inequality is strict if    and 

1and  the equality occurs if and only  if   for   ∈ and  

1,2,⋯ , . 
For the polynomial functions we have the following result. 
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Corollary 2.4. Let 	and 	be real polynomial functions such that . If  
0 0 0  , 0 0 0   for  1,2,⋯ ,   and 0 0 1 , where 

0 	and  are 0 	the derivatives of 	 		and  	at  0 respectively, then  
		for all  ∈ 0,∞ . 

 
Proof. From the hypothesis we have 	and 0 0 1	for all 
∈ 0,∞ . So the inequality follows from the Theorem 2.1. 

 
The following result is the problem 32 given in [4]. 
 
Proposition 2.5.  For all ∈ 0, 			 sin cos . 
 

Proof. Since  sin cos 	 and  sin cos √2cos √2cos 1  for all  ∈

0,  the inequality follows from the Theorem 2.1. 

 
A similar reasoning gives the inequality cos sin  for all real numbers ∈

, .Since the functions cosx and sinx are 2π-periodic functions these inequalities hold true 

on2n  translations of	 0, 	 and  , 		for each  ∈ . 

 

Proposition 2.6.  For all  ∈ 0,   tan cot  

 

Proof.  Since tan cot 2 1 and tan cot  for all ∈ 0,  the inequality 

follows from the Theorem 2.1. 

A similar argument gives the inequality     cot tan  for all ∈ , 		and  since 

the functions tan  and cot  are  -periodic functions these inequalities are true for   

translations of  0,   and		 ,  for each ∈ . 

 
Proposition 2.7.  For all  ∈ 0,∞   sinh cosh . 
 
Proof. Since 

sinh cosh   and sinh cosh 1 for all  ∈
0,∞  the inequality follows from the Theorem 2.1. 

 
For the inverse hyperbolic functions cosh  = ln √ 1  and sinh ln
√ 1  we have the following result: By the first derivative test the function 

√ 1 √ 1 	 is strictly monotone increasing on 1,∞  . Since 1 1
√2 	by the intermediate value theorem for a continuous function there is a unique point ∈
1,∞ such that  . 

 
Proposition 2.8. For all   ∈ ,∞   cosh sinh . 
 
Proof.   Since  cosh ln √ 1 ln √ 1 sinh and 
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sinh cosh ln 1 ln 1

ln 1 1 ln 1 1

ln 1 
 

for all  ∈ ,∞  the inequality follows from the Theorem 2.1. 
 

Theorem 2.1 can also be applied to show that certain sequences of real numbers are monotone 
increasing. 

 

Example 2.9. The sequence   1   is monotone increasing. 

 

Solution. Let 3 ∈ 		be arbitrary. Since 1 1      and 

 

 1 1 2 2 1by Theorem 2.1 we have  

 

1 1 .    

 

Therefore the sequence 1 is monotone increasing. 

We end the paper with the following question. 
 
Question. Can the hypothesis 1weakened and is there a best constant smaller 
than 1for the functional inequality to hold? 
 
 
References 
 
[1] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd. ed., Cambridge, New York 

1959. 
[2] N. D. Kazarinoff, Analytic Inequalities, Holt, Rinehart and Winston, New York, 1961. 
[3] I. J. Maddox, Elements of Functional Analysis, Second ed., Cambridge Univ. Press, 1988. 
[4] Thomas.J. Mildford, Olympiad Inequalites, 2006, http://www.unl.edu/amc 
[5] W. Rudin, Real and Complex Analysis , McGraw-Hill Book Company, New York, 1987. 
 


